CE 415: Design of Steel Structures

1

Flexural Member

When the yield stress is reached at the extreme fiber [Fig. (b)], the nominal moment strength M_n is referred to as the yield moment M_v and is computed as

$$
M_n = M_y = S_x F_y
$$

Where S_x = section modulus = I_x/c

When the condition of Fig. (d) is reached, every fiber has a strain equal to or greater than $\varepsilon_v = F_v/E_s$ i.e., it is in the plastic range. The nominal moment strength \dot{M}_n is therefore referred to as the plastic moment M_{p} , and is computed as.

$$
M_p = F_y \int_A y \, dA = F_y Z
$$

$$
Z = \int y \, dA \longrightarrow \text{Plastic section modulus}
$$

NOMINAL MOMENT CAPACITY OF LATERALLY SUPPORTED BEAMS **Compact Sections**

The nominal strength M_n for laterally stable "compact sections" according to AISC may be stated,

$$
M_n = M_p = F_y Z_x
$$

Where, M_p = Plastic moment capacity Z_{x} = Plastic section modulus F_v = Specified minimum yield stress.

In order to develop full plastic moment, the b/t ratio ($b=b_f/2$) for flange must be smaller than the limit λ_p defined by AISC.

Local buckling in hot-rolled l-shaped sections is, for practical purposes, only possible in the flanges.

Partially Compact Sections

The nominal strength M_n for laterally stable "noncompact sections" whose flange width/thickness ratios λ are less than λ_r but not as low as λ_p must be linearly interpolated between M_p and M_r = 0.7 $F_{v}S_{x}$

$$
M_n = M_p - (M_p - 0.7F_y S_x) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right)
$$

 $\lambda = b_f/2t_f$ for I-shaped member flanges where b_f = flange width t_f = flange thickness λ_{pf} = compact limit for reaching M_p (AISC-Table B4.1) λ_{rf} = noncompact limit for reaching M_r (AISC-Table B4.1)

Slender Flange Sections

When the width/thickness ratio λ [=b_f/(2t_f)] exceeds the limit λ_r of AISC-B4, the section is referred to as "slender" and must be treated in accordance with AISC-F3.2(b). The nominal strength of such a section is

$$
M_n = \frac{0.9Ek_cS_x}{\lambda^2}
$$
 [Eq. F3-2, page 49, AISC 360-05]
 $k_c = \frac{4}{\sqrt{h/t_w}}$, where 0.35 $\le k_c \le 0.763$

LATERALLY SUPPORTED BEAMS: LRFD Design

The strength requirement for beams in load and resistance factor design according to AISC-F1 may be stated

 $\phi_h M_n \geq M_u$

 ϕ_h = resistance (i.e., strength reduction) factor for flexure = 0.90 where M_n = nominal moment strength M_u = factored service load moment

LATERALLY SUPPORTED BEAMS: ASD Design

The strength requirement for beams in allowable strength design according to AISC-FI may be stated

 $\frac{M_n}{\Omega_b} \geq M_a$ M_a = required strength, which equals the service load moment where M_n/Ω_b = allowable flexural strength M_n = nominal flexural strength, Ω_b = safety factor equal to 1.67 according to AISC-F1

AISC classifies cross-sectional shapes in following three categories based on width-to-thickness ratio (λ) .

- Compact, if $\lambda < \lambda_p$. The section can fully utilize its material strength (plastic moment) and there is no local buckling
- Noncompact, if $\lambda_p < \lambda < \lambda_r$. The section cannot fully utilize its material strength. Buckling may occur inelastically or elastically before reaching to plastic moment
- Slender, if $\lambda_I < \lambda$. The section definately reaches elastic buckling prior to plastic moment.

Ques. Investigate the local stability of the following section.

Flange Buckling Check

$$
\lambda = \frac{b_f}{2t_f} = \frac{8}{2 \times 1} = 4
$$

$$
\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15
$$

Since $\lambda(4) < \lambda_p(9.15)$, flange is compact.

Web Buckling Check

$$
\lambda = \frac{h}{t_{\text{w}}} = \frac{12}{0.5} = 24
$$
\n
$$
\lambda_p = 3.76\sqrt{E/F_y} = 3.76\sqrt{29000/50} = 90.6
$$
\nSince $\lambda(24) < \lambda_p(90.6)$, we have a loss of the same value.

Ans. Section is compact.

Ques. Investigate the local stability of section $W14 \times 90$

Solution.

From Table 1-1 of AISC Manual, we find,

Flange Buckling Check

$$
\lambda = \frac{b_f}{2t_f} = \frac{14.5}{2 \times 0.71} = 10.2
$$

$$
\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15
$$

$$
\lambda_r = 1.00 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 24.1
$$

Since $\lambda_p(9.15) < \lambda(10.2) < \lambda_r(24.1)$, flange is noncompact.

Web Buckling Check

$$
\lambda = \frac{h}{t_{\text{W}}} = \frac{d - 2k_{\text{des}}}{t_{\text{W}}} = \frac{14 - 2 \times 1.31}{0.44} = 25.86
$$

$$
\lambda_p = 3.76 \sqrt{E/F_y} = 3.76 \sqrt{29000/50} = 90.6
$$

Since $\lambda(25.8) < \lambda_p(90.6)$, web is compact.

Ans. Section is noncompact (flange governs).

The following beam is W 16×31 of A992 steel. It Problem. supports a reinforced concrete floor slab that provides continuous lateral support of compression flange. The service dead load is 450 lb/ft and service live load is 550 lb/ft. Does the beam has adequate moment strength?

Flange Check From Table 1-1, $b_f = 5.53$ in, $t_f = 0.44$ in.

$$
\lambda = \frac{b_f}{2t_f} = \frac{5.53}{2 \times 0.44} = 6.28
$$

$$
\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15 > 6.28
$$

Since, $\lambda < \lambda_D$ for flange, there is no local buckling in flange.

Web Check

From Table 1-1, $d = 15.9$ in, $k_{\text{des}} = 0.842$ in and $t_w = 0.275$ in

$$
\lambda = \frac{h}{t_w} = \frac{d - 2k_{des}}{t_w} = \frac{15.9 - 2 \times 0.842}{0.275} = 51.7
$$

$$
\lambda_p = 3.76 \sqrt{E/F_y} = 3.76 \sqrt{29000/50} = 90.5 > 51.7
$$

Determine Capacity

Since, both flange and web have no local buckling, the section can reach up to plastic moment before failure. From Table 1-1, $Z_x = 54 \text{ in}^3$.

$$
M_p = F_y Z_x = 50 \times 54 = 2700 \text{ k} \cdot \text{in}
$$

\n
$$
\phi_b M_n = \phi_b M_p = 0.9 \times 2700 \text{ k} \cdot \text{in} = 2430 \text{ k} \cdot \text{in} 202.5 \text{ k} \cdot \text{ft}
$$

Determine Demand

The dead load should be increased by self weight (31 lb/ft) of the beam since given dead load (450 lb/ft) is excluded of self weight.

$$
w_D = 450 + 31 = 481 \text{ lb/ft}
$$

\n
$$
w_L = 550 \text{ lb/ft}
$$

\n
$$
w_u = 1.2w_D + 1.6w_L
$$

\n
$$
= 1.2 \times 481 + 1.6 \times 550 = 1457 \text{ lb/ft} = 1.46 \text{ k/ft}
$$

\n
$$
M_u = \frac{w_u L^2}{8} = \frac{1.46 \times 30^2}{8} = 164.3 \text{ k-ft} < \phi_b M_n
$$

Since, $\phi_h M_n$ (202.5 kft) > M_n (164.3 kft), the section W 16×31 has adequate moment capacity.

Ans. Yes. The beam has adequate moment strength.

Since, $\lambda < \lambda_D$ for web, there is no local buckling in web either.

W14×730^h 215

 \times 665^h 196

 $15^{3}/4$ 0.250 $5.50 \, 5^{1}/2$ 0.345 0.747 1 V_{16} 22.4 223/8 3.07 31/16 19/16 17.9 | $17\frac{7}{8}$ | 4.91 | $4^{15}/_{16}$ | 5.51 | $6\frac{3}{16}$ | $2\frac{3}{4}$ $\left| 21.6 \right| 21^{5}/8 \right| 2.83 \left| 2^{13}/16 \right| 17/16 \left| 17.7 \right| 17^{5}/8 \left| 4.52 \right| 4^{1}/2$ $|5.12 \t | 5^{13}/_{16}| 2^{5}/_{8}$ Work-

able

Gage

in.

 $5^{1/2}$

 $3^{1/29}$

 $3^{1/2}$

 $3^{1/2}$

 $3 - 7^{1}/2 - 3^{9}$

 10 3-7¹/2-3⁹

T

in.

 $13^{1/4}$

 $13^{5}/8$

 $13^{5}/s$

 $13^{5}/8$

Problem. The beam shown in following figure supports a reinforced concrete floor slab that provides continuous lateral support of compression flange. Does the beam has adequate moment strength?

Flange Check From Table 1-1, $b_f = 14.5$ in, $t_f = 0.71$ in.

$$
\lambda = \frac{b_f}{2t_f} = \frac{14.5}{2 \times 0.71} = 10.21
$$

$$
\lambda_p = 0.38 \sqrt{E/F_y} = 0.38 \sqrt{29000/50} = 9.15 < 10.21
$$

$$
\lambda_r = 1.0 \sqrt{E/F_y} = 1.0 \sqrt{29000/50} = 24.08 > 10.21
$$

Since, $\lambda_p < \lambda < \lambda_r$, flange is non-compact.

Web Check

From Table 1-1, $d = 14$ in, $k_{des} = 1.31$ in and $t_W = 0.44$ in

$$
\lambda = \frac{h}{t_{w}} = \frac{d - 2k_{des}}{t_{w}} = \frac{14 - 2 \times 1.31}{0.44} = 25.8
$$

$$
\lambda_p = 3.76 \sqrt{E/F_y} = 3.76 \sqrt{29000/50} = 90.5 > 25.8
$$

Since, $\lambda < \lambda_p$, web is compact. The shape is therefore non-compact.

Determine Capacity

Since, flange has local buckling, the section cannot reach up to plastic moment before failure.

From Table 1-1,
$$
S_x = 143 \text{ in}^3
$$
, $Z_x = 157 \text{ in}^3$.
\n
$$
M_p = F_y Z_x = 50 \times 157 = 7850 \text{ km}
$$
\n
$$
\phi_b M_n = \phi_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \right) \right]
$$
\n
$$
= 0.9 \times \left[7850 - (7850 - 0.7 \times 50 \times 143) \left(\frac{10.2 - 9.15}{24.08 - 9.15} \right) \right]
$$
\n
$$
= 7650 \text{ km} = 637.5 \text{ k} \cdot \text{ft}
$$

Determine Demand

The dead load should be increased by self weight (90 lb/ft) of the beam since given dead load (600 lb/ft) is excluded of self weight.

$$
w_D = 600 + 90 = 690 \text{ lb/ft}
$$

\n
$$
w_L = 1200 \text{ lb/ft}
$$

\n
$$
w_u = 1.2w_D + 1.6w_L
$$

\n
$$
= 1.2 \times 690 + 1.6 \times 1200 = 2748 \text{ lb/ft} = 2.75 \text{ k/ft}
$$

\n
$$
M_u = \frac{w_u L^2}{8} = \frac{2.75 \times 45^2}{8} = 696.1 \text{ k-ft} > \phi_b M_n
$$

Since, $\phi_h M_n$ (637.5 k ft) $\lt M_u$ (696.1 k ft), the section W14 \times 90 has not adequate moment capacity.

Answer. No. The beam has not adequate moment strength.

