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Introduction Example

Let the set S = {1, 2, 3, 4, 6} and the relation
R = {(a, b) ∈ S × S such that a|b}.

Let the set S = {1, 2, 3, 4} and the relation
R = {(a, b) ∈ S × S such that a ≤ b}.

Let the set S = {a, b, c}, the power set
P(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} and
the relation R = {(A,B) ∈ P(S) × P(S) such that A ⊆ B}.

What are the common properties of these relations?
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Partial Ordering

Definition

A relation R on a set S is called a partial ordering or partial

order if it is reflexive, antisymmetric, and transitive. A set S

together with a partial ordering R is called a partially ordered

set, or poset, and is denoted by (S ,R). Members of S are called
elements of the poset.
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Notation

In a partially ordered set (S ,R), the notation a 4 b denotes that
(a, b) ∈ R .

This notation is used because the “less than or equal to” relation
on a set of real numbers is the most familiar example of a partial
ordering and the symbol 4 is similar to the ≤ symbol.

The notation a ≺ b denotes that a 4 b, but a 6= b. Also we say “a
is less than b” or “b is greater than a” if a ≺ b.
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Comparable Elements

Definition

The elements a and b of a poset (S ,4) are called comparable if
either a 4 b or b 4 a.

When a and b are elements of S such that neither a 4 b nor
b 4 a, then a and b are called incomparable.
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Total Order

Definition

If (S ,4) is a poset and every two elements of S are comparable,
then S is called a totally ordered set or linearly ordered set,
and 4 is called a total order or a linear order. A totally ordered
set is also called a chain.
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Lexicographic Order

The words in the dictionary are listed in alphabetic, or
lexicographic, order, which is based on the ordering of the letters in
the alphabet. This is a special case of an ordering of strings on a
set constructed from a partial ordering on the set.

Definition

Let the two posets (S1,41) and (S2,42). The lexicographic

order 4 on the Cartesian product S1 × S2 is defined by specifying
that one pair is less than the other pair, i.e.

(a1, a2) ≺ (b1, b2)

if and only if
a1 ≺1 b1

or
a1 = b1 and a2 ≺2 b2.

We obtain a partial ordering 4 by adding equality to the
ordering ≺ on A1 × A2.
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Example of Lexicographic Order

Let S1 be the alphabet and 41 be the usual alphabetic order. Let
S2 be the set {0, 1, 2, 3, ..., 9} and 42 be the usual partial order ≤.
Then

(A, 7) ≺ (B , 1) because A ≺1 B .

(C , 4) ≺ (C , 7) because C = C and 4 ≺2 7.
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Lexicographic Order (n-tuple)

Definition

A lexicographic ordering can be defined on the Cartesian product
of n posets (A1,41), (A2,42), ..., (An,4n). Define the partial
ordering 4 on A1 × A2 × · · · × An by

(a1, a2, ..., an) ≺ (b1, b2, ..., bn)

if a1 ≺1 b1, or if there is an integer i > 0 such that a1 = b1, ...,
ai = bi and ai+1 ≺i+1 bi+1.

On other words, one n-tuple is less than a second n-tuple if the
entry of the first n-tuple in the first position where the two
n-tuples disagree is less than the entry in that position in the
second n-tuple.
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Example of Lexicographic Order

Let S1 be the alphabet and 41 be the usual alphabetic order. Let
S2 be the set {0, 1, 2, 3, ..., 9} and 42 be the usual partial order ≤.
Let P , the set of postal codes. P = S1 × S2 × S1 × S2 × S1 × S2.
Then

(G , 9,X , 8,W , 7) ≺ (H, 1,A, 2,B , 1) because G ≺1 H.

(G , 1,K , 2,P , 4) ≺ (G , 1,K , 7,A, 1) because G = G , 1 = 1,
K = K , 2 ≺2 7.
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Lexicographic Order (Strings)

Definition

Consider the strings a1a2 · · · am and b1b2 · · · bn on a partially
ordered set S . Suppose these strings are not equal. Let t be the
minimum of m and n. The definition of lexicographic ordering is
that the string a1a2 · · · am is less than the string b1b2 · · · bn if and
only if

(a1, a2, .., at) ≺ (b1, b2, ..., bt)

or
(a1, a2, .., at) = (b1, b2, ..., bt)

and m < n, where ≺ in this inequality represents the lexicographic
ordering of S t .
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Helmut Hasse

Born: 25 Aug 1898 in Kassel,
Germany. Died: 26 Dec 1979
in Ahrensburg (near Hamburg),
Germany

www-groups.dcs.st-and.ac.uk/

~history/Mathematicians/Hasse.html
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Example ({1, 2, 3, 4},≤)

Let S be the set S = {1, 2, 3, 4} and the relation R be “a ≤ b”.
This relation is given by R =
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.

1 2

34

This relation is reflexive, antisymmetric and transitive.
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Hasse Diagram Construction

Step 1 of 4: We remove all loops caused by reflexivity.

1 2

34

1 2

34
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Hasse Diagram Construction

Step 2 of 4: We remove all edges implied by the transitivity
property.

1 2

34

1 2

34
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Hasse Diagram Construction

Step 3 of 4: We redraw edges and vertices such that the initial
vertex of each edge is below its terminal vertex.

1 2

34

1

4

2

3
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Hasse Diagram Construction

Step 4 of 4: Remove all arrows from the directed edges, since they
are all upward. The diagram at right is the Hasse diagram.

1

4

2

3

1

4

2

3
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Example ({2, 4, 5, 10, 12, 20, 25}, |)

Suppose the following poset S = ({2, 4, 5, 10, 12, 20, 25},R) where
R is the partial order a | b.

R = {(2, 2), (2, 4), (2, 10), (2, 12), (2, 20), (4, 4), (4, 12), (4, 20),
(5, 5), (5, 20), (5, 25), (10, 10), (10, 20), (20, 20), (25, 25)}.
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Example ({2, 4, 5, 10, 12, 20, 25}, |)

This relation is reflexive, antisymmetric and transitive.

2

20

4

5

12

1025
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Hasse Diagram Construction

Step 1 of 4: We remove all loops caused by reflexivity.

2

20

4

5

12

1025

2

20

4

5

12

1025
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Hasse Diagram Construction

Step 2 of 4: We remove all edges implied by the transitivity
property.

2

20

4

5

12

1025

2

20

4

5

12

1025
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Hasse Diagram Construction

Step 3 of 4: We redraw edges and vertices such that the initial
vertex of each edge is below its terminal vertex.

2

20

4

5

12

1025

2

4

12

10

20

25

5
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Hasse Diagram Construction

Step 4 of 4: Remove all arrows from the directed edges, since they
are all upward. The diagram at right is the Hasse diagram.

2

4

12

10

20

25

5 2

4

12

10

20

25

5
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Maximal and Minimal Elements

Definition

An element a is maximal in the poset (S ,4) if there is no element
b ∈ S such that a 4 b.

In other words, an element of a poset is called maximal if it is not
less than any comparable element of the poset.

Definition

An element a is minimal in the poset (S ,4) if there is no element
b ∈ S such that b 4 a.

In other words, an element of a poset is called minimal if it is not
greater than any comparable element of the poset.
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Example ({2, 4, 5, 10, 12, 20, 25}, |)

2

4

12

10

20

25

5

2 and 5 are minimal elements.

12, 20 and 25 are maximal elements.

The minimal and the maximal elements may not be unique.
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Example ({1, 2, 3, 4},≤)

1

4

2

3

1 is the minimal element.

4 is the maximal element.

There is at most one minimal element and one maximal
element in a totally ordered set.
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Greatest and Least Elements

Definition

The element a is the greatest element of the poset (S ,4) if
b 4 a for all b ∈ S . The greatest element is unique when it exists.

In other words, an element a in a poset (S ,4) is the greatest
element if it is greater than every other elements of S .

Definition

The element a is the least element of the poset (S ,4) if a 4 b

for all b ∈ S . The least element is unique when it exists.

In other words, an element a in a poset (S ,4) is the least element
if it is less than every other elements of S .
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Example ({2, 4, 5, 10, 12, 20, 25}, |)

2

4

12

10

20

25

5

There is no least element.

There is no greatest element.
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Example ({1, 2, 3, 4},≤)

1

4

2

3

1 is the least element.

4 is the greatest element.
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Topological Sort: Introduction Example

Let S be a set composed of the geometric shapes
{a, b, c , d , e, f , g , h, i}. Let R be the relation “is more or as distant
as. Then R is a partial ordering on S .
Two geometric shapes a and b are related, a R b, if a is more or as
distant as b.

ba

cd

e f

g

i

h
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Introduction Example (cont.)

The relation R = {(a, a), (a, b), (a, c), (a, d), (a, e), (a, f ), (a, i),
(b, b), (c , b), (c , c), (c , f ), (c , i), (d , i), (d , d), (d , e), (e, e),
(f , f ), (g , g), (h, g), (h, h), (i , i)} and its Hasse diagram.

h

g

a

dc

b i efba

cd

e f

g

i

h
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Compatible Ordering and Topological Sorting

Definition

A total ordering 4 is said to be compatible with the partial
ordering R if a 4 b whenever a R b. Constructing a compatible
total ordering from a partial ordering is called topological sorting.

Lemma

Every finite non empty poset (S ,4) has at least one minimal

element.
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Topological Sorting Algorithm

procedure topological sort ((S ,4): finite poset)
k := 1
while S 6= ∅
begin

ak := a minimal element of S

{such element exists by Lemma 1}
S := S − {ak}
k := k + 1

end

{ a1, a2, ..., an is a compatible total ordering of S}
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Topological Sorting Algorithm

Step 1 of 9: We arbitrarily choose the minimal element a

h

g

a

dc

b i ef
a

a
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Topological Sorting Algorithm

Step 2 of 9: We arbitrarily choose the minimal element c

a

c

h

g

dc

b i ef

a 4 c
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Topological Sorting Algorithm

Step 3 of 9: We arbitrarily choose the minimal element h

a

c

h
h

g

d

b i ef

a 4 c 4 h

Partial Orderings 36



Topological Sorting Algorithm

Step 4 of 9: We arbitrarily choose the minimal element b

ba

c

h

g

d

b i ef

a 4 c 4 h 4 b

Partial Orderings 37



Topological Sorting Algorithm

Step 5 of 9: We arbitrarily choose the minimal element d

ba

cd

h

g

d

i ef

a 4 c 4 h 4 b 4 d
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Topological Sorting Algorithm

Step 6 of 9: We arbitrarily choose the minimal element g

ba

cd

g

h

g

i ef

a 4 c 4 h 4 b 4 d 4 g
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Topological Sorting Algorithm

Step 7 of 9: We arbitrarily choose the minimal element f

ba

cd

f

g

h

i ef

a 4 c 4 h 4 b 4 d 4 g 4 f
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Topological Sorting Algorithm

Step 8 of 9: We arbitrarily choose the minimal element i

ba

cd

f

g

i

h

i e

a 4 c 4 h 4 b 4 d 4 g 4 f 4 i
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Topological Sorting Algorithm

Step 9 of 9: We arbitrarily choose the minimal element e

ba

cd

e f

g

i

h

e

The total ordering a 4 c 4 h 4 b 4 d 4 g 4 f 4 i 4 e is
compatible with the partial ordering R = {(a, a), (a, b), (a, c),
(a, d), (a, e), (a, f ), (a, i), (b, b), (c , b), (c , c), (c , f ), (c , i), (d , i),
(d , d), (d , e), (e, e), (f , f ), (g , g), (h, g), (h, h), (i , i)}.
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