
1. Software and Software

Engineering

Abdus Sattar
Assistant Professor

Department of Computer Science and Engineering

Daffodil International University

Email: abdus.cse@diu.edu.bd

mailto:abdus.cse@diu.edu.bd
Naznin Sultana
Stamp

Naznin Sultana
Stamp

Naznin Sultana
Stamp

Naznin Sultana
Stamp

Naznin Sultana
Stamp

Appreciate Software Engineering

Nature of Software Engineering

Software Applications

Legacy of Software Engineering

Software Quality

Software Quality and Stakeholders

A Layered Technology

Software Process

Software Myths 2

Discussion Topics

What is Software?

Software is:

 Instructions (computer programs) that when

executed provide desired features, function, and

performance;

 Data structures that enable the programs to

adequately manipulate information and

 Documentation that describes the operation and use

of the programs.

3

Characteristics/Nature of Software

Software is developed or engineered, it is not

manufactured in the classical sense.

 Software is intangible(unable to touch)

• Hard to understand development effort

 Software is easy to reproduce

• Cost is in its development

 The industry is labor-intensive

• Hard to automate

4

Characteristics/Nature of Software

 Untrained people can hack something together

• Quality problems are hard to notice

 Software is easy to modify

• People make changes without fully understanding it

 Software does not ‘wear out’

• Relationship between failure rate and time.

• the failure rate as a function of time for hardware

5

Characteristics/Nature of Software

 Conclusions

 Much software has poor design and is getting worse

 We have to learn to ‘engineer’ software

6

Software Applications

System Software :

 Operating system, drivers, networking software, telecommunications

processors, Compilers.

Application Software:

 Microsoft Office, Excel and Outlook, Google Chrome, Mozilla Firefox
and Skype. Games and mobile applications such as "Clash of Clans,"
SoundCloud, Spotify and Uber, are also considered application software.
Other specific examples include Steam, "Minecraft," Adobe Reader and
Photoshop.

Engineering/scientific software:

 Computer-aided Design and Computer-aided Manufacturing Software,
Civil Engineering and Architectural Software , Electrical Engineering
software, Geographic Information Systems Software, Simulation
software, Interactive Software.

Embedded Software :

 key pad control for a microwave oven, fuel control, dashboard displays,

and braking systems, control and monitoring system.

7

Software Applications (Cont..)

Product-line software/Data Processing System:

 Inventory control products, word processing, spreadsheets, computer

graphics, multimedia, entertainment, database management, and

personal and business financial applications

WebApps (Web applications)

 Integrated with corporate databases and business applications:
Booking application, Chatting application, Upload, E-Business, E-
Commerce application.

AI software

 Include robotics, expert systems, pattern recognition (image and

voice), artificial neural networks, theorem, proving, and game

playing.

Gaming Software

Mobile Device Software
8

Software—New Categories

 Open world computing—pervasive/widespread, distributed

computing

 Ubiquitous computing—wireless networks.

 Net sourcing—the Web as a computing engine.

 Open source—”free” source code open to the computing

community (a blessing, but also a potential curse!)

9

Legacy Software

Legacy implies that the software is out of date or in
need of replacement, however it may be in good
working order so the business or individual owner
does not want to upgrade or update the software.

10

Legacy Software

Why must it change?
 software must be adapted to meet the needs of new

computing environments or technology.

 software must be enhanced to implement new
business requirements.

 software must be extended to make it interoperable
with other more modern systems or databases.

 software must be re-architected to make it viable
within a network environment.

11

Characteristics of WebApps

 Network intensiveness. A WebApp resides on a network and
must serve the needs of a diverse community of clients.

 Concurrency. A large number of users may access the
WebApp at one time.

 Unpredictable load. The number of users of the WebApp may
vary by orders of magnitude from day to day.

 Performance. If a WebApp user must wait too long (for
access, for server-side processing, for client-side formatting
and display), he or she may decide to go elsewhere.

 Availability. Although expectation of 100 percent availability
is unreasonable, users of popular WebApps often demand
access on a “24/7/365” basis.

12

Characteristics of WebApps(Cont…)

Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to the end-
user.

Content sensitive. The quality and aesthetic nature of content remains an
important determinant of the quality of a WebApp.

Continuous evolution. Unlike conventional application software that
evolves over a series of planned, chronologically-spaced releases, Web
applications evolve continuously.

Immediacy. Although immediacy—the compelling need to get software to
market quickly—is a characteristic of many application domains, WebApps
often exhibit a time to market that can be a matter of a few days or weeks.

Security. Because WebApps are available via network access, it is
difficult, if not impossible, to limit the population of end-users who may
access the application.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and
feel.

13

Software Engineering

The IEEE definition:

 Software Engineering:

 The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance

of software; that is, the application of engineering to

software.

 The study of approaches as in (1).

14

Software Engineering (Cont..)

 The process of solving customers’ problems

by the systematic development and

evolution of large, high-quality software

systems within cost, time and other

constraints

15

Software Engineering (Cont..)

 Solving customers’ problems

• The goal

• Sometimes the solution is to buy, not build

• Adding unnecessary features often makes

software worse

• Software engineers must communicate effectively

to identify and understand the problem

16

Software Engineering (Cont..)

 Systematic development and evolution

• An engineering process involves applying well

understood techniques in a organized and

disciplined way

• Many well-accepted practices have been

formally standardized

• e.g. by the IEEE or ISO

• Most development work is evolution

17

Software Engineering (Cont..)

 Large, high quality software systems

• Software engineering techniques are needed

because large systems cannot be completely

understood by one person

• Teamwork and co-ordination are required

• Key challenge: Dividing up the work and

ensuring that the parts of the system work

properly together

• The end-product must be of sufficient quality
18

Software Engineering (Cont..)

 Cost, time and other constraints

• Finite resources

• The benefit must outweigh the cost

• Others are competing to do the job cheaper and

faster

• Inaccurate estimates of cost and time have

caused many project failures

19

Software Quality

•Usability

• Users can learn it and fast and get their job done easily

•Efficiency

• It doesn't’t waste resources such as CPU time and

memory

•Reliability

• It does what it is required to do without failing

•Maintainability

• It can be easily changed

•Reusability

• Its parts can be used in other projects, so reprogramming

is not needed

20

Software Quality and Stakeholders

21

A Layered Technology

22
Fig: Software engineering layers

Software Process

 A process is a collection of activities, actions, and tasks that

are performed when some work product is to be created.

 An activity strives to achieve a broad objective (e.g.,

communication with stakeholders) and is applied regardless of

the application domain, size of the project, complexity of the

effort, or degree of rigor with which software engineering is to

be applied.

 An action (e.g., architectural design) encompasses a set of

tasks that produce a major work product (e.g., an architectural

design model).

 A task focuses on a small, but well-defined objective (e.g.,

conducting a unit test) that produces a tangible outcome. 23

The Essence of Practice

George Polya outlined The essence of software

engineering practice:

 Understand the problem (communication and

analysis).

 Plan a solution (modeling and software design).

 Carry out the plan (code generation).

 Examine the result for accuracy (testing and

quality assurance).

24

Software Myths

Pressman describes a number of common beliefs or myths

that software managers, customers, and developers believe

falsely.

He describes these myths as ``misleading attitudes that

have caused serious problems.'' We look at these myths to

see why they are false, and why they lead to trouble.

 Affect managers, customers (and other non-technical stakeholders)

and practitioners

 Are believable because they often have elements of truth,

 but …

 Invariably lead to bad decisions,

 therefore …

 Insist on reality as you navigate your way through software

engineering

25

Hooker’s General Principles

1: The Reason It All Exists

2: KISS (Keep It Simple, Stupid!)

3: Maintain the Vision

4: What You Produce, Others Will Consume

5: Be Open to the Future

6: Plan Ahead for Reuse

7: Think!
26

27

References:
1. Software Engineering by Ian Sommerville,

9th edition, Addison-Wesley, 2011

2. Software Engineering A practitioner’s

Approach by Roger S. Pressman, 7th edition, McGraw Hill, 2010.

