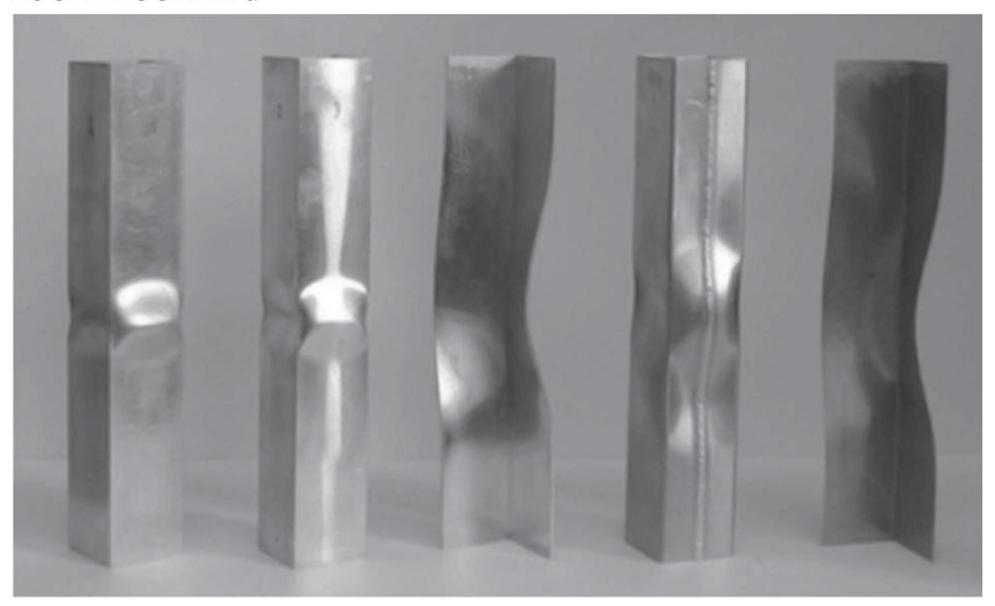
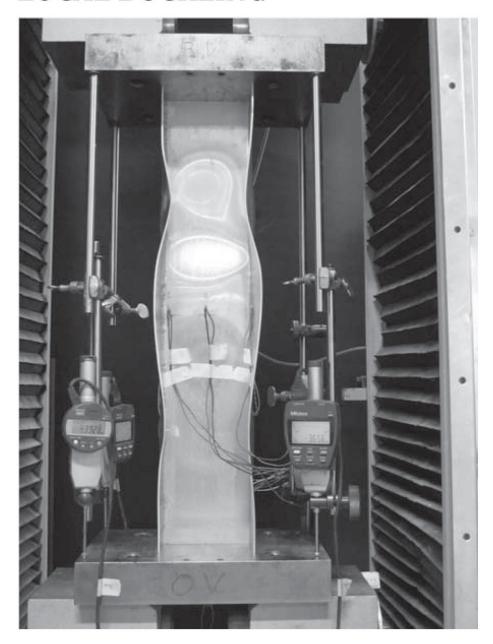

CE 415: Design of Steel Structures


Course Teacher: Sinha Lamia Sultana (SLS)


Local buckling is a phenomenon by which a portion of the section of a column or beam buckles instead of overall buckling.

Local buckling leads to a reduction in the strength of a compression member and prevents the member from reaching its overall compression capacity.

To avoid or prevent local buckling, the AISC specification prescribes limits to the width-to-thickness ratios of the plate components that make up the structural member.

Local buckling primarily depends on the ratio, b/t, of the width (b) and thickness (t) of the plate elements that builds up a section.

Based on the width/thickness ratio steel sections are defined as

Compact: A compact section reaches its cross-sectional

material strength, or capacity, before local

buckling occurs.

Non-Compact: In a non-compact section, only a portion of

the cross-section reaches its yield strength before

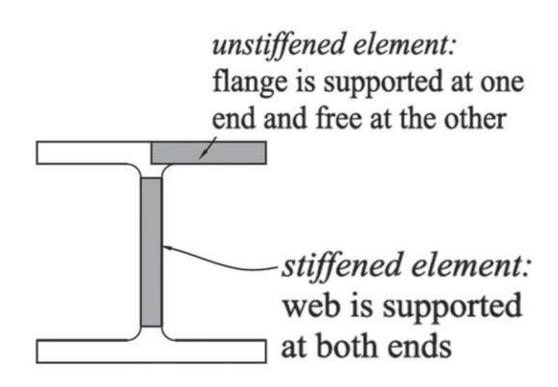
local buckling occurs.

Slender: In a slender section, the cross-section does not

yield and the strength of the member is governed

by local buckling.

The use of slender sections as compression members is not efficient or economical; therefore, the use of slender section in design practice is not recommended.


There are also two type of elements of a column section :

Stiffened:

Stiffened elements are supported along both edges parallel to the applied axial load. An example of this is the web of an I-shaped column where the flanges are connected on either end of the web.

Unstiffened:

An unstiffened element has only one unsupported edge parallel to the axial load—for example, the outstanding flange of an I-shaped column that is connected to the web on one edge and free along the other edge.

LOCAL BUCKLING: AISC Specification for limiting b/t ratio Unstiffened Elements

Case		Width Thick- ness Ratio	Limiting Width- Thickness Ratios		
Ö	Description of Element		λ_p (compact)	λ_r (noncompact)	Example
1	Flexure in flanges of rolled I-shaped sections and channels	b/t	0.38√ <i>E/F_y</i>	1.0√ <i>E/Fy</i>	
2	Flexure in flanges of doubly and singly symmetric I-shaped built-up sections	b/t	0.38√ <i>E/F_y</i>	0.95 $\sqrt{k_c E/F_L}^{[a],[b]}$	

LOCAL BUCKLING: AISC Specification for limiting b/t ratio Stiffened Elements

	Case	Description of Element	Width Thick- ness Ratio	I I II I CKI I COO I I GLI CO		
	Ö			λ_p (compact)	λ_r (noncompact)	Example
	9	Flexure in webs of doubly symmetric I-shaped sections and channels	h/t _w	3.76√ <i>E/Fy</i>	5.70√ <i>E/Fy</i>	h -tw
lements	10	Uniform compression in webs of doubly symmetric I-shaped sections	h/t _w	NA	1.49√ <i>E/Fy</i>	h -tw
Stiffened Elements	11	Flexure in webs of singly-symmetric I-shaped sections	h _c /t _w	$\frac{\frac{h_c}{h_p}\sqrt{\frac{E}{F_y}}}{\left(0.54\frac{M_p}{M_y} - 0.09\right)^2} \le \lambda_r$	5.70√ <i>E/Fy</i>	$\frac{h_p}{2}$ pna $\frac{h_c}{2}$ cg $-t_w$

LOCAL BUCKLING: AISC Specification for limiting b/t ratio Stiffened Elements

Case	Description of Element	Width Thick- ness Ratio	Limiting Width- Thickness Ratios		
			λ_p (compact)	λ_r (noncompact)	Example
12	Uniform compression in flanges of rectangular box and hollow structural sections of uniform thickness subject to bending or compression; flange cover plates and diaphragm plates between lines of fasteners or welds	b/t	1.12√ <i>E/Fy</i>	1.40√ <i>E/Fy</i>	
15	Circular hollow sections		· · · · · · · · · · · · · · · · · · ·		The state of the s
	In uniform compression	D/t	NA	0.11 <i>E/Fy</i>	D
	In flexure	D/t	$0.07E/F_y$	0.31 <i>E/F_y</i>	Milliand