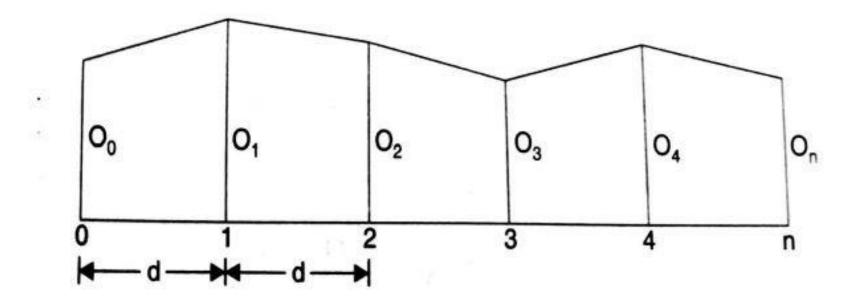
# CE 103: Surveying

# Lecture 10: Volume and area calculation

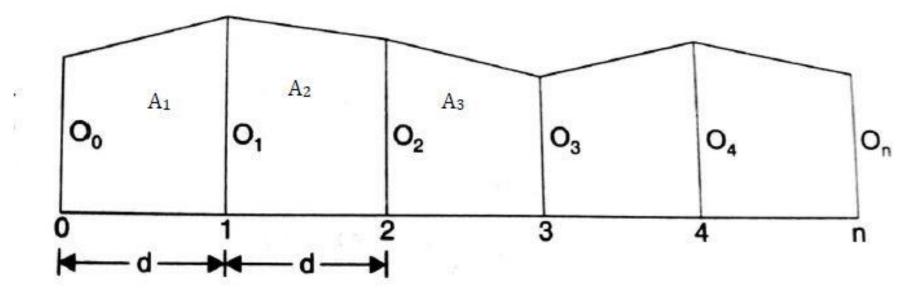
Course Instructor: Saurav Barua (SB) Assistant Professor, Dept. of Civil Engineering, DIU Email: saurav.ce@diu.edu.bd Phone: 01715334075



Trapezoidal rule
Simpson's one third rule
Irregular intervals problem


# 10.1 Method of calculation of area

There are two methods of calculating area:


- Trapezoidal Rule.
- Simpson's one third Rule .

#### 10.1.1 Trapezoidal Rule

• Assumption : straight line between points "a" and "b".



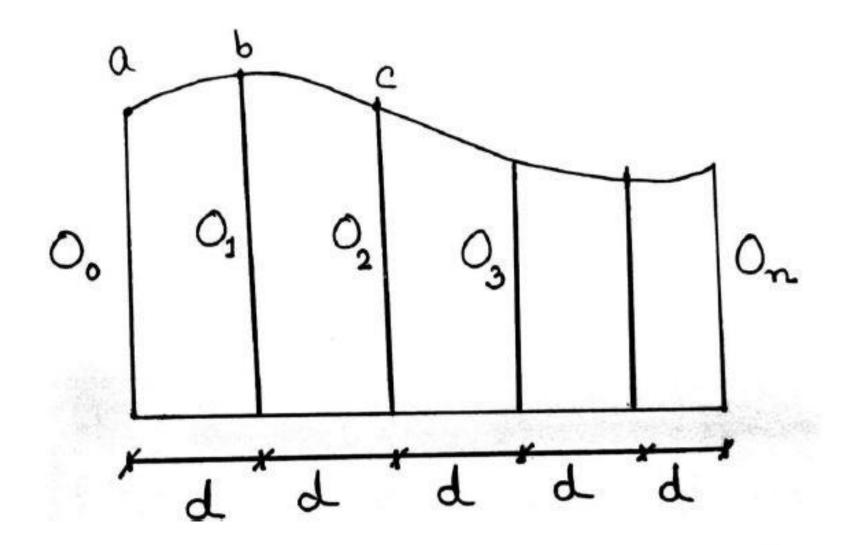
Area of each segment can be calculated using area formula for trapezoid:



$$A_1 = \frac{O_0 + O_1}{2} \times d$$

$$A_2 = \frac{O_1 + O_2}{2} \times d$$

$$A_3 = \frac{O_2 + O_3}{2} \times d$$

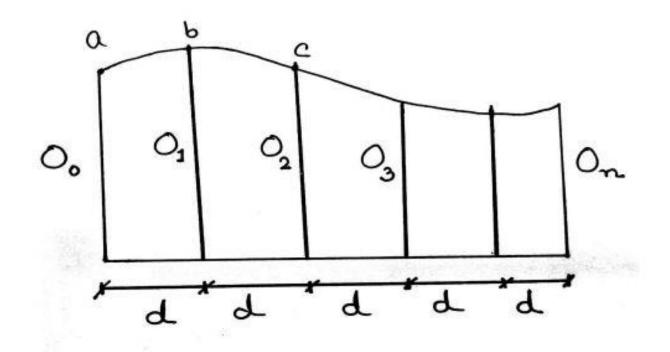

$$A_n = \frac{O_{n-1} + O_n}{2} \times d$$

Total Area =  $A_1 + A_2 + A_3 + \dots + A_n$ 

$$= \frac{O_0 + O_1}{2}d + \frac{O_1 + O_2}{2}d + \dots + \frac{O_{n-1} + O_n}{2}d$$
$$= \left(\frac{O_0 + O_n}{2} + O_1 + O_2 + \dots + O_{n-1}\right)d$$

### 10.1.2 Simpson's Rule

• Assumption : Parabola between points "a", "b" and "c".



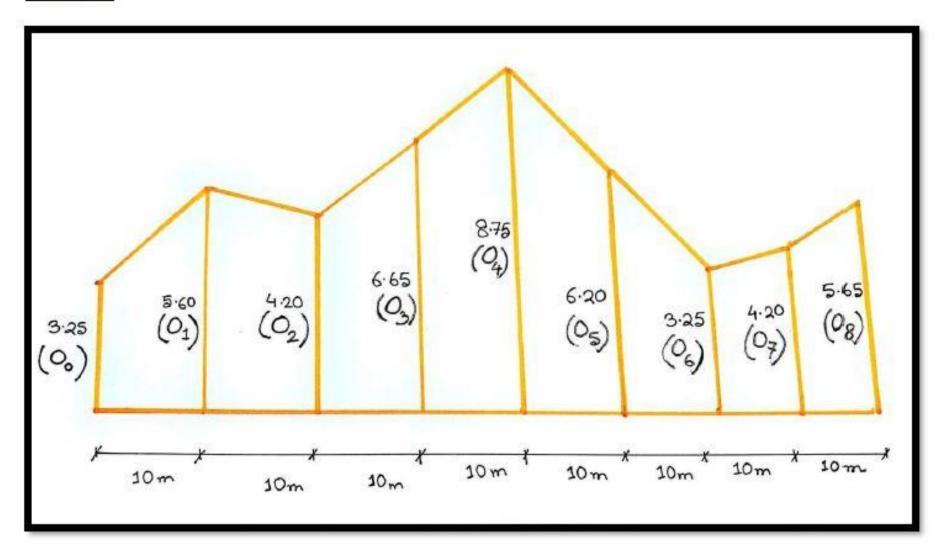

Total Area  

$$= \frac{2d}{6} (0_0 + 40_1 + 0_2) + \frac{2d}{6} (0_2 + 40_3 + 0_4) + \dots + 0_n$$

$$= \frac{d}{3} [0_0 + 4 (0_1 + 0_3 + 0_5 + \dots) + 2 (0_2 + 0_4 + 0_6 + \dots) + 0_n]$$

$$= \frac{d}{3} [0_0 + 0_n + 4 (0_1 + 0_3 + 0_5 + \dots) + 2 (0_2 + 0_4 + 0_6 + \dots)]$$




#### **Mathematical Problem**

The following perpendicular offsets were taken at 10 metres intervals from a survey line to an irregular boundary line :

3.25, 5.60, 4.20, 6.65, 8.75, 6.20, 3.25, 4.20, 5.65.

Calculate the area enclosed by the survey line, the irregular boundary line and the first and last offsets by Trapezoidal and Simpson's rule.

#### Solution:



i) Trapezoidal Rule:  

$$d = 10m$$

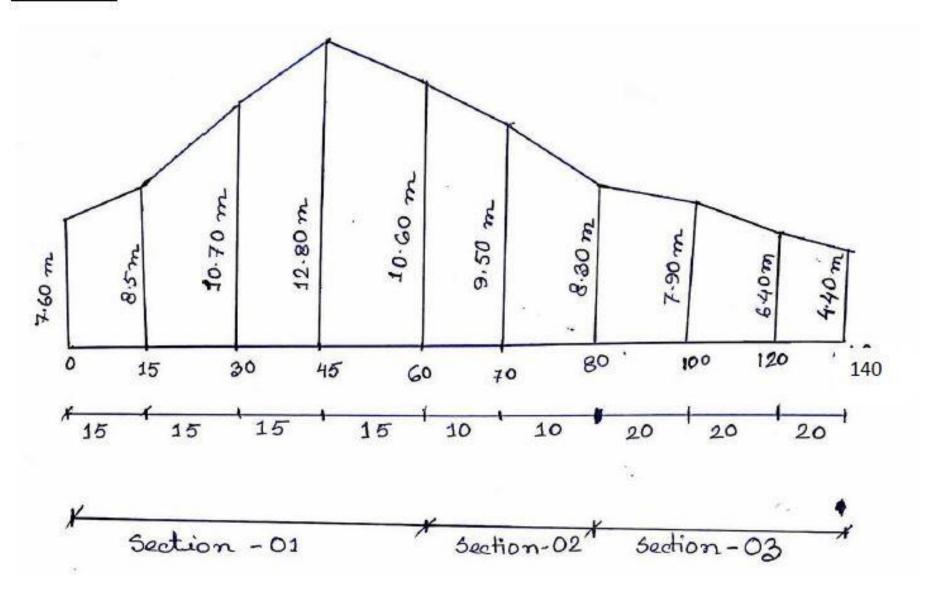
$$Total Arrea = 10m \left[\frac{0_0 + 0_8}{2} + 0_1 + 0_2 + 0_3 + 0_4 + 0_5 + 0_6 + 0_7\right]$$

$$= 10m \left[\frac{3 \cdot 25m + 5 \cdot 65m}{2} + 5 \cdot 60m + 4 \cdot 20m + 6 \cdot 65m + 8 \cdot 75m + 6 \cdot 20m + 3 \cdot 25m + 4 \cdot 20m\right]$$

- = 10m × 43.3m
- $= 433 m^2$

Total Area = 
$$\frac{10m}{3} \left[ 0_0 + 0_8 + 4(0_1 + 0_3 + 0_5 + 0_7) + 2(0_2 + 0_4 + 0_6) \right]$$
  
=  $\frac{10m}{3} \left[ 3.25m + 5.65m + 4(5.60m + 6.65m + 6.20m + 4.20m) + 2 \times (4.20m + 8.75m + 3.25m) \right]$ 

$$= \frac{10m}{3} * 131.9m = 439.67 m^2$$


### **10.1.3 Irregular Intervals**

The following offsets were taken from a chain line to an irregular boundary line:

| Chainage<br>(m) | 0    | 15  | 30   | 45   | 60   | 70  | 80  | 100 | 120 | 140 |
|-----------------|------|-----|------|------|------|-----|-----|-----|-----|-----|
| Offsets (m)     | 7.60 | 8.5 | 10.7 | 12.8 | 10.6 | 9.5 | 8.3 | 7.9 | 6.4 | 4.4 |

Calculate the area between the survey line, irregular boundary line and end offsets by Trapezoidal rule and Simpson's rule.

#### Solution:



Divide the area into three segments with equal intervals.

Section 01 : From chainage 0 to 60 m.

Section 02 : From chainage 60 m to 80 m.

Section 03: From chainage 80 m to 140 m.

## **Using Trapezoidal Rule:**

Area of section 01, 
$$A_1 = 15 \times \left(\frac{7.6+10.6}{2} + 8.5 + 10.7 + 12.8\right) = 616.5 m^2$$
  
Area of section 02,  $A_2 = 10 \times \left(\frac{10.6+8.3}{2} + 9.5\right) = 189.5 m^2$   
Area of section 03,  $A_3 = 20 \times \left(\frac{8.3+4.4}{2} + 7.9 + 6.4\right) = 413m^2$   
Total Area,  $A = A_1 + A_2 + A_3 = 616.5 + 189.5 + 413 = 1219 m^2$ 

## Using Simpson's Rule

As the first and second section have odd number of ordinates and therefore, Simpson's rule is directly applicable. The third section has 4 ordinates (even number); the rule is applicable for the first three ordinates only:

Area of section 01,  $A_1 = \frac{15}{3} \times \{(7.6 + 10.6) + 4 \times (8.5 + 12.8) + 2 \times 10.7\} = 624 m^2$ Area of section 02,  $A_2 = \frac{10}{3} \times \{(10.6 + 8.3) + 4 \times (9.5)\} = 189.7 m^2$ Area of section 03,  $A_3 = \frac{20}{3} \times \{(8.3 + 6.4) + 4 \times (7.9)\} + \frac{20}{2}(6.4 + 4.4) = 416.6 m^2$ Total Area,  $A = A_1 + A_2 + A_3 = 624 + 189.7 + 416.6 = 1230.3 m^2$