CE 103: Surveying

Lecture 3: Leveling

Course Instructor: Saurav Barua (SB) Assistant Professor, Dept. of Civil Engineering, DIU Email: saurav.ce@diu.edu.bd Phone: 01715334075

Purpose and use of levelling
Datum, elevation, mean sea level
Bench mark and reduced level
Height of instrument
Rise and Fall method

4.1 Levelling

Levelling is a surveying operation carried out to determine the elevations of points or to find the differences in elevations of points.

4.2 Purpose and use of levelling

There are 2 main objectives/purposes-

- Find the elevations of given points with respect to a given or assumed reference surface (datum)
- Establish points at a given elevation or at different elevations with respect to a given or assumed datum.

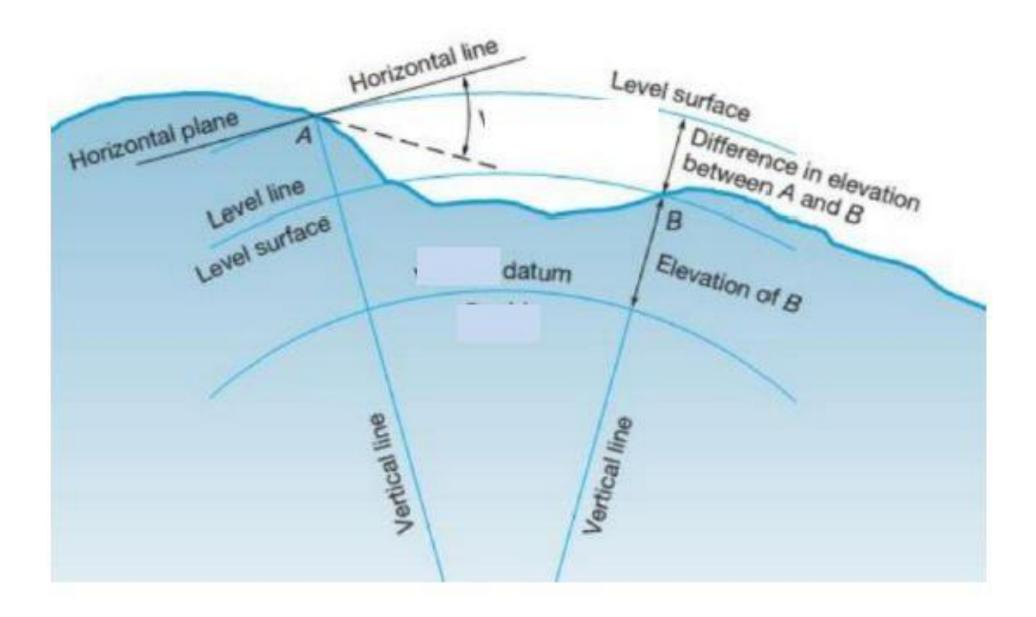
The uses of levelling include-

- To design railways, railroads, canals, sewers, water supply systems etc. having grade lines that best conform existing topography.
- To lay out construction projects according to planned elevations.
- To calculate volume of earthworks and other materials.

4.3 Definitions

Level surface and Level line: A level surface is defined as a curved surface at which each point is perpendicular to the direction of gravity at that point. The surface of a still water is a truly level surface. A line lying in a level surface is called level line.

Elevation: The elevation of a point on or near the surface of the earth is its vertical distance above or below an arbitrarily assumed level surface.


Datum: Datum is any surface to which elevations are referred.

Mean Sea Level: Mean sea level is the average height of the sea for all stages of tides. MSL affords a convenient datum world over, and elevations are commonly given as so much above or below sea level.

Bench Mark: Bench mark is a relatively permanent point of reference whose elevation with respect to some assumed datum is known.

Reduced Level: Reduced level in surveying refers to equating elevations of survey points with reference to a common assumed datum. It is a vertical distance between survey point and adopted datum plane.

Line of collimation: It is the line joining the intersection of the cross hair and the optical center of the objective lens.

1. Height of instrument method

Problem 1:

Station	B.S.	I.S.	F.S.	R.L. (m)	Remarks
A	0.865	01		560.500	Bench Mark
В	1.025		2.105		T.P.
С		1.580			
D	2.230	03	1.865		T.P.
E	2.355	85 55	2.835		T.P.
F			1.760		

Station	B.S.	I.S.	F.S.	H.I.	R.L. (m)	Remarks
A	0.865			561.365	560.500	Bench Mark
B	1.025		2.105	560.285	559.260	T.P.
C		1.580			558.705	
D	2.230		1.865	560.65	558.42	T.P.
E	2.355		2.835	560.17	557.815	T.P.
F		1	1.760	20	558.41	

Height of instrument method A-> HI 561.365 from 560°5 + 0.865 = 561-365 [H.I. = R.L. + B.S.7 FS-BS=2105-1.025 =1.08 B-> HI = 561.365 - 1.08 = 560.285 RL = HI'- FS = 561.365-2.105 z 559.26

$$C \rightarrow RL = HI' - TS = 560 \cdot 2AS - 1 \cdot 58$$

= $5SR \cdot 705$
$$D \rightarrow FS - BS = 1 \cdot 86S - 2 \cdot 23 = -0 \cdot 36S$$

$$HI = HI' + 0 \cdot 36S = 560 \cdot 28S + 0 \cdot 36S$$

= $560 \cdot 65$
$$RL = HI - BS = 560 \cdot 6S - 2 \cdot 23$$

= $5SR \cdot 42$
$$E \rightarrow FS - BS = 2 \cdot 83S - 2 \cdot 3SS = 0 \cdot 48$$

$$HI = HI' - 0 \cdot 48 = 560 \cdot 6S - 0 \cdot 48$$

$$= \frac{560 \cdot 17}{8}$$

$$RL = HI - BS = 560 \cdot 77 - 2 \cdot 3SS = 5S7 \cdot 815$$

$$F \rightarrow RL = HI' - FS = 560 \cdot 17 - 1 \cdot 76 = 5S8 \cdot 41$$

Check:

\sum B.S. - \sum F.S. = Last R.L. - First R.L. Here, \sum B.S.= 6.475 \sum F.S. = 2.090

Last R.L. = 558.41

First R.L. = 560.5

2. Rise and Fall Method

Station	B.S.	I.S.	F.S.	R.L. (m)	Remarks
A	0.865		20	560.500	Bench Mark
В	1.025		2.105		T.P.
C		1.580	10		
D	2.230		1.865		T.P.
E	2.355	* T	2.835		T.P.
F	0	14.5	1.760		1.5

Station	B.S.	I.S.	F.S.	Rise	Fall	R.L. (m)	Remarks
A	0.865					560.500	Bench Mark
B	1.025		2.105		1.240	559.260	T.P.
C		1.580			0.555	558.705	
D	2.230		1.865		0.285	558.42	T.P.
E	2.355	1	2.835		0.605	557.815	T.P.
F			1.760	0.595		558.41	

Falt 2.105 - 1.025 = 1.24 2) Rise and Fall method $B \rightarrow F.S. - B.S.' = Fall$ Fall = 2.105 - 0.865 = 1-24 RL = RL' - Fall = 560.5 - 1.24 Z S59.26 C -> Fall = BS' IS = + IS - BS' 2 1.58 - 1.025 = [0.555] RL = RL' - Fall = 559.26 - 0.555 2 558.705

15

HARFALLE FS- IS= 1.865- 1.58 = 10-285 RL = RL' - Fall = SS8.705-0.285 z 558.42 Fall = FS-BS' = 2.835-2.23 $F \longrightarrow$ = 0%00 RL = RL' - Fall = 558.42 - 0'605 = 557.815

F -> Rive = BS'- FS = 2-355-1.76 = 0 .595 RL 2 RL' + Rive = 557.815 + 0.595 = SS8.41

Check:

 \sum B.S. - \sum F.S. = Last R.L. - First R.L. = \sum Rise. - \sum Fall. Here, \sum Rise = 0.595 \sum Fall = 2.090