CE 415:Design of Steel Structures

Course Teacher: Sinha Lamia Sultana

Recommended Text Book
☐ Steel Structures, Design and Behaviour, Fifth Edition, 2009. Authors: Salmon, Johnshon and Malhas.
Supporting materials
 □ Manual for Steel Construction, 14th Edition, 2011. Author: American Institute of Steel Construction (AISC). □ Design of Steel Structures, 3rd Ed., 1991, Authors: Gaylord, Gaylord and Stallmeyer, Publisher: McGraw-Hill

Steel Structures: Bridges

The Hardinge Bridge

Completed: 1912, Commissioned: 1915

Photo: Collected from Lecture Slides of Professor Dr. Khan Mahmud Amanat, BUET

Steel Structures: Bridges

শেওলা সেতু, সিলেট

Photo: Collected from Lecture Slides of Professor Dr. Khan Mahmud Amanat, BUET

Steel Structures: Lattice Towers

132kV 3-Phase Double Circuit Transmission Line Rural Electrification Board, Sylhet

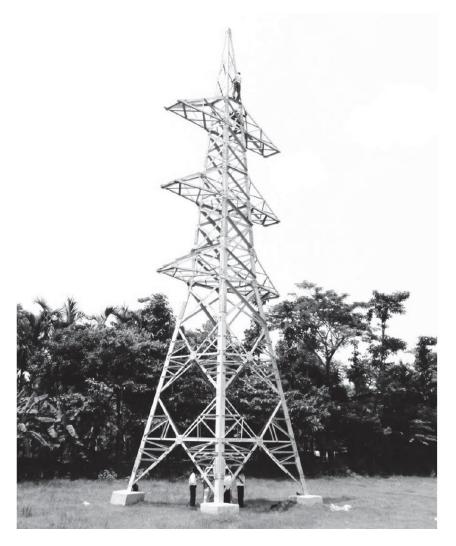


Photo: Collected from Lecture Slides of Professor Dr. Khan Mahmud Amanat, BUET

Limit States:

- ☐ Strength Limit State- Flexure, Shear, Settlement, Bearing
- ☐ Servicibility Limit States Cracking, Excessive Deflection, Buckling, Stability
- ☐ Special Limit States- Collapse due to Earthquake effect, Structural effect of Fire, Explosion or Vehicular Collision

Design Philosophy

A general statement assuming safety in engineering design is: Strength/Resistance/Capacity ≥ Effect of Applied Loads

Two Methods

☐ Load and Resistance Factor Design (LRFD)

Nominal Strength or Resistance: Rn

Resistance factor : Φ < 1 Design Strength : Φ Rn

Factored Load (also called ultimate load): Ru (1.2 DL + 1.6 LL)

LRFD safety requirement: Φ Rn >= Ru

☐ Allowable Strength Design (ASD)

Nominal strength or Resistance: Rn

Safety factor : $\Omega > 1$

Design strength : Rn/Ω

Required strength (also called allowable strength): Ra (DL + LL)

ASD safety requirement: $Rn/\Omega \ge Ra$

Load Combinations

Load combination actually means combination of similar load effects.

Load Effect Combinations for LRFD:

2.
$$1.2D + 1.6L + 0.5(L_r \text{ or } R)$$

3.
$$1.2D + 1.6(L_r \text{ or } R) + (1.0L \text{ or } 0.8W)$$

4.
$$1.2D + 1.6W + 0.5L + 0.5(L_r \text{ or } R)$$

5.
$$1.2D + 1.0E + 0.5L$$

6.
$$0.9D + (1.6W \text{ or } 1.0E)$$

Load Effect Combinations for ASD:

2.
$$D+L$$

3.
$$D + L + (L_r \text{ or } S \text{ or } R)$$

4.
$$D + (W \text{ or } 0.7E) + L + (L_r \text{ or } R)$$

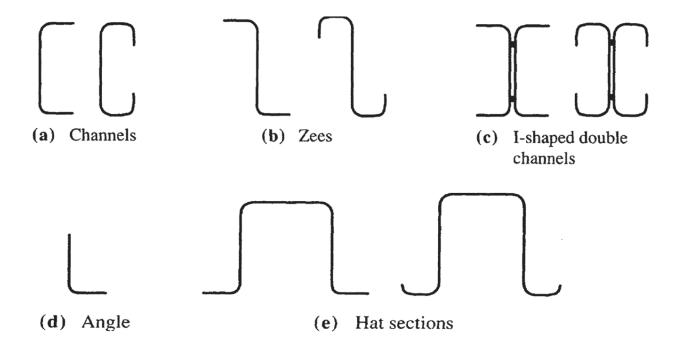
5.
$$0.6D + W$$

6.
$$0.6D + 0.7E$$

Advantages & Disadvantages of Steel

Advantages

- 1) High strength to weight ratio
- 2) Properties are uniform and homogeneous
- 3) High ductility, providing adequate warning before collapse
- 4) Can be easily recycled
- 5) Easy to fabricate & erect
- 6) Easy to inspect, repair or retrofit
- 7) Easy to make additions to existing structures because of relative ease of connections
- 8) Erection not affected by weather

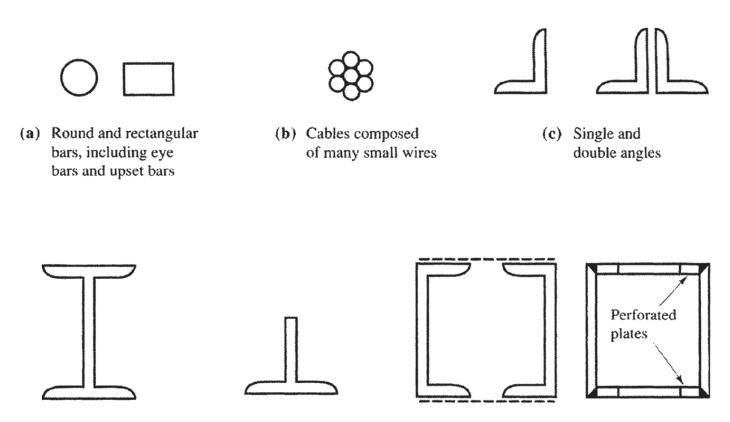

Disadvantages

- 1) Corrosion
- 2) Susceptibility to temperature
- 3) Susceptibility to buckling

Steel Shapes

☐ Cold formed shapes

Cold formed shapes are manufactured by bending or folding or cold rolling mild steel sheets of thickness 3 mm or less to the desired shape



☐ Hot rolled shapes

(d) Rolled W- and

S-sections

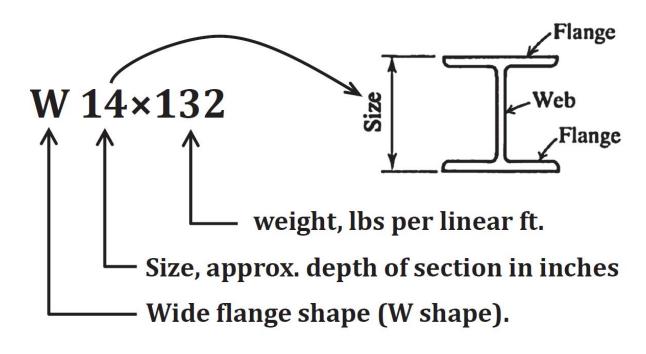
Hot rolled shapes are formed by heating steel billets to softer state and then passing the billets through carefully shaped and aligned rollers to force the billet to achieve the desired shape.

(f) Built-up box

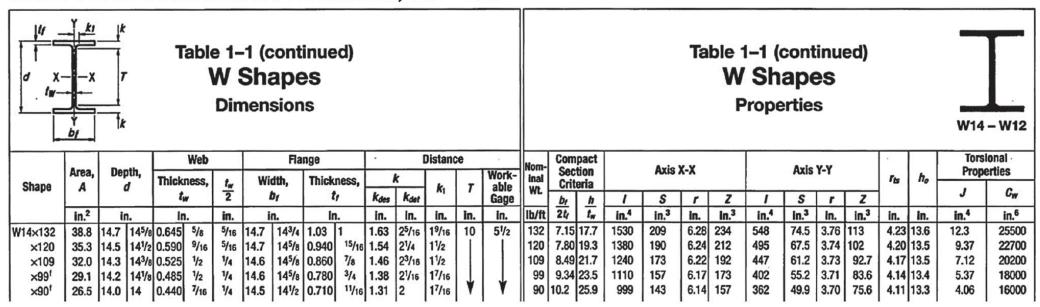
sections

(e) Structural

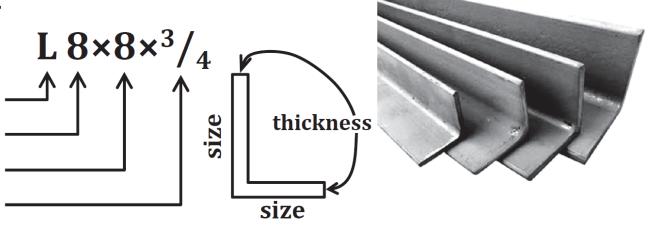
tee


Different Types of Structural Steel

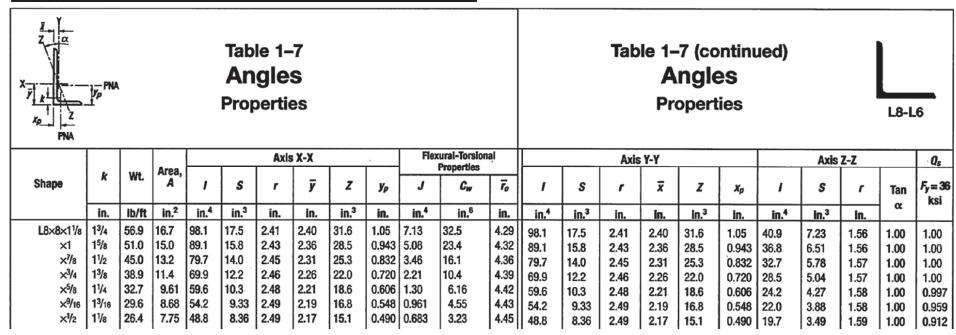
ASTM [†] designation	F _y Minimum yield stress ksi (MPa) [‡]	F _u Tensile strength ksi (MPa) [‡]	Maximum thickness for plates in. (mm)	ASTM A6 groups* for shapes
A36	32 (220)	58-80 (400-550)	Over 8 (200)	_
	36 (250)	5880 (400550)	To 8 (200)	All
A572 Grade 42	42 (290)	60 (415)	To 6 (150)	All
Grade 50	50 (345)	65 (450)	To 4 (100)	All
Grade 60	60 (415)	75 (520)	To $1\frac{1}{4}$ (32)	1, 2, 3
Grade 65	65 (450)	80 (550)	To $1\frac{1}{4}$ (32)	1, 2, 3
A913 Grade 50 Grade 60	50 (345) 60 (415)	60 (415) 75 (520)		All
Grade 65 Grade 70	65 (450) 70 (485)	80 (550) 90 (620)		Ац
A992	50 (345)	65 (450)		All


Unit weight: 490 lb/ft³
Young's Modulus: 29000 ksi

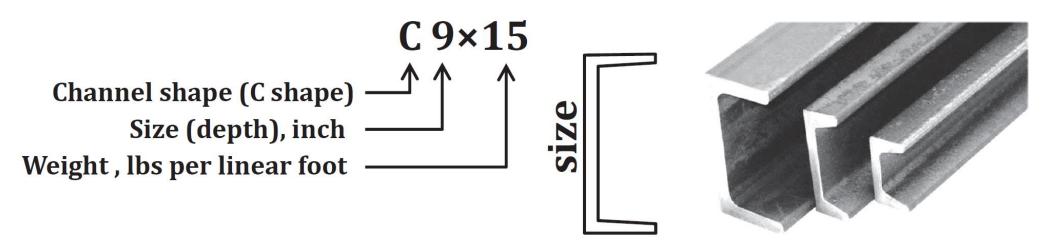
AISC STEEL SHAPES

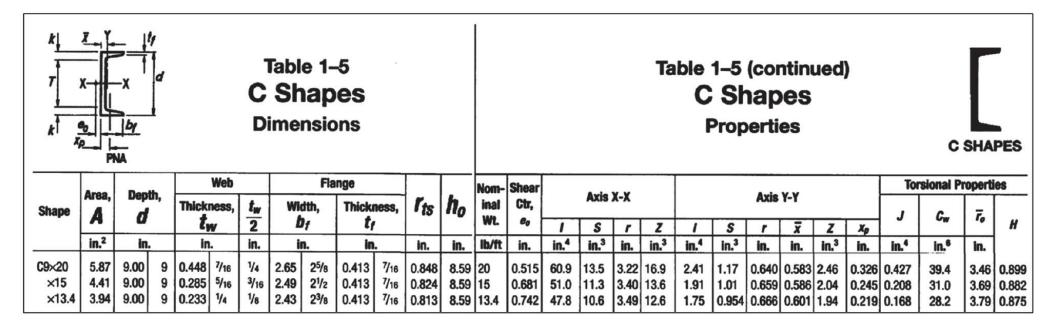


AISC Steel Construction Manual, 13th Ed.



AISC STEEL SHAPES


Angle shape (L shape)
Size (width) of one leg, inch
Size (width) of other leg, inch
Thickness of legs, inch


AISC Steel Construction Manual, 13th Ed.

AISC STEEL SHAPES

AISC Steel Construction Manual, 13th Ed.

References

Th	e following references will be used to prepare the lecture slides for this course.
	Lecture Slides of the course CE 319 (Design of Steel Structures) of Professor Dr. Khan Mahmud Amanat, Department of Civil Engineering, BUET
	Lecture slides of Asifur Rahman (<u>www.asifurrahman.net</u>)
	Steel Structures, Design and Behaviour, Fifth Edition, 2009. Authors: Salmon, Johnshon and Malhas.
	Manual for Steel Construction, 14th Edition, 2011. Author: American Institute of Steel Construction (AISC).
	Steel Design, Fifth Edition. Authors: Willam T. Segui.