
sazzad@diucse

Lecture-6
Chapter-14.4

Computer Organization and Architecture Designing - William 

Stallings

Instruction Pipelining



sazzad@diucse

Stages of Pipelining

• Fetch Instruction (FI)

• Decode Instruction (DI)

• Calculate Operands (CO)

• Fetch Operands (FO)

• Execute Instructions (EI)

• Write Operands (WO)



sazzad@diucse

Two Stage Instruction Pipeline



sazzad@diucse

Timing Diagram for Instruction Pipeline Operation



sazzad@diucse

The Effect of a Conditional Branch on Instruction Pipeline Operation



sazzad@diucse

Six Stage Instruction Pipeline



sazzad@diucse

Alternative Pipeline Depiction



sazzad@diucse

Pipeline Hazards

• Pipeline, or some portion of pipeline, must stall

• Also called pipeline bubble

• Types of hazards

– Resource

– Data

– Control



sazzad@diucse

Resource Hazards

• Two (or more) instructions in pipeline need same resource

• Executed in serial rather than parallel for part of pipeline

• Also called structural hazard

• E.g. Assume simplified five-stage pipeline
– Each stage takes one clock cycle

• Ideal case is new instruction enters pipeline each clock cycle

• Assume main memory has single port

• Assume instruction fetches and data reads and writes performed one at a time

• Ignore the cache

• Operand read or write cannot be performed in parallel with instruction fetch

• Fetch instruction stage must idle for one cycle fetching I3

• E.g. multiple instructions ready to enter execute instruction phase

• Single ALU

• One solution: increase available resources
– Multiple main memory ports

– Multiple ALUs



sazzad@diucse

Resource Hazard Diagram



sazzad@diucse

Data Hazards

• Conflict in access of an operand location

• Two instructions to be executed in sequence

• Both access a particular memory or register operand

• If in strict sequence, no problem occurs

• If in a pipeline, operand value could be updated so as to produce different result from strict sequential exe
cution

• E.g. x86 machine instruction sequence:

• ADD EAX, EBX /* EAX = EAX + EBX

• SUB ECX, EAX /* ECX = ECX – EAX

• ADD instruction does not update EAX until end of stage 5, at clock cycle 5

• SUB instruction needs value at beginning of its stage 2, at clock cycle 4

• Pipeline must stall for two clocks cycles

• Without special hardware and specific avoidance algorithms, results in inefficient pipeline usage



sazzad@diucse

Data Hazard Diagram



sazzad@diucse

Types of Data Hazard

• Read after write (RAW), or true dependency

– An instruction modifies a register or memory location

– Succeeding instruction reads data in that location

– Hazard if read takes place before write complete

• Write after read (WAR), or antidependency

– An instruction reads a register or memory location 

– Succeeding instruction writes to location

– Hazard if write completes before read takes place

• Write after write (WAW), or output dependency

– Two instructions both write to same location

– Hazard if writes take place in reverse of order intended sequence

• Previous example is RAW hazard



sazzad@diucse

Write After Read (WAR)

• (i2 tries to write a destination before it is read by i1) A write after read (WAR) data haza

rd represents a problem with concurrent execution.

• Example

• For example:

• i1. R4 <- R1 + R3

i2. R3 <- R1 + R2

• If we are in a situation that there is a chance that i2 may be completed before i1 (i.e. wit

h concurrent execution) we must ensure that we do not store the result of R3 before i1 h

as had a chance to fetch the operands.



sazzad@diucse

Write After Write (WAW)

• (i2 tries to write an operand before it is written by i1) A write after write (WAW) data h

azard may occur in a concurrent execution environment.

• Example

• For example:

• i1. R2 <- R4 + R7

i2. R2 <- R1 + R2

• We must delay the WB (Write Back) of i2 until the execution of i1.

http://en.wikipedia.org/wiki/Concurrent_computing


sazzad@diucse

Control Hazard

• Also known as branch hazard

• Pipeline makes wrong decision on branch prediction

• Brings instructions into pipeline that must subsequently be discarded

• Dealing with Branches

– Multiple Streams

– Prefetch Branch Target

– Loop buffer

– Branch prediction

– Delayed branching



sazzad@diucse

Multiple Streams

• Have two pipelines

• Prefetch each branch into a separate pipeline

• Use appropriate pipeline

• Leads to bus & register contention

• Multiple branches lead to further pipelines being needed



sazzad@diucse

Prefetch Branch Target

• Target of branch is prefetched in addition to instructions following branch

• Keep target until branch is executed

• Used by IBM 360/91



sazzad@diucse

Loop Buffer

• Very fast memory

• Maintained by fetch stage of pipeline

• Check buffer before fetching from memory

• Very good for small loops or jumps

• c.f. cache

• Used by CRAY-1



sazzad@diucse

Branch Prediction

Various techniques can be used to predict whether a branch will be taken o

r not.

• Predict never taken

– Assume that jump will not happen

– Always fetch next instruction 

– 68020 & VAX 11/780

– VAX will not prefetch after branch if a page fault would result (O/S v CPU design)

• Predict always taken

– Assume that jump will happen

– Always fetch target instruction



sazzad@diucse

Branch Prediction

• Predict by Opcode
– Some instructions are more likely to result in a jump than others

– Can get up to 75% success

• Taken/Not taken switch
– Based on previous history

– Good for loops

– Refined by two-level or correlation-based branch history

• Correlation-based
– In loop-closing branches, history is good predictor

– In more complex structures, branch direction correlates with that of related branches

– Use recent branch history as well

• Delayed Branch

– Do not take jump until you have to

– Rearrange instructions



sazzad@diucse

Dealing With Branches

It is possible to improve pipeline performance by automatically rearranging instructions

within a program, so that branch instructions occur later than actually desired.



sazzad@diucse

That’s All

Thank You


