Partial Orderings Discrete Mathematics

Э

Introduction Example

- Let the set $S = \{1, 2, 3, 4, 6\}$ and the relation $R = \{(a, b) \in S \times S \text{ such that } a | b\}.$
- Let the set $S = \{1, 2, 3, 4\}$ and the relation $R = \{(a, b) \in S \times S \text{ such that } a \leq b\}.$
- Let the set $S = \{a, b, c\}$, the power set $P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and the relation $R = \{(A, B) \in P(S) \times P(S) \text{ such that } A \subseteq B\}$.

What are the common properties of these relations?

Definition

A relation R on a set S is called a **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a **partially ordered set**, or **poset**, and is denoted by (S, R). Members of S are called **elements** of the poset.

In a partially ordered set (S, R), the notation $a \preccurlyeq b$ denotes that $(a, b) \in R$.

This notation is used because the "less than or equal to" relation on a set of real numbers is the most familiar example of a partial ordering and the symbol \preccurlyeq is similar to the \leq symbol.

The notation $a \prec b$ denotes that $a \preccurlyeq b$, but $a \neq b$. Also we say "a is less than b" or "b is greater than a" if $a \prec b$.

Definition

The elements *a* and *b* of a poset (S, \preccurlyeq) are called **comparable** if either $a \preccurlyeq b$ or $b \preccurlyeq a$.

When *a* and *b* are elements of *S* such that neither $a \leq b$ nor $b \leq a$, then *a* and *b* are called **incomparable**.

5

Definition

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, then S is called a **totally ordered set** or **linearly ordered set**, and \preccurlyeq is called a **total order** or a **linear order**. A totally ordered set is also called a **chain**.

Lexicographic Order

The words in the dictionary are listed in alphabetic, or lexicographic, order, which is based on the ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set constructed from a partial ordering on the set.

Definition

Let the two posets (S_1, \preccurlyeq_1) and (S_2, \preccurlyeq_2) . The **lexicographic** order \preccurlyeq on the Cartesian product $S_1 \times S_2$ is defined by specifying that one pair is less than the other pair, i.e.

$$(a_1,a_2)\prec (b_1,b_2)$$

if and only if

$$a_1 \prec_1 b_1$$

or

$$a_1 = b_1$$
 and $a_2 \prec_2 b_2$.

We obtain a partial ordering \preccurlyeq by adding equality to the ordering \prec on $A_1 \times A_2$.

Let S_1 be the alphabet and \preccurlyeq_1 be the usual alphabetic order. Let S_2 be the set $\{0, 1, 2, 3, ..., 9\}$ and \preccurlyeq_2 be the usual partial order \leq . Then

8

Definition

A lexicographic ordering can be defined on the Cartesian product of *n* posets (A_1, \preccurlyeq_1) , (A_2, \preccurlyeq_2) , ..., (A_n, \preccurlyeq_n) . Define the partial ordering \preccurlyeq on $A_1 \times A_2 \times \cdots \times A_n$ by

$$(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$$

if $a_1 \prec_1 b_1$, or if there is an integer i > 0 such that $a_1 = b_1$, ..., $a_i = b_i$ and $a_{i+1} \prec_{i+1} b_{i+1}$.

On other words, one *n*-tuple is less than a second *n*-tuple if the entry of the first *n*-tuple in the first position where the two n-tuples disagree is less than the entry in that position in the second n-tuple.

9

Let S_1 be the alphabet and \preccurlyeq_1 be the usual alphabetic order. Let S_2 be the set $\{0, 1, 2, 3, ..., 9\}$ and \preccurlyeq_2 be the usual partial order \leq . Let P, the set of postal codes. $P = S_1 \times S_2 \times S_1 \times S_2 \times S_1 \times S_2$. Then

Definition

Consider the strings $a_1a_2 \cdots a_m$ and $b_1b_2 \cdots b_n$ on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum of m and n. The definition of lexicographic ordering is that the string $a_1a_2 \cdots a_m$ is less than the string $b_1b_2 \cdots b_n$ if and only if

$$(a_1, a_2, ..., a_t) \prec (b_1, b_2, ..., b_t)$$

or

$$(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$$

and m < n, where \prec in this inequality represents the lexicographic ordering of S^t .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Helmut Hasse

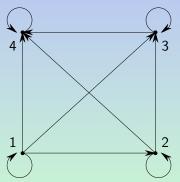
Born: 25 Aug 1898 in Kassel, Germany. Died: 26 Dec 1979 in Ahrensburg (near Hamburg), Germany

www-groups.dcs.st-and.ac.uk/

~history/Mathematicians/Hasse.html

Example ($\{1, 2, 3, 4\}, \leq$)

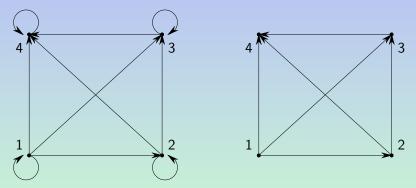
Let S be the set $S = \{1, 2, 3, 4\}$ and the relation R be " $a \le b$ ". This relation is given by $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}.$



This relation is reflexive, antisymmetric and transitive.

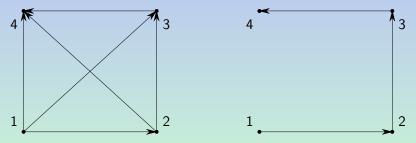
(a)

Step 1 of 4: We remove all loops caused by reflexivity.



14

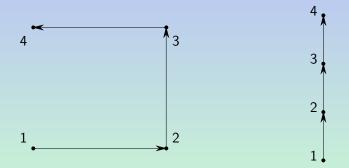
Step 2 of 4: We remove all edges implied by the transitivity property.



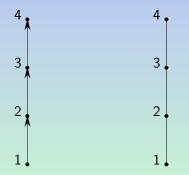
15

- 4 回 > - 4 回 > - 4 回 >

Step 3 of 4: We redraw edges and vertices such that the initial vertex of each edge is below its terminal vertex.



Step 4 of 4: Remove all arrows from the directed edges, since they are all upward. The diagram at right is the Hasse diagram.



Suppose the following poset $S = (\{2, 4, 5, 10, 12, 20, 25\}, R)$ where R is the partial order $a \mid b$.

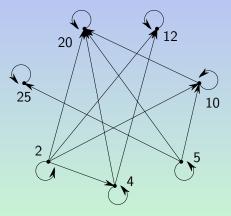
 $R = \{(2,2), (2,4), (2,10), (2,12), (2,20), (4,4), (4,12), (4,20), (5,5), (5,20), (5,25), (10,10), (10,20), (20,20), (25,25)\}.$

18

(a)

Example ({2, 4, 5, 10, 12, 20, 25}, |)

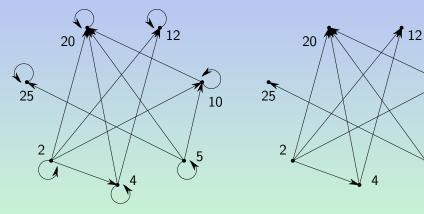
This relation is reflexive, antisymmetric and transitive.



19

Hasse Diagram Construction

Step 1 of 4: We remove all loops caused by reflexivity.



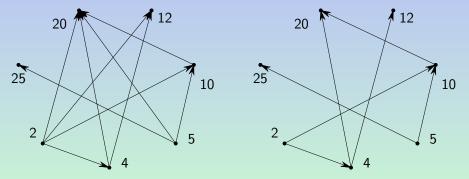
10

5

▲□ > < E >

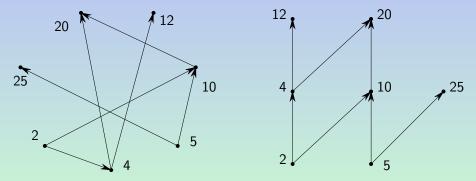
∢ ≣ ▶

Step 2 of 4: We remove all edges implied by the transitivity property.



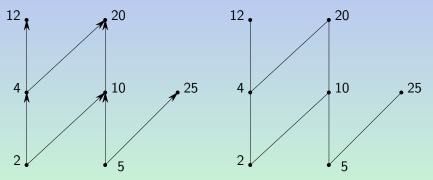
Hasse Diagram Construction

Step 3 of 4: We redraw edges and vertices such that the initial vertex of each edge is below its terminal vertex.



Hasse Diagram Construction

Step 4 of 4: Remove all arrows from the directed edges, since they are all upward. The diagram at right is the Hasse diagram.



Definition

An element *a* is **maximal** in the poset (S, \preccurlyeq) if there is no element $b \in S$ such that $a \preccurlyeq b$.

In other words, an element of a poset is called maximal if it is not less than any *comparable* element of the poset.

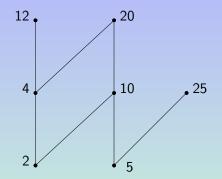
Definition

An element *a* is **minimal** in the poset (S, \preccurlyeq) if there is no element $b \in S$ such that $b \preccurlyeq a$.

In other words, an element of a poset is called minimal if it is not greater than any *comparable* element of the poset.

(a)

Example $(\{2, 4, 5, 10, 12, 20, 25\}, |)$



- 2 and 5 are minimal elements.
- 12, 20 and 25 are maximal elements.
- The minimal and the maximal elements may not be unique.

• • • • • • • • • • • •

Example ($\{1, 2, 3, 4\}, \leq$)

- 1 is the minimal element.
- 4 is the maximal element.
- There is at most one minimal element and one maximal element in a totally ordered set.

Definition

The element *a* is the **greatest element** of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$. The greatest element is unique when it exists.

In other words, an element *a* in a poset (S, \preccurlyeq) is the greatest element if it is greater than *every* other elements of *S*.

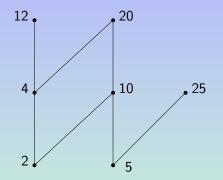
Definition

The element *a* is the **least element** of the poset (S, \preccurlyeq) if $a \preccurlyeq b$ for all $b \in S$. The least element is unique when it exists.

In other words, an element *a* in a poset (S, \preccurlyeq) is the least element if it is less than *every* other elements of *S*.

27

Example ({2, 4, 5, 10, 12, 20, 25}, |)



<ロ> <同> <同> < 回> < 回><<

- There is no least element.
- There is no greatest element.

Example ($\{1, 2, 3, 4\}, \leq$)

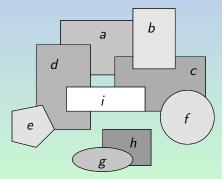
(a)

- 1 is the least element.
- 4 is the greatest element.

Topological Sort: Introduction Example

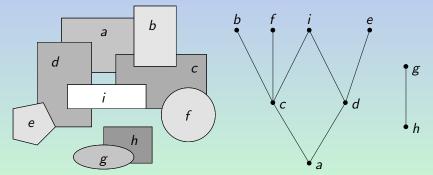
Let S be a set composed of the geometric shapes $\{a, b, c, d, e, f, g, h, i\}$. Let R be the relation "is more or as distant as. Then R is a partial ordering on S.

Two geometric shapes a and b are related, a R b, if a is more or as distant as b.



Introduction Example (cont.)

The relation $R = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (a, i), (b, b), (c, b), (c, c), (c, f), (c, i), (d, i), (d, d), (d, e), (e, e), (f, f), (g, g), (h, g), (h, h), (i, i)\}$ and its Hasse diagram.



Compatible Ordering and Topological Sorting

Definition

A total ordering \preccurlyeq is said to be **compatible** with the partial ordering *R* if $a \preccurlyeq b$ whenever a R b. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

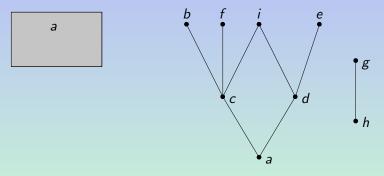
Lemma

Every finite non empty poset (S, \preccurlyeq) has at least one minimal element.

```
procedure topological sort ((S, \preccurlyeq): finite poset)
k := 1
while S \neq \emptyset
begin
      a_k := a minimal element of S
             {such element exists by Lemma 1}
      S := S - \{a_k\}
      k := k + 1
end
\{a_1, a_2, \dots, a_n \text{ is a compatible total ordering of } S\}
```

《曰》 《問》 《臣》 《臣》

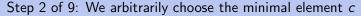
Step 1 of 9: We arbitrarily choose the minimal element a

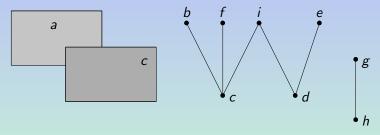


а

(a)

Topological Sorting Algorithm



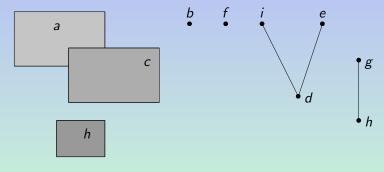


35

(日) (四) (三) (三)

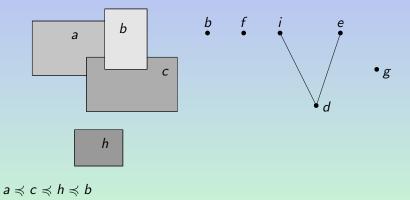
 $a \preccurlyeq c$

Step 3 of 9: We arbitrarily choose the minimal element h

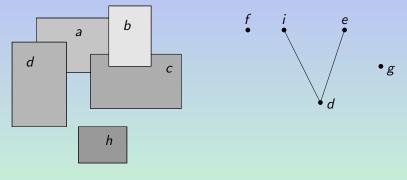


 $a \preccurlyeq c \preccurlyeq h$

Step 4 of 9: We arbitrarily choose the minimal element b



Step 5 of 9: We arbitrarily choose the minimal element d

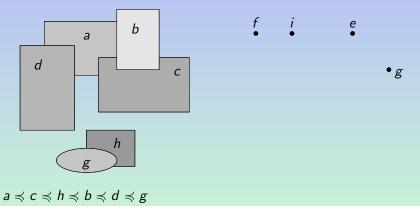


38

(日) (四) (三) (三)

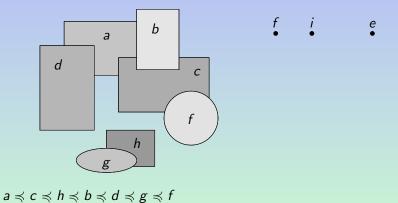
 $a \preccurlyeq c \preccurlyeq h \preccurlyeq b \preccurlyeq d$

Step 6 of 9: We arbitrarily choose the minimal element g

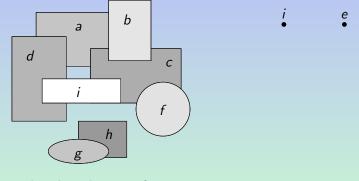


39

Step 7 of 9: We arbitrarily choose the minimal element f



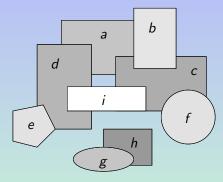
Step 8 of 9: We arbitrarily choose the minimal element i



 $a \preccurlyeq c \preccurlyeq h \preccurlyeq b \preccurlyeq d \preccurlyeq g \preccurlyeq f \preccurlyeq i$

Topological Sorting Algorithm

Step 9 of 9: We arbitrarily choose the minimal element e



e

白 ト イヨ ト イヨ ト

The total ordering $a \preccurlyeq c \preccurlyeq h \preccurlyeq b \preccurlyeq d \preccurlyeq g \preccurlyeq f \preccurlyeq i \preccurlyeq e$ is compatible with the partial ordering $R = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (a, i), (b, b), (c, b), (c, c), (c, f), (c, i), (d, i), (d, d), (d, e), (e, e), (f, f), (g, g), (h, g), (h, h), (i, i)\}.$