CE 415: Design of Steel Structures

When the yield stress is reached at the extreme fiber [Fig. (b)], the nominal moment strength M_n is referred to as the yield moment M_y and is computed as

$$M_n = M_y = S_x F_y$$

Where S_x = section modulus = I_x/c

When the condition of Fig. (d) is reached, every fiber has a strain equal to or greater than $\varepsilon_y = F_y/E_s$ i.e., it is in the plastic range. The nominal moment strength M_n is therefore referred to as the plastic moment M_p , and is computed as.

$$M_p = F_y \int_A y \, dA = F_y Z$$

$$Z = \int y \, dA \quad \Rightarrow \text{Plastic section modulus}$$

NOMINAL MOMENT CAPACITY OF LATERALLY SUPPORTED BEAMS Compact Sections

The nominal strength M_n for laterally stable "compact sections" according to AISC may be stated,

$$M_n = M_p = F_y Z_x$$

Where, M_p = Plastic moment capacity

 Z_x = Plastic section modulus

 F_v = Specified minimum yield stress.

In order to develop full plastic moment, the b/t ratio ($b=b_f/2$) for flange must be smaller than the limit λ_p defined by AISC.

Local buckling in hot-rolled l-shaped sections is, for practical purposes, only possible in the flanges.

Partially Compact Sections

The nominal strength M_n for laterally stable "noncompact sections" whose flange width/thickness ratios λ are less than λ_r but not as low as λ_p must be linearly interpolated between M_p and $M_r = 0.7$ $F_v S_x$

$$M_n = M_p - (M_p - 0.7F_yS_x)\left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right)$$

where $\lambda = b_f/2t_f$ for I-shaped member flanges

 b_f = flange width

 t_f = flange thickness

 λ_{pf} = compact limit for reaching M_p (AISC-Table B4.1)

 λ_{rf} = noncompact limit for reaching M_r (AISC-Table B4.1)

Slender Flange Sections

When the width/thickness ratio λ [= b_f /(2 t_f)] exceeds the limit λ_r of AISC-B4, the section is referred to as "slender" and must be treated in accordance with AISC-F3.2(b). The nominal strength of such a section is

$$M_n = \frac{0.9Ek_cS_x}{\lambda^2}$$
 [Eq. F3-2, page 49, AISC 360-05]

$$k_c = \frac{4}{\sqrt{h/t_w}}$$
, where $0.35 \le k_c \le 0.763$

LATERALLY SUPPORTED BEAMS: LRFD Design

The strength requirement for beams in load and resistance factor design according to AISC-F1 may be stated

$$\phi_b M_n \ge M_u$$

where ϕ_b = resistance (i.e., strength reduction) factor for flexure = 0.90 M_n = nominal moment strength

 M_u = factored service load moment

LATERALLY SUPPORTED BEAMS: ASD Design

The strength requirement for beams in allowable strength design according to AISC-FI may be stated

$$\frac{M_n}{\Omega_b} \geq M_a$$
 where $M_a =$ required strength, which equals the service load moment $M_n/\Omega_b =$ allowable flexural strength $M_n =$ nominal flexural strength, $\Omega_b =$ safety factor equal to 1.67 according to AISC-F1

AISC classifies cross-sectional shapes in following three categories based on width-to-thickness ratio (λ).

- Compact, if $\lambda < \lambda_p$. The section can fully utilize its material strength (plastic moment) and there is no local buckling
- Noncompact, if $\lambda_p < \lambda < \lambda_r$. The section cannot fully utilize its material strength. Buckling may occur inelastically or elastically before reaching to plastic moment
- Slender, if $\lambda_r < \lambda$. The section definately reaches elastic buckling prior to plastic moment.

Element	λ	λ_p	$\lambda_{\scriptscriptstyle \Gamma}$
Flange	$\frac{b_f}{2t_f}$	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$
Web	h t _w	$3.76\sqrt{\frac{E}{F_y}}$	$5.7\sqrt{\frac{E}{F_y}}$

b_f	Flange width
t_f	Flange thickness
h _w	Web height
t _w	Web thickness
d	Total depth
h	Unstiffened web height
k _{des}	Distance from outer surface of flange to depth of fillet ra- dius

Ques. Investigate the local stability of the following section.

Flange Buckling Check

$$\lambda = \frac{b_f}{2t_f} = \frac{8}{2 \times 1} = 4$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15$$

Since $\lambda(4) < \lambda_p(9.15)$, flange is compact.

Web Buckling Check

$$\lambda = \frac{h}{t_W} = \frac{12}{0.5} = 24$$

$$\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.6$$

Since $\lambda(24) < \lambda_p(90.6)$, web is also compact.

Ans. Section is compact.

Ques. Investigate the local stability of section W14×90

Solution. From Table 1-1 of AISC Manual, we find,

Section	b_f	t _f	d	k_{des}	t _w
W14×90	14.5	0.71	14	1.31	0.44

Flange Buckling Check

$$\lambda = \frac{b_f}{2t_f} = \frac{14.5}{2 \times 0.71} = 10.2$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15$$

$$\lambda_f = 1.00 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 24.1$$

Since $\lambda_p(9.15) < \lambda(10.2) < \lambda_r(24.1)$, flange is noncompact.

Web Buckling Check

$$\lambda = \frac{h}{t_W} = \frac{d - 2k_{des}}{t_W} = \frac{14 - 2 \times 1.31}{0.44} = 25.86$$
$$\lambda_P = 3.76 \sqrt{E/F_V} = 3.76 \sqrt{29000/50} = 90.6$$

Since $\lambda(25.8) < \lambda_p(90.6)$, web is compact.

Ans. Section is noncompact (flange governs).

Table 1–1 (continued) W Shapes Dimensions

					Web			Fla	nge			ı	Distan	ce	
Shape	Area,	a, Depth,		Thickness,		t _w	Width,		Thickness,		k			1.	Work- able
W14×132	_ ^			t _w		2	b _f		t _f		Kdes	Kdet	k ₁	T	Gage
	in. ²	in.		in.		in.	in.		in.		in.	in.	in.	in.	in.
	38.8	14.7	145/8	0.645	5/8	5/16	14.7	143/4	1.03	1	1.63	25/16	19/16	10	51/2
×120	35.3	14.5	141/2	0.590	9/16	5/16	14.7	$14^{5/8}$	0.940	¹⁵ /16	1.54	21/4	11/2		
×109	32.0	14.3	143/8	0.525	1/2	1/4	14.6	145/8	0.860	7/8	1.46	23/16	11/2		
$\times 99^{f}$	29.1	14.2	141/8	0.485	1/2	1/4	14.6	145/8	0.780	3/4	1.38	21/16	17/16		J.
×90 [†]	26.5	14.0	14	0.440	7/16	1/4	14.5	141/2	0.710	11/16	1.31	2	17/16	\	•
W14×82	24.0	14.3	141/4	0.510	1/2	1/4	10.1	10 ¹ /8	0.855	7/8	1.45	111/16	11/16	107/8	51/2
×74	21.8	14.2	141/8	0.450	7/16	1/4	10.1	10½	0.785	13/16	1.38	15/8	11/16		
×68	20.0	14.0	14	0.415	7/16	1/4	10.0	10	0.720	3/4	1.31	19/16	11/16		
×61	17.9	13.9	13 ⁷ /8	0.375	3/8	3/16	10.0	10	0.645	5/8	1.24	11/2	1	7	7
W14×53	15.6	13.9	13 ⁷ /8	0.370	3/8	3/16	8.06	8	0.660	11/16	1.25	11/2	1	10 ⁷ /8	51/2
×48	14.1	13.8	133/4	0.340	5/16	3/16	8.03	8	0.595	5/8	1.19	17/16	1		1
×43°	12.6	13.7	135/8	0.305	5/16	3/16	8.00	8	0.530	1/2	1.12	13/8	1	¥	Y

Problem. The following beam is W 16×31 of A992 steel. It supports a reinforced concrete floor slab that provides continuous lateral support of compression flange. The service dead load is 450 lb/ft and service live load is 550 lb/ft. Does the beam has adequate moment strength?

W16X31, A992

DL = 450 lb/ft (excluding self weight) LL = 550 lb/ft

Flange Check

From Table 1-1, $b_f = 5.53$ in, $t_f = 0.44$ in.

$$\lambda = \frac{b_f}{2t_f} = \frac{5.53}{2 \times 0.44} = 6.28$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15 > 6.28$$

Since, $\lambda < \lambda_p$ for flange, there is no local buckling in flange.

Web Check

From Table 1-1, d = 15.9 in, $k_{des} = 0.842$ in and $t_W = 0.275$ in

$$\lambda = \frac{h}{t_W} = \frac{d - 2k_{des}}{t_W} = \frac{15.9 - 2 \times 0.842}{0.275} = 51.7$$

$$\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.5 > 51.7$$

Since, $\lambda < \lambda_D$ for web, there is no local buckling in web either.

Determine Capacity

Since, both flange and web have no local buckling, the section can reach up to plastic moment before failure.

From Table 1-1, $Z_X = 54 \text{ in}^3$.

$$M_P = F_Y Z_X = 50 \times 54 = 2700 \text{ k-in}$$

 $\phi_b M_D = \phi_b M_D = 0.9 \times 2700 \text{ k-in} = 2430 \text{ k-in} \times 202.5 \text{ k-ft}$

Determine Demand

The dead load should be increased by self weight (31 lb/ft) of the beam since given dead load (450 lb/ft) is excluded of self weight.

$$w_D = 450 + 31 = 481 \text{ lb/ft}$$

 $w_L = 550 \text{ lb/ft}$
 $w_U = 1.2w_D + 1.6w_L$
 $= 1.2 \times 481 + 1.6 \times 550 = 1457 \text{ lb/ft} = 1.46 \text{ k/ft}$
 $M_U = \frac{w_U L^2}{8} = \frac{1.46 \times 30^2}{8} = 164.3 \text{ k-ft} < \phi_b M_n$

Since, $\phi_b M_n$ (202.5 k-ft) > M_u (164.3 k-ft), the section W 16×31 has adequate moment capacity.

Ans. Yes. The beam has adequate moment strength.

Table 1–1 (continued) W Shapes

Dimensions

		_			Web			Fla	nge		Distance					
Shape	Area,	Area, Depth, A d		Thickness,		t _w	Wid	dth,	Thick	ness,	-	k		_	Work- able	
Snape	_ ~					2	1	b _f		t _f		K _{det}	K ₁	'	Gage	
	in. ²	ir	1.	ir	in. i		i	in.		in.		in.	in.	in.	in.	
W16×100	29.5	17.0	17	0.585	9/16	5/16	10.4	103/8	0.985	1	1.39	17/8	11/8	13 ¹ / ₄	51/2	
×89	26.2	16.8	163/4	0.525	1/2	1/4	10.4	10 ³ /8	0.875	7/8	1.28	13/4	11/16			
×77	22.6	16.5	161/2	0.455	7/16	1/4	10.3	101/4	0.760	3/4	1.16	15/8	11/16		J	
×67°	19.7	16.3	16 ³ /8	0.395	3/8	3/16	10.2	101/4	0.665	11/16	1.07	19/16	1	•	▼	
W16×57	16.8	16.4	16 ³ /8	0.430	7/16	1/4	7.12	71/8	0.715	11/16	1.12	1 ³ /8	7/8	13 ⁵ /8	31/29	
×50°	14.7	16.3	161/4	0.380	3/8	3/16	7.07	71/8	0.630	5/8	1.03	15/16	13/16			
×45 ^c	13.3	16.1	16 ¹ /8	0.345	3/8	3/16	7.04	7	0.565	9/16	0.967	11/4	13/16			
×40°	11.8	16.0	16	0.305	5/16	3/16	7.00	7	0.505	1/2	0.907	13/16	¹³ /16			
×36°	10.6	15.9	15 ⁷ /8	0.295	5/16	3/16	6.99	7	0.430	7/16	0.832	11/8	3/4	▼	▼	
W16×31°	9.13	15.9	15 ⁷ /8	0.275	1/4	1/8	5.53	51/2	0.440	7/16	0.842	1 ¹ /8	3/4	13 ⁵ /8	31/2	
×26 ^{c,v}	7.68	15.7	15 ³ / ₄	0.250	1/4	1/8	5.50	51/2	0.345	3/8	0.747	11/16	3/4	13 ⁵ /8	31/2	
W14×730 ^h	215	22.4	223/8	3.07	31/16	1 9/16	17.9	17 ⁷ /8	4.91	4 ¹⁵ /16	5.51	63/16	23/4	10	3-7 ¹ /2-3 ⁹	
×665 ^h	196	21.6	21 ⁵ /8	2.83	213/16	17/16	17.7	17 ⁵ /8	4.52	41/2	5.12	513/16	25/8		3-71/2-39	

Table 1–1 (continued) W Shapes Properties

Nom-	Sec			Axis)	(-X			Axis	Y-Y		r _{ts}	h _o	Torsi Prope	
Wt.	Crit	eria <u>h</u>	1	S	r	Z	1	S	r	Z	-	Ū	J	Cw
lb/ft	2tr	t _w	in.4	in.3	in.	in. ³	in. ⁴	in. ³	in.	in. ³	in.	in.	in.4	in. ⁶
100	5.29	24.3	1490	175	7.10	198	186	35.7	2.51	54.9	2.92	16.0	7.73	11900
89	5.92	27.0	1300	155	7.05	175	163	31.4	2.49	48.1	2.88	15.9	5.45	10200
77	6.77	31.2	1110	134	7.00	150	138	26.9	2.47	41.1	2.85	15.8	3.57	8590
67	7.70	35.9	954	117	6.96	130	119	23.2	2.46	35.5	2.82	15.7	2.39	7300
57	4.98	33.0	758	92.2	6.72	105	43.1	12.1	1.60	18.9	1.92	15.7	2.22	2660
50	5.61	37.4	659	81.0	6.68	92.0	37.2	10.5	1.59	16.3	1.89	15.6	1.52	2270
45	6.23	41.1	586	72.7	6.65	82.3	32.8	9.34	1.57	14.5	1.88	15.6	1.11	1990
40	6.93	46.5	518	64.7	6.63	73.0	28.9	8.25	1.57	12.7	1.86	15.5	0.794	1730
36	8.12	48.1	448	56.5	6.51	64.0	24.5	7.00	1.52	10.8	1.83	15.4	0.545	1460
31	6.28	51.6	375	47.2	6.41	54.0	12.4	4.49	1.17	7.03	1.42	15.4	0.461	739
26	7.97	56.8	301	38.4	6.26	44.2	9.59	3.49	1.12	5.48	1.38	15.3	0.262	565
730	1.82	3.71	14300	1280	8.17	1660	4720	527	4.69	816	5.68	17.5	1450	362000
665	1.95	4.03	12400	1150	7.98	1480	4170	472	4.62	730	5.57	17.1	1120	305000

Problem. The beam shown in following figure supports a reinforced concrete floor slab that provides continuous lateral support of compression flange. Does the beam has adequate moment strength?

W14X90, A992

DL = 600 lb/ft (excluding self weight)LL = 1200 lb/ft

Flange Check

From Table 1-1, $b_f = 14.5$ in, $t_f = 0.71$ in.

$$\lambda = \frac{b_f}{2t_f} = \frac{14.5}{2 \times 0.71} = 10.21$$

$$\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15 < 10.21$$

$$\lambda_r = 1.0\sqrt{E/F_y} = 1.0\sqrt{29000/50} = 24.08 > 10.21$$

Since, $\lambda_p < \lambda < \lambda_r$, flange is non-compact.

Web Check

From Table 1-1, d = 14 in, $k_{des} = 1.31$ in and $t_W = 0.44$ in

$$\lambda = \frac{h}{t_W} = \frac{d - 2k_{des}}{t_W} = \frac{14 - 2 \times 1.31}{0.44} = 25.8$$

$$\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.5 > 25.8$$

Since, $\lambda < \lambda_D$, web is compact.

The shape is therefore non-compact.

Determine Capacity

Since, flange has local buckling, the section cannot reach up to plastic moment before failure.

From Table 1-1,
$$S_X = 143 \text{ in}^3$$
, $Z_X = 157 \text{ in}^3$.

$$M_p = F_y Z_x = 50 \times 157 = 7850 \text{ k-in}$$

$$\phi_b M_n = \phi_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \right) \right]$$

$$= 0.9 \times \left[7850 - (7850 - 0.7 \times 50 \times 143) \left(\frac{10.2 - 9.15}{24.08 - 9.15} \right) \right]$$

$$= 7650 \text{ k-in} = 637.5 \text{ k-ft}$$

Determine Demand

The dead load should be increased by self weight (90 lb/ft) of the beam since given dead load (600 lb/ft) is excluded of self weight.

$$w_D = 600 + 90 = 690 \text{ lb/ft}$$

 $w_L = 1200 \text{ lb/ft}$
 $w_u = 1.2w_D + 1.6w_L$
 $= 1.2 \times 690 + 1.6 \times 1200 = 2748 \text{ lb/ft} = 2.75 \text{ k/ft}$
 $M_u = \frac{w_u L^2}{8} = \frac{2.75 \times 45^2}{8} = 696.1 \text{ k-ft} > \phi_b M_n$

Since, $\phi_b M_n$ (637.5 k-ft) $< M_u$ (696.1 k-ft), the section W14×90 has not adequate moment capacity.

Answer. No. The beam has not adequate moment strength.

Table 1–1 (continued) W Shapes Dimensions

		_			Web			Fla	nge		w.	- 1	Distand	e	
Shape	Area,	Ι.	Depth,		Thickness,		Wie	Width,		Thickness,		k	L		Work- able
Onapo	_ ^	in.		t _w in.		1 _w 2	1					K _{det}	K ₁	T	Gage
	in. ²					in.	in.		in.		in.	in.	in.	in.	in.
W14×132	38.8	14.7	145/8	0.645	5/8	5/16	14.7	143/4	1.03	1	1.63	2 ⁵ /16	19/16	10	51/2
×120	35.3	14.5	141/2	0.590	9/16	5/16	14.7	14 ⁵ /8	0.940	15/16	1.54	21/4	11/2		
×109	32.0	14.3	143/8	0.525	1/2	1/4	14.6	145/8	0.860	7/8	1.46	23/16	11/2		
$\times 99^{f}$	29.1	14.2	141/8	0.485	1/2	1/4	14.6	145/8	0.780	3/4	1.38	21/16	17/16		
×90 ^f	26.5	14.0	14	0.440	⁷ / ₁₆	1/4	14.5	141/2	0.710	11/16	1.31	2	1 ⁷ /16		\ \
W14×82	24.0	14.3	141/4	0.510	1/2	1/4	10.1	10½	0.855	7/8	1.45	111/16	11/16	10 ⁷ /8	51/2
×74	21.8	14.2	141/8	0.450	7/16	1/4	10.1	10 ¹ /8	0.785	13/16	1.38	1 ⁵ /8	11/16		
×68	20.0	14.0	14	0.415	7/16	1/4	10.0	10	0.720	3/4	1.31	19/16	11/16		
×61	17.9	13.9	13 ⁷ /8	0.375	3/8	3/16	10.0	10	0.645	5/8	1.24	11/2	1	\	♥
W14×53	15.6	13.9	13 ⁷ /8	0.370	3/8	3/16	8.06	8	0.660	11/16	1.25	11/2	1	10 ⁷ /8	51/2
×48	14.1	13.8	133/4	0.340	5/16	3/16	8.03	8	0.595	5/8	1.19	17/16	1		
×43°	12.6	13.7	13 ⁵ /8	0.305	5/16	3/16	8.00	8	0.530	1/2	1.12	1 ³ /8	1	Y	¥

Table 1–1 (continued) W Shapes Properties

Nom- inal	Sec			Axis)	(-X			Axis	Y-Y		r _{ts}	h _o	Torsional Properties		
Wt.	Crit	eria h	1	S	r	Z	1	S	r	Z			J	Cw	
lb/ft	2t/	t _w	in.4	in. ³	in.	in. ³	in. ⁴	in. ³	in.	in. ³	in.	in.	in.4	in. ⁶	
132	7.15	17.7	1530	209	6.28	234	548	74.5	3.76	113	4.23	13.6	12.3	25500	
120	7.80	19.3	1380	190	6.24	212	495	67.5	3.74	102	4.20	13.5	9.37	22700	
109	8.49	21.7	1240	173	6.22	192	447	61.2	3.73	92.7	4.17	13.5	7.12	20200	
99	9.34	23.5	1110	157	6.17	173	402	55.2	3.71	83.6	4.14	13.4	5.37	18000	
90	10.2	25.9	999	143	6.14	157	362	49.9	3.70	75.6	4.11	13.3	4.06	16000	
82	5.92	22.4	881	123	6.05	139	148	29.3	2.48	44.8	2.85	13.5	5.07	6710	
74	6.41	25.4	795	112	6.04	126	134	26.6	2.48	40.5	2.82	13.4	3.87	5990	
68	6.97	27.5	722	103	6.01	115	121	24.2	2.46	36.9	2.80	13.3	3.01	5380	
61	7.75	30.4	640	92.1	5.98	102	107	21.5	2.45	32.8	2.78	13.2	2.19	4710	
53	6.11	30.9	541	77.8	5.89	87.1	57.7	14.3	1.92	22.0	2.22	13.3	1.94	2540	
48	6.75	33.6	484	70.2	5.85	78.4	51.4	12.8	1.91	19.6	2.20	13.2	1.45	2240	
43	7.54	37.4	428	62.6	5.82	69.6	45.2	11.3	1.89	17.3	2.18	13.1	1.05	1950	