

CE 415 DESIGN OF STEEL STRUCTURES LECTURE 3 TENSION MEMBER

SEMESTER: SPRING 2021 COURSE TEACHER: SAURAV BARUA CONTACT NO: +8801715334075

EMAIL: saurav.ce@diu.edu.bd

LRFD Design

 $\phi_t T_n \ge T_u$ Where,

 ϕ_t = resistance factor relating to tension member strength

 T_n = nominal strength of a tension member (see AISC-Chapter D)

2

 $\phi_t T_n$ = design strength of a tension member

 T_u = factored load on a tension member

Tension Members have THREE limit states:

- 1. Yielding on gross section
- 2. Fracture on effective section
- 3. Block Shear

Yielding on gross section

 $\phi_t T_n = \phi_t F_y A_g = 0.9 \, F_y A_g$

Fracture on effective net section

 $\phi_t T_n = \phi_t F_u A_e = 0.75 F_u A_e$

Note that the resistance factor ϕ_t is 0.90 for the yielding limit state and 0.75 for the fracture limit state.

ASD Design

Yielding on gross section

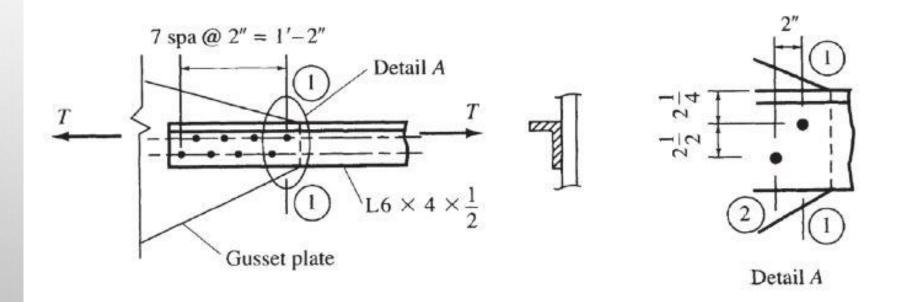
Nominal Strength: $T_n = F_y A_g$

Allowable Strength: $\frac{T_n}{\Omega} = \frac{F_y A_g}{\Omega} = \frac{F_y A_g}{1.67}$

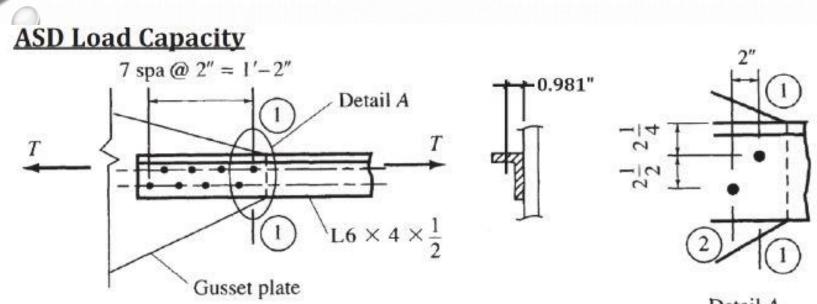
Safety factor Ω = 1.67 for yielding on gross section

Fracture on effective net section

Nominal Strength: $T_n = F_u A_e$


Allowable Strength: $\frac{T_n}{\Omega} = \frac{F_u A_e}{\Omega} = \frac{F_u A_e}{2.00}$

Safety factor Ω = 2.00 for fracture on net section


3

ASD Load Capacity

Determine the service load capacity in tension for an L6 x 4 x $^{1}/_{2}$ A572 Grade 50 steel connected with $^{7}/_{8}$ -in.-diam. bolts in standard holes as shown. Assume live load to be three times the dead load. Neglect block shear failure.

Designation						A	1x	rx	у	ly	ry	x
L 9x4x1	9	х	4	х	1	12.0	97.0	2.84	3.50	12.0	1.00	1.00
L 7x4x0.625	7	х	4 :	х	5/8	6.48	32.4	2.24	2.46	7.84	1.10	0.963
L 6x4x0.75	6	х	4 :	х	3/4	6.94	24.5	1.88	2.08	8.68	1.12	1.08
L 6x4x0.625	6	х	4 :	х	5/8	5.86	21.1	1.90	2.03	7.52	1.13	1.03
L 6x4x0.5625	6	x	4	х	9/16	5.31	19.3	1.90	2.01	6.91	1.14	1.01
L 6x4x0.5	6	x	4	x	1/2	4.75	17.4	1.91	1.99	6.27	1.15	0.987
6x4x0.4375	6	х	4 :	х	7/16	4.18	15.5	1.92	1.96	5.60	1.16	0.964
6x4x0.375	6	х	4 :	х	3/8	3.61	13.5	1.93	1.94	4.90	1.17	0.941
4x3.5x0.437	4	х	3 1/2	х	7/16	3.09	4.76	1.24	1.23	3.40	1.05	0.978
4x3.5x0.375	4	х	3 1/2 :	х	3/8	2.67	4.18	1.25	1.21	2.95	1.06	0.955
4x3.5x0.312	4	х	3 1/2 :	х	5/16	2.25	3.56	1.26	1.18	2.55	1.07	0.932
4x3.5x0.25	4	х	3 1/2 :	х	1/4	1.81	2.91	1.27	1.16	2.09	1.07	0.909
4x3x0.625	4	х	3 :	х	5/8	3.98	6.03	1.23	1.37	2.87	0.849	0.871
L 4x3x0.5	4	x	3 :	х	1/2	3.25	5.05	1.25	1.33	2.42	0.864	0.827
4x3x0.4375	4	х	3 :	х	7/16	2.87	4.52	1.25	1.30	2.18	0.871	0.804
4x3x0.375	4	х	3 :	x	3/8	2.48	3.96	1.26	1.28	1.92	0.879	0.782
3.5x2.5x0.2	3 1/2	х	2 1/2	х	1/4	1.44	1.8	1.12	1.11	0.777	0.735	0.614
3x2.5x0.5	3	х	2 1/2	х	1/2	2.50	2.08	0.913	1.00	1.30	0.722	0.750
3x2.5x0.437	3	х	2 1/2 :	х	7/16	2.21	1.88	0.920	0.978	1.18	0.729	0.728
3x2.5x0.375	3	х	2 1/2 :	х	3/8	1.92	1.66	0.928	0.956	1.04	0.736	0.706
3x2.5x0.312	3	х	2 1/2 :	х	5/16	1.62	1.42	0.937	0.933	0.898	0.744	0.683
3x2.5x0.25	3	x	2 1/2	x	1/4	1.31	1.17	0.945	0.911	0.743	0.753	0.661
				-	100000000000000000000000000000000000000	100 202-00	200 C 200					

Detail A

6

Consider net section along 1-1 and along 1-2, because at these two sections, full force is transferred.

From AISC Manual: $A_q = 4.75$ in² and $\overline{x} = 0.981$

Along 1-1:
$$A_n = A_g - (1-\text{hole}) = 4.75 - (7/8 + 1/8) \times (1/2) = 4.25 \text{ in}^2$$

Along 1-2: $A_n = A_g - (2-\text{hole}) + s^2/4g$
 $= 4.75 - 2(7/8 + 1/8) \times (1/2) + 2^2/(4 \times 2.5)(1/2)$
 $= 3.95 \text{ in}^2$
 $U = 1 - \overline{x}/L = 1 - 0.981/14 = 0.93$
 $A_e = UA_n = 0.93 \times 3.95 = 3.67 \text{ in}^2$.

copyright @Sauray

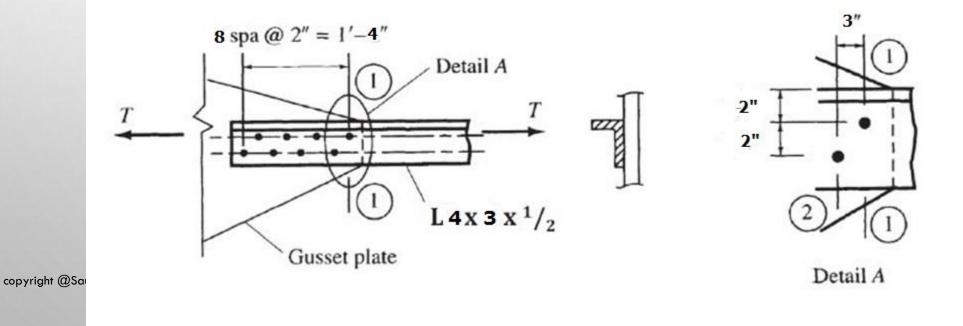
ASD Load Capacity

A572 Grade 50 steel: $F_v = 50$ ksi, $F_u = 65$ ksi.

<u>Yielding on gross area:</u> Allowable tension = $T_n/\Omega = F_y A_g/\Omega = 50(4.75)/1.67 = 142$ kips

<u>Fracture on effective area:</u> Allowable tension = $T_n/\Omega = F_u A_e/\Omega = 65(3.67)/2.00 = 119$ kips \rightarrow Governs

7


Now, D + L = 119 $\Rightarrow D + 3D = 119$ $\Rightarrow D = 29.75$ kips

 $\therefore L = 3D = 89.25$ kips

SUBMIT THE ASSIGNMENT IN MOODLE

ASD Load Capacity

Determine the service load capacity in tension for an L 4x 3 x $^{1}/_{2}$ A572 Grade 50 steel connected with $^{5}/_{8}$ -in.-diam. bolts in standard holes as shown. Assume live load to be two times the dead load. Neglect block shear failure.

8

0

□ SUBMIT THE ASSIGNMENT IN MOODLE

USE ANGLE PROPERTY TABLE

SOLVE THE MATH

WRITE STUDENT ID

TAKE PICTURE OF THE ASSIGNMENT

UPLOAD IT IN THE MOODLE SITE.