What is a Class Diagram?
Class diagrams are a neat way of visualizing the classes in your system before you actually start coding them up. They’re a static representation of your system structure.

[image: https://miro.medium.com/max/1478/1*TYRSuON0vVxy8olllrBVEw.png]
Example of a Class Diagram for a Banking System
This is a fairly simple diagram. However, as your system scales and grows, it becomes increasingly difficult to keep track of all these relationships. Having a precise, organized, and straight-forward diagram to do that for you is integral to the success of your system.
Why do we need class diagrams?
1. Planning and modeling ahead of time make programming much easier.
2. Besides that, making changes to class diagrams is easy, whereas coding different functionality after the fact is kind of annoying.
3. When someone wants to build a house, they don’t just grab a hammer and get to work. They need to have a blueprint — a design plan — so they can ANALYZE & modify their system.
4. You don’t need much technical/language-specific knowledge to understand it.
Some Technical Stuff
Class Representation in UML
A class is represented as a box with 3 compartments. The uppermost one contains the class name. The middle one contains the class attributes and the last one contains the class methods. Like this:

[image: https://miro.medium.com/max/456/1*vY53qi20_IryBWOBDnCHpg.png]
They adhere to the following convention:
attribute name : type
method name (parameter: type)
· if you’d like to set a default value to an attribute do as above balance : Dollars = 0
· if a method doesn’t take any parameters then leave the parentheses empty. Ex: checkBalance()
Visibility of Class Members
Class members (attributes and methods) have a specific visibility assigned to them. See table below for how to represent them in UML.

[image: https://miro.medium.com/max/650/1*cjxQc8YklOZGQNeCQVmGkg.png]
visibility and how to denote it
Let’s specifiy the visibility of the members of the BankAccount class above.

[image: https://miro.medium.com/max/452/1*TPgpSIX9iP8L9yYHH6CRfA.png]
We made the `owner` and balance private as well as the withdraw method. But we kept the deposit method public. (Anyone can put money in, but not everyone can take money out. Just as we like it.)
Relationships

[image: https://miro.medium.com/max/590/1*EUvDMA1vr0DiucONPzK9kA.png]
Summary of types of relationships and their notation
Association
a relationship between two separate classes. It joins two entirely separate entities. There are four different types of association: bi-directional, uni-directional, aggregation (includes composition aggregation) and reflexive. Bi-directional and uni-directional associations are the most common ones.
This can be specified using multiplicity (one to one, one to many, many to many, etc.).
A typical implementation in Java is through the use of an instance field. The relationship can be bi-directional with each class holding a reference to the other.
Inheritance
indicates that child (subclass) is considered to be a specialized form of the parent (super class). For example consider the following:

[image: https://miro.medium.com/max/1510/1*szU8ngrWSXmBNPYReMyK5w.png]
Above we have an animal parent class with all public member fields. You can see the arrows originating from the duck, fish, and zebra child classes which indicate they inherit all the members from the animal class. Not only that, but they also implement their own unique member fields. You can see that the duck class has a swim() method as well as a quack() method.
Realization/Implementation
a relationship between two model elements, in which one model element implements/executes the behavior that the other model element specifies.

[image: https://miro.medium.com/max/1364/1*IqO6TgyLWJ1g9VthkB37sA.png]
example of implements
Dependency
Aggregation
a special form of association which is a unidirectional (a.k.a one way) relationship between classes. The best way to understand this relationship is to call it a “has a” or “is part of” relationship. For example, consider the two classes: Wallet and Money. A wallet “has” money. But money doesn’t neccessarily need to have a wallet so it’s a one directional relationship.
Composition
a restricted form of Aggregation in which two entities (or you can say classes) are highly dependent on each other.

[image: https://miro.medium.com/max/790/1*rKhbe3lwRvfHKi-VTY_9xQ.png]
A human needs a heart to live and a heart needs a human body to function on. In other words when the classes (entities) are dependent on each other and their life span are same (if one dies then another one too) then its a composition.
Multiplicity
after specifying the type of association relationship by connecting the classes, you can also declare the cardinality between the associated entities. For example:

[image: https://miro.medium.com/max/2092/1*NZMShZQ7NenJzAAL96ibPg.png]
The above UML diagram shows that a house has exactly one kitchen, exactly one bath, atleast one bedroom (can have many), exactly one mailbox, and at most one mortgage (zero or one).

[image: https://miro.medium.com/max/1120/1*hX9J6JvZdA1kSoq2V0LjNA.png]
In this example we are asked to create a class diagram for a banking system. It must have the following classes:
· Bank
· ATM
· Customer
· Account
· Transaction
· Checking Account
· Savings Account
Let’s determine possible class members for each of the above.
The bank class represents a physical bank. It has a location and a unique id. This bank also manages several accounts. **There’s an association!** What type of association is this? Is a bank entirely composed of accounts (composition)? Or are accounts ‘part of’ a bank (aggregation)? It looks like aggregation. It can’t be composition because that would mean that both classes live and die together. That’s not quite right because you can have a bank without accounts and you can have accounts without a bank. We’ll add a method called getAccounts().
The ATM class represents a physical ATM. Right off the bat, we can come up with three methods for the ATM: withdraw(), deposit(), checkBalance(). Each of these methods takes the card number as input. In terms of attributes, an ATM has a location and is managed by a specific bank.
The customer class represents a real customer. This customer has a name, address, date of birth (dob), card number, and pin. For this person to be considered a customer, they must have an account. **There’s another association!** This isn’t aggregation or composition, it’s just a bi-directional association (drawn using a blank line no arrows).
The account class represents a bank account. Common attributes of bank accounts include account number, balance, etc. You can deposit() withdraw() money from the account. In addition, banks might offer two types of accounts: a checking account and a savings account. These two can thus be considered child classes of the account class and can inherit from it too. We’ll denote this by using a solid black line with an unfilled arrow going into the account class.

[image: https://miro.medium.com/max/1266/1*Srh6QviwDT6LFFdSnyzelA.png]

UML Class Diagrams Examples
Here we provide some examples of class diagrams and object diagrams:

 Abstract Factory Design Pattern
Purpose: Illustrate Abstract Factory design pattern.
Summary: Abstract Factory is creational software design pattern. This pattern provides interfaces for creating families of related or dependent objects without specifying their concrete classes.
[image: Abstract factory design pattern UML class diagram example.]

Library domain model
Purpose: Describe domain area for an Integrated Library System (ILS), also known as a Library Management System (LMS) - Library, Catalog, Book, Patron, Account.
Summary: Library Domain Model describes main classes and relationships which could be used during analysis phase to better understand domain area for ILS or LMS.
[image: Library domain model UML class diagram example.]

Online shopping domain model
Purpose: Show some domain model for online shopping - Customer, Account, Shopping Cart, Product, Order, Payment.
Summary: Example of a UML class diagram representing online shopping domain. Each customer could have some web user identity. Web user could be in one of several states and could be linked to a shopping cart.
[image: Online shopping domain model UML class diagram example.]

Bank account class diagram example
Purpose: Domain model describing common types of bank accounts.
Summary: This example shows several subtypes of Bank Account using UML generalization sets. Bank accounts could be grouped into UML generalization sets based on different criteria. Example diagram shows bank accounts topology with two orthogonal dimensions and with corresponding power types Liability Type and Account Type.
[image: Bank account domain UML class diagram example.]

Health insurance policy UML class diagram example
Purpose: Domain model describing various types of health insurance policies.
Summary: This example shows several subtypes of Health Insurance Policy using UML generalization sets. One generalization set is Coverage Type - Job Based Coverage, Self Coverage, and Benefits Coverage, and another set is based on Insurance Plan - HMO, POS, PPO, FFS.
[image: Health insurance policy UML class diagram example.]

Hospital domain UML class diagram example
Purpose: Domain model for a hospital to show and explain hospital structure, staff, relationships with patients, and patient treatment terminology.
Summary: The domain model for the Hospital Management System is represented by several class diagrams.
Ward is a division of a hospital or a suite of rooms shared by patients who need a similar kind of care. In a hospital, there are a number of wards, each of which may be empty or have on it one or more patients. Each ward has a unique name.
The doctors in the hospital are organised into teams (also called firms). Each team has a unique name or code (e.g. Orthopaedics or Pediatrics) and is headed by a consultant doctor or an attending physician.
[image: Hospital Organization Domain model - Patient, Hospital, Staff - Operations, Administrative, Technical.]

Digital imaging in medicine - DICOM model of the real world
Purpose: Represent domain model ("model of the real world") for Digital Imaging and Communications in Medicine (DICOM) - Patient, Visit, Facility, Imaging Service Request, Scheduled Procedure Step, Modality Performed Procedure Step.
Summary: UML diagram example represents DICOM extended domain, abstract description of the real world objects used in the Modality-IS Interface. Modality is a piece of medical imaging equipment, e.g. computed tomography (CT) or ultrasound (US).
[image: Digital imaging in medicine DICOM model of the real world UML class diagram example.]

Digital imaging in medicine - DICOM Application Hosting API
Purpose: An example of UML class diagram representing DICOM Application Hosting API, defined in Part 19 of DICOM Standard (PS 3.19-2011). The Application Hosting API describes interfaces between two software applications - Hosting System and Hosted Application, exchanging medical data while located on the same system.
Summary: The DICOM Application Hosting API defines three interfaces - Application, Host, and DataExchange interface. Hosting System provides a variety of services such as DICOM object retrieval and storage to Hosted Application. The latter processes provided medical data, potentially returning back some newly generated data sets.
[image: Digital Imaging in Medicine (DICOM) Application Hosting API UML class diagram example.]

Sentinel HASP software licensing domain UML class diagram example
Purpose: The purpose of the domain diagram is to show major "things" used during software licensing and protection process using Sentinel HASP, and relationships between those things.
Summary: When software vendor purchases a Sentinel HASP LDK, the vendor is provided with a unique batch code and corresponding vendor key. Each protected software product has some features and is associated with a batch code. An entitlement can contain one or more products and is associated with the customer who placed the order. The customer could be either an individual customer or a company.
[image: Sentinel HASP software licensing domain UML class diagram example.]

Java util.concurrent API UML class diagram examples
Purpose: Examples of UML class diagram representing most important interfaces and classes of Java™ util.concurrent API. Several java.util.concurrent.* packages support high-level concurrency features in Java with the new concurrent data structures in the Java Collections framework.
Summary: Executors define a high-level API for launching and managing threads to support large-scale applications mostly by adding thread pool management abilities. Concurrent collections reduce the need for synchronization and are designed to support concurrent access and modifications of the large collections of data. The Future<V> interface represents the result of an asynchronous computation.
[image: Java 7 util.concurrent package UML class diagram examples - executors, concurrent collections, and futures.]

 Android Camera implementation classes
Purpose: An example of implementation level UML class diagram to illustrate usage of Android Camera API (Android 3.1 Platform, API Level 12).
Summary: CameraDemo class extends Android's Activity class. An Activity is a single, focused thing that a user can do with Android. Activity usually interacts with user, and the Activity class takes care of creating a window in which we can place our user interface. CameraDemo activity will create a Preview object and will hold reference to. Preview holds back reference to the activity as its Context. The Preview object will create a Camera object and return it to the CameraDemo activity.
[image: Java 7 util.concurrent package UML class diagram examples - executors, concurrent collections, and futures.]

Sentinel HASP licensing UML class diagram of Aladdin package
Purpose: Show implementation details of several HASP classes realizing the HASP Java Native Interface Proxy component.
Summary: The HASP Aladdin package includes 4 classes. These classses are implementation of the HASP Java Native Interface Proxy component you can find on the Sentinel HASP licensing component diagram.
[image: Sentinel HASP licensing UML class diagram example of Aladdin package.]

Web application Login Controller object diagram
Purpose: An example of UML object diagram which shows some runtime objects involved in the login process for a web user.
Summary: An instance of Login Controller class is associated with instances of User Manager, Cookie Manager, and Logger. Login Controller, User Manager, and Hibernate User DAO (Data Access Object) share a single instance of Logger.
[image: User login controller UML object diagram example.]

https://www.uml-diagrams.org/class-diagrams-examples.html

image6.png
+age : Int
+gender: String
+isMammal ()
+mate()
> -
A

-sizelnFt : Int
-canEat : Boolean

Zebra

+beakColor : String = “yellow" +is_wild : Boolean

+swim()

+quack() +run()

image7.png
<<interface>> Movable

+moveUp() :void
+moveDown () :void
+moveleft():void

+moveRight():void

MovableCircle

MovablePoint

-radius:int
-center:MovablePoint

~x:int
~y:int
~xSpeed:int
~ySpeed:int

+MovableCircle(x:int,y:int
xSpeed :int,ySpeed: int,
radius:int)
+toString():String
+moveUp() :void

+MovablePoint(x:int,y:int,
xSpeed :int,ySpeed: int)
+toString():String

+moveUp() :void +moveDown () :void
+moveDown () :void +movelLeft():void
+moveleft():void +moveRight():void

+moveRight():void

image8.png
+isHealthy : Bool

+speak() +pumpBlood()

image9.png
House

0.1

Mortgage

1

Mailbox

Kitchen

Bath

Room

1 Bedroom

image10.png
ClassA
0.1

ClassA
| 1

ClassA
1.*

ClassA
0.*

ClassB

ClassB

ClassB

ClassB

Objects of ClassA MAY
know about a single
ohject of ClassB

Objects of ClassA MUST
know about a single
ohject of ClassB

Objects of ClassA MUST
know at least one ohject
of ClassB

Objects of ClassA MAY
know about many ohjects
of ClassB

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image1.png
+Bankid: int
+Name: string
+Location: string

Customer

+Id: int
+Name: string
+Address: string
+PhoneNo: int
+AcctNo: int

+Generallnquiry()
+DepositMoney()
+WithdrawMoney()
+OpenAccount()
+CloseAccount()
+ApplyForLoan()
+RequestCard()

+0.*

Teller

+1d: int
+Name: string

+CollectMoney()
+OpenAccount()
+CloseAccount()
+LoanRequest()
+Providelnfo()
+IssueCard()

Account

+Id: int
+Customerld: int

ISR - —

Loan

+Id: int

+Type: string
+Accountld: int
+Customerld: int

Checking

+Id: int

+Customerld: int

+1d: int
+Customerld: int

image2.png
BankAccount

owner : String
balance : Double = 0.0

deposit (amount : Double)
withdraw (amount : Double)

image3.png
public + | anywhere in the program and
may be called by any object
within the system

private - | the class that defines it

protected | # | (a) the class that defines it or
(b) a subclass of that class

package |~ | instances of other classes

within the same package

image4.png
BankAccount

-owner : String
-balance : Double = 0.0

+deposit (amount : Double)
-withdraw (amount : Double)

image5.png
Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

