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Weighted Graphs

Graphs that have a number assigned to each edge are called
weighted graphs.

A more mathematical definition: A weighted graph is a graph
G = (V ,E ,w), where V is a set of vertices, E is a set of edges
between vertices of V , and w is a function from V × V into R.
The function w gives to each pair of vertices a weight in R.

Note 1: Usually w(u, v) are positives for all pairs of vertices.
Note 2: Usually w(u, v) = ∞ if the pair of vertices (u, v) is not an
edge of E .
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Length of a Path

Let the path p, form vertices a to z , be given by the sequence of
edges e1, e2, ..., en of the graph, such that f (e1) = (a, x1),
f (e2) = (x1, x2), ..., f (en) = (xn−1, z).

The length L(p) of a path p, in a weighted graph, is the sum of
the weights of the edges of this path, i.e.
L(p) = w(a, x1) + w(x1, x2) + · · · + w(xn−1, z).

A common problem is to find the path, with minimal length,
between two given vertices of a weighted graph.
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Edsger Wybe Dijkstra

Rotterdam, 11 May 1930 – 6 August
2002
was a Dutch computer scientist.
He received the 1972 Turing Award
for fundamental contributions to
developing programming languages.
Among his contributions to com-
puter science is the shortest path-
algorithm, also known as Dijkstra’s al-
gorithm and Reverse Polish Notation.
www.cs.utexas.edu/users/EWD
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Dijkstra’s Algorithm

procedure Dijkstra (G : a simple connected weighted graph with
with positive weights.
a: initial vertex. z : final vertex)

L(v) := ∞ for all vertices v of G .
L(a) := 0
S := ∅
while z /∈ S

begin

u := a vertex not in S with smallest L(u).
S := S ∪ {u}
for all vertex v not in S

if L(u) + w(u, v) < L(v)
then L(v) := L(u) + w(u, v)

end

{L(z) = length of the shortest path from a to z}
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Example of Dijkstra’s Algorithm, Step 1 of 8

Consider the following simple connected weighted graph. What is
the shortest path between vertices a and z .

1

e

f

c z

d

2 4
31 10

6 2 10
15

g

a

b

L(v) is set ∞ for all vertices v of G , L(a) is set to 0 and S to ∅.

12 4
31 10

6 2 10
15

b,∞() d ,∞()

a, 0(a) c ,∞()

f ,∞()

e,∞()

g ,∞()

z ,∞()
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Example of Dijkstra’s Algorithm, Step 2 of 8

a is the vertex u not in S such that L(u) is minimal.

12 4
31 10

6 2 10
15

b,∞() d ,∞()

a, 0(a) c ,∞()

f ,∞()

e,∞()

g ,∞()

z ,∞()

S = S ∪ {a} and L(v) is updated for all vertex v not in S (and
adjacent to a).

S 12 4
31 10

6 2 10
15

d ,∞()

a, 0(a)

f ,∞()

e,∞()

g ,∞()

z ,∞()

b, 6(a, b)

c , 1(a, c)

Note: To save space, L(a, c) = 1, the length of the path through
vertices a and c , is denoted 1(a, c).

Shortest Path Problems 7



Example of Dijkstra’s Algorithm, Step 3 of 8

c is the vertex u not in S such that L(u) is minimal.

S 12 4
31 10

6 2 10
15

d ,∞()

a, 0(a)

f ,∞()

e,∞()

g ,∞()

z ,∞()

b, 6(a, b)

c , 1(a, c)

S = S ∪ {c} and L(v) is updated for all vertex v not in S (and
adjacent to c).

S 12 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d)

e, 11(a, c , e)

f , 16(a, c , f ) g ,∞()

Note: To save space, L(a, c , d) = 3, the length of the path
through vertices a, c and d , is denoted 3(a, c , d).
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Example of Dijkstra’s Algorithm, Step 4 of 8

d is the vertex u not in S such L(u) is minimal.

S 12 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d)

e, 11(a, c , e)

f , 16(a, c , f ) g ,∞()

S = S ∪ {d} and L(v) is updated for all vertex v not in S (and
adjacent to d).

S 12 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d)

e, 11(a, c , e)

g ,∞()f , 5(a, c , d , f )
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Example of Dijkstra’s Algorithm, Step 5 of 8

f is the vertex u not in S such L(u) is minimal.

S 12 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d)

e, 11(a, c , e)

g ,∞()f , 5(a, c , d , f )

S = S ∪ {f } and L(v) is updated for all vertex v not in S (and
adjacent to f ).

S 2 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e)

1
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Example of Dijkstra’s Algorithm, Step 6 of 8

b is the vertex u not in S such that L(u) is minimal.

S 2 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e)

1

S = S ∪ {b} and L(v) is updated for all vertex v not in S (and
adjacent to b) (in this case, there is not vertex to update).

S

2 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e)

1
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Example of Dijkstra’s Algorithm, Step 7 of 8

e is the vertex u not in S such that L(u) is minimal.

S

2 4
31 10

6 2 10
15

a, 0(a) z ,∞()

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e)

1

S = S ∪ {e} and L(v) is updated for all vertex v not in S (and
adjacent to e).

S

2 4
31 10

6 2 10
15

a, 0(a)

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e) z , 12(a, c , d , f , e, z)

1
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Example of Dijkstra’s Algorithm, Step 8 of 8

z is the vertex u not in S such that L(u) is minimal.

S

2 4
31 10

6 2 10
15

a, 0(a)

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 15(a, c , d , f , g)

e, 9(a, c , d , f , e) z , 12(a, c , d , f , e, z)

1

S = S ∪ {z} and L(v) is updated for all vertex v not in S (and
adjacent to z). The algorithm stops here because z ∈ S .

S 2 4
31 10

6 2 10
15

a, 0(a)

b, 6(a, b)

c , 1(a, c)

d , 3(a, c , d) f , 5(a, c , d , f ) g , 13(a, c , d , f , e, z , g)

e, 9(a, c , d , f , e)

1
z , 12(a, c , d , f , e, z)
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Properties of Dijkstra’s Algorithm

Algorithm Finiteness

Theorem: Dijkstra’s algorithm always ends in n steps or less for a
connected undirected weighted graph withn vertices.

Algorithm Correctness

Theorem: Dijkstra’s algorithm finds the length of a shortest path
between two vertices in a connected undirected weighted graph.

Algorithm Effectiveness

Theorem: Dijkstra’s algorithm uses O(n2) operations (additions
and comparisons) to find the length of a shortest path between two
vertices in a connected undirected weighted graph with n vertices.
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Floyd’s Algorithm

Floyd’s algorithm can be used to find the length of the shortest
path between all pairs of vertices in a weighted connected simple
graph. However, this algorithm cannot be used to construct
shortest paths.

Robert W. Floyd. “Algorithm 97: Shortest path”, Comm ACM, vol
5 (June 1962), p. 345-.
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Floyd’s Algorithm

procedure Floyd (G : weighted simple graph
with vertices v1, v2, ..., vn

and weights w(vi , vj).)
for i := 1 to n

for j := 1 to n

d(vi , vj ) = w(vi , vj )
d(vi , vj ) = ∞ if {vi , vj} is not an edge

for i := 1 to n

for j := 1 to n

for k := 1 to n

if d(vj , vi ) + d(vi , vk) < d(vj , vk)
then d(vj , vk) := d(vj , vi ) + d(vi , vk)

{d(vi , vj) is the length of the shortest path between vi and vj}
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Floyd’s Algorithm

Use Floyd’s algorithm to find the distance between all pairs of
vertices in the weighted graph:

a

c

b d

e

f

3

6
28

5

10

1
4

2

We can represent the distances with a 6 × 6 matrix, with
alphabetic order. Initially it is

















∞ 4 2 ∞ ∞ ∞
4 ∞ 1 5 ∞ ∞
2 1 ∞ 8 10 ∞
∞ 5 8 ∞ 2 6
∞ ∞ 10 2 ∞ 3
∞ ∞ ∞ 6 3 ∞
















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Floyd’s Algorithm

After completion of the main loop for i = 1 (vertex a), the matrix
is (boxed values are those that were updated)

















∞ 4 2 ∞ ∞ ∞

4 8 1 5 ∞ ∞

2 1 4 8 10 ∞
∞ 5 8 ∞ 2 6
∞ ∞ 10 2 ∞ 3
∞ ∞ ∞ 6 3 ∞

















.

After completion of the main loop for i = 2 (vertex b), the matrix
is



















8 4 2 9 ∞ ∞
4 8 1 5 ∞ ∞

2 1 2 6 10 ∞

9 5 6 10 2 6
∞ ∞ 10 2 ∞ 3
∞ ∞ ∞ 6 3 ∞



















.
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Floyd’s Algorithm

After completion of the main loop for i = 3 (vertex c), the matrix
is



















4 3 2 8 12 ∞

3 2 1 5 11 ∞
2 1 2 6 10 ∞

8 5 6 10 2 6

12 11 10 2 20 3
∞ ∞ ∞ 6 3 ∞



















.

After completion of the main loop for i = 4 (vertex d), the matrix
is



















4 3 2 8 10 14

3 2 1 5 7 11

2 1 2 6 8 12
8 5 6 10 2 6

10 7 8 2 4 3

14 11 12 6 3 12



















.
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Floyd’s Algorithm

After completion of the main loop for i = 5 (vertex e), the matrix
is (boxed values are those that were updated)



















4 3 2 8 10 13

3 2 1 5 7 10

2 1 2 6 8 11

8 5 6 4 2 5
10 7 8 2 4 3

13 10 11 5 3 6



















.

In this problem, there is no change after the final iteration with
i = 6 (vertex f ). Therefore this matrix represents the distances
between all pairs of vertices.
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