
sazzad@diucse

Lecture-8
Chapter - 4

Computer Organization and Architecture Designing -

William Stallings

Cache Memory

sazzad@diucse

Memory Hierarchy

• Registers

– In CPU

• Internal or Main memory

– May include one or more levels of cache

– “RAM”

• External memory

– Backing store

Fig: Memory Hierarchy Diagram

sazzad@diucse

Performance

The two most important characteristics of memory are capacity and

performance. Three performance parameters are used:

– Access time (latency)

• Time between presenting the address and getting the valid data

– Memory Cycle time

• Time may be required for the memory to “recover” before next access

• Cycle time is access + recovery

– Transfer Rate

• Rate at which data can be moved or transfered

sazzad@diucse

Hierarchy List

• Registers

• L1 Cache

• L2 Cache

• Main memory

• Disk cache

• Disk

• Optical

• Tape

sazzad@diucse

Cache and Main Memory

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

sazzad@diucse

Cache/Main Memory Structure

Following figures depicts the structure of a cache/main-memory system. Main

memory consists of up to 2n addressable words, with each word having a unique

n-bit address. For mapping purposes, this memory is considered to consist of a

number of fixed-length blocks of K words each. That is, there are M = 2n /K blocks

in main memory. The cache consists of m blocks, called lines.3 Each line contains

K words,

sazzad@diucse

Cache operation – overview

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from main memory to cache

• Then deliver from cache to CPU

• Cache includes tags to identify which block of main memory is in each cache slot

sazzad@diucse

Cache Read Operation - Flowchart

sazzad@diucse

Cache Addressing

• Where does cache sit?

– Between processor and virtual memory management unit

– Between MMU and main memory

• Logical cache (virtual cache) stores data using virtual addresses

– Processor accesses cache directly, not thorough physical cache

– Cache access faster, before MMU address translation

– Virtual addresses use same address space for different applications

• Must flush cache on each context switch

• Physical cache stores data using main memory physical addresses

sazzad@diucse

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is needed for

mapping main memory blocks into cache lines. Further, a means is needed for

determining which main memory block currently occupies a cache line. The choice of the

mapping function dictates how the cache is organized. Three techniques can be used:

direct, associative, and set associative. We examine each of these in turn. In each case, we

look at the general structure and then a specific example.

– The cache can hold 64 Kbyte (65536 bytes)

– Data can be transferred between main memory and the cache in block of 4 bytes each

• i.e. cache is 16k = 214 lines of 4 bytes each (16384 lines)

– Main memory consists of 16Mbytes, 24 bit address directly addressable 224 = 16M

--i.e. 4M blocks of 4 bytes each

sazzad@diucse

Direct Mapping

• Each block of main memory maps to only one cache line

– i.e. if a block is in cache, it must be in one specific place

• Address is in two parts

• Least Significant w bits identify unique word

• Most Significant s bits specify one memory block

• The MSBs are split into a cache line field r and a tag of s-r (most significant)

sazzad@diucse

Direct Mapping Address Structure

• 24 bit address

• 2 bit word identifier (4 byte block)

• 22 bit block identifier

– 8 bit tag (=22-14)

– 14 bit slot or line

• No two blocks in the same line have the same Tag field

• Check contents of cache by finding line and checking Tag

sazzad@diucse

Direct Mapping from Cache to Main Memory

sazzad@diucse

Direct Mapping Summary

• Address length = (s + w) bits (i.e. 22+2 = 24 bits)

• Number of addressable units = 2s+w words or bytes (i.e. 16Mbytes)

• Block size = line size = 2w words or bytes (i.e. 22 = 4 bytes)

• Number of blocks in main memory

= 2s+ w/2w = 2s (i.e. 4194304)

• Number of lines in cache = m = 2r (i.e. 16384)

• Size of tag = (s – r) bits

Video Link: https://youtu.be/eObN3u3eAnU

sazzad@diucse

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

– If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very

high

sazzad@diucse

Associative Mapping

• A main memory block can load into any line of cache

• Memory address is interpreted as tag and word

• Tag uniquely identifies block of memory

• Every line’s tag is examined for a match

• Cache searching gets expensive

Video Link: https://youtu.be/sLCJJdz0WAg

sazzad@diucse

Tag

22 bits
Word

2 bits

Associative Mapping Address Structure

• 22 bit tag stored with each 32 bit block of data

• Compare tag field with tag entry in cache to check for hit

• Least significant 2 bits of address identify which 16 bit word is required from 32 bit

data block

• e.g.

– Address Tag Data Cache line

– FFFFFC FFFFFC 24682468 3FFF

sazzad@diucse

Associative Mapping from Cache to Main Memory

sazzad@diucse

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory

= 2s+ w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

sazzad@diucse

Set Associative Mapping

• Cache is divided into a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given set

– e.g. Block B can be in any line of set i

• e.g. 2 lines per set

– 2 way associative mapping

– A given block can be in one of 2 lines in only one set

Video Link: https://youtu.be/pFndaJARM4Q

sazzad@diucse

Set Associative Mapping Address Structure

• Use set field to determine cache set to look in

• Compare tag field to see if we have a hit

• e.g

– Address Tag Data Set number

– 1FF 7FFC 1FF 12345678 1FFF

– 001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word

2 bit

sazzad@diucse

Mapping From Main Memory to Cache: v Associative

sazzad@diucse

Mapping From Main Memory to Cache: k-way Associative

sazzad@diucse

Set Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2d

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = kv = k * 2d

• Size of tag = (s – d) bits

sazzad@diucse

That’s All

Thank You

