CE 103: Surveying

Lecture 11: Volume and area calculation (Contd.)

Course Instructor: Saurav Barua (SB) Assistant Professor, Dept. of Civil Engineering, DIU Email: saurav.ce@diu.edu.bd Phone: 01715334075

Comparison of trapezoidal and Simpson's rule
Area computed from map
Level section and two level section
Prismoidal correction

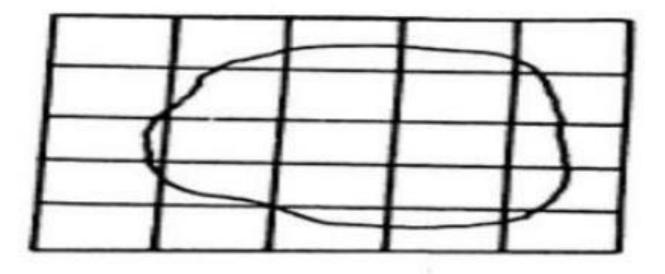
10.1.4 Trapezoidal Rule VS Simpson's Rule

Trapezoidal Rule	Simpson's Rule		
The boundary between the ordinates is considered to be straight.	The Boundary between the ordinates is considered to be an arc of a parabola.		
There is no limitation. It can be applied for any number of ordinates.	To apply this rule, the number of ordinates must be odd. That is, the number of divisions must be even.		
It Gives an approximate Result.	It gives a more accurate result.		

10.2 Area Computed from Map measurements

Area can be computed by subdividing the map into some regular geometric figures (squares, trapezoids etc.).

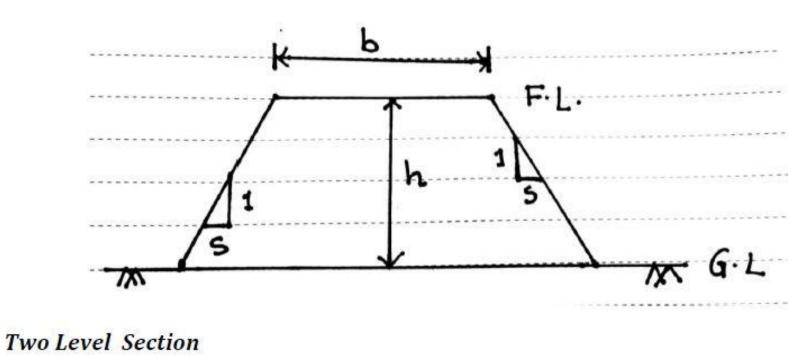
Total Area = Number of squares enclosed in the figure X Area of each square



10.3 Cross Sectional Area

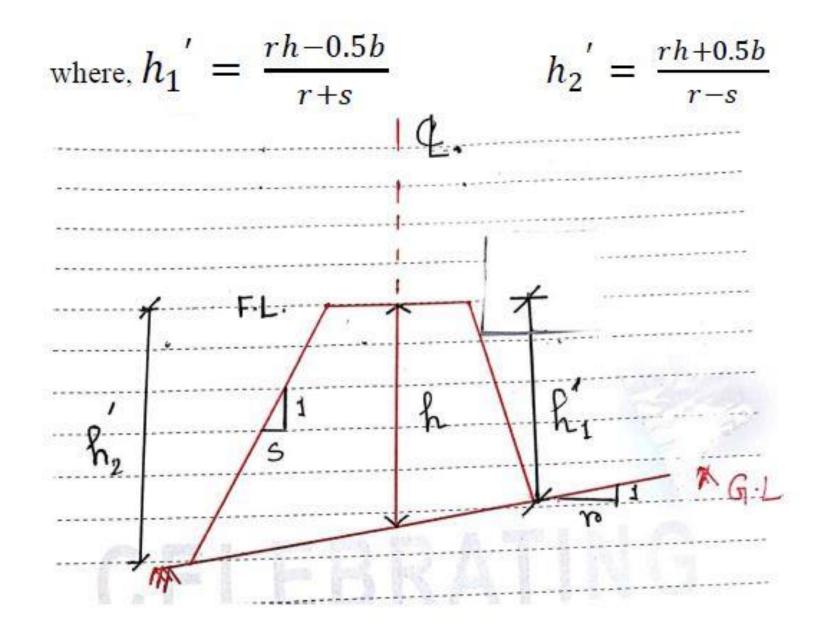
Level Section:

- F.L. and G.L. are both horizontal.
- Area = h (b + sh)

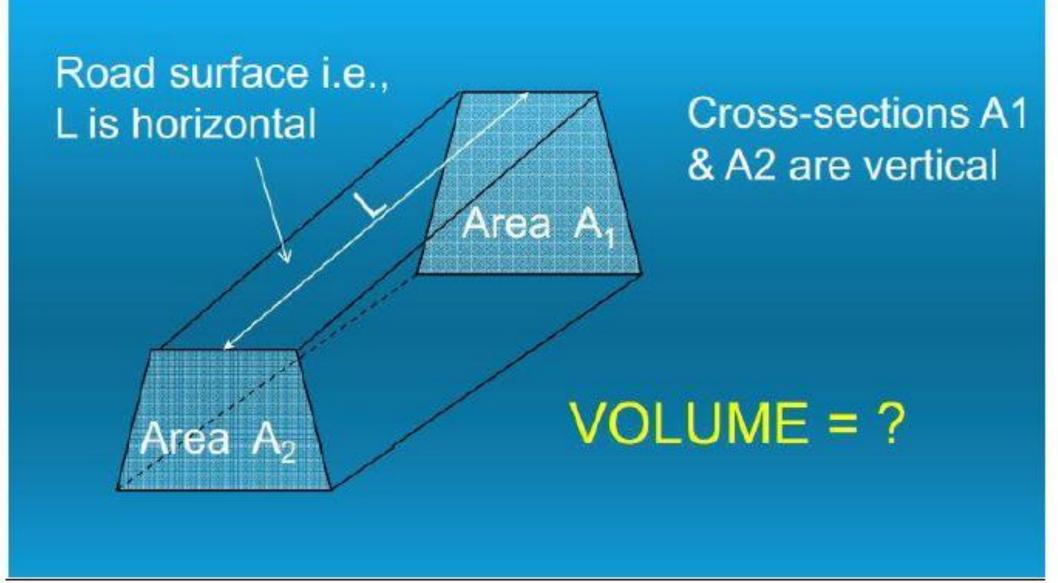


• G.L. is inclined.

• Area =
$$\frac{r^2 (bh) + s (0.5b)^2 + r^2 sh^2}{r^2 - s^2}$$



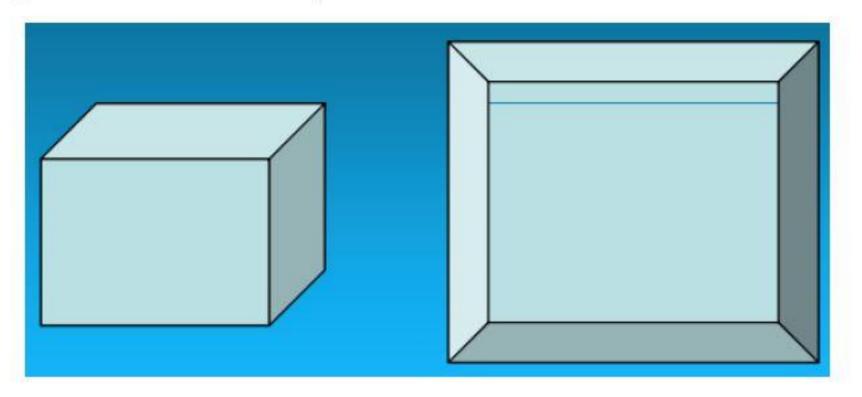
10.4 Volume Calculation



- Apply Prismoidal Rule
- Apply Trapezoidal Rule and apply correction.

Prismoid:

A solid, bounded by two parallel plane ends having the form of polygons, joined by longitudinal faces which are plane surfaces.



Prismoidal Rule

Volume of earth between two successive cross-sections $A_1 \& A_2$ at distance L apart, is considered as prismoid.

$$V_p = \frac{L}{6} \left(A_1 + 4A_m + A_2 \right)$$

Trapezoidal Rule

where A_m is cross-sectional area midway between $A_1 \& A_2$.

Volume of earth between two successive cross-sections $A_1 \& A_2$ at distance L apart is calculated as:

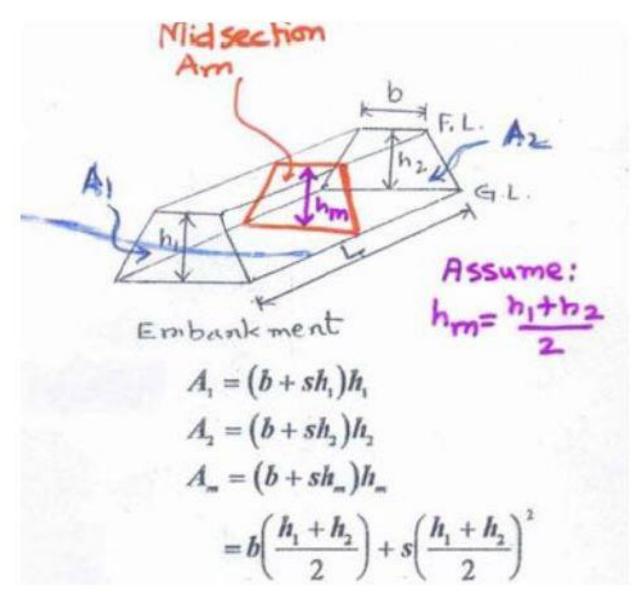
$$V_T = \frac{L}{2} \left(A_1 + A_2 \right)$$

This equation agrees with the prismoidal volume if $A_m = 1/2$ (A₁ + A₂).

This formula is applicable for prisms but not applicable for pyramids as for pyramids $A_m \neq 1/2$ (A₁ + A₂).

Prismoidal Correction

Prismoidal correction, $C_p = V_T - V_p$



$$\begin{split} & \nabla \rho = \frac{L}{6} \left[A_{1} + 4 A_{m} + A_{2} \right] \\ & = \frac{L}{6} \left[(b + sh_{1})h_{1} + 4 (b + sh_{m})h_{m} + 4 (b + sh_{2})h_{2} \right] \\ & = \frac{L}{6} \left[bh_{1} + sh_{1}^{2} + 4 (b + s \frac{h_{1} + h_{2}}{2}) \left(\frac{h_{1} + h_{2}}{2} \right) + bh_{2} + sh_{2}^{2} \right] \\ & = \frac{L}{6} \left[bh_{1} + sh_{1}^{2} + 2 b(h_{1} + h_{2}) + s(h_{1} + h_{2})^{2} + bh_{2} + sh_{2}^{2} \right] \\ & = \frac{L}{6} \left[b(h_{1} + h_{2}) + 2b(h_{1} + h_{2}) + s(2h_{1}^{2} + 2h_{2}^{2} + 2sh_{1}h_{2}) \right] \\ & = \frac{L}{6} \left[3b(h_{1} + h_{2}) + s(2h_{1}^{2} + 2h_{2}^{2} + 2k_{1}h_{2}) \right] \\ & = L \left[b\left(\frac{h_{1} + h_{2}}{2} \right) + 8 \frac{s}{3} \left(h_{1}^{2} + h_{2}^{2} + h_{1}h_{2} \right) \right] \end{split}$$

$$\begin{aligned} \nabla_T &= \frac{L}{2} \left[A_1 + A_2 \right] \\ &= \frac{L}{2} \left[h_1 \left(b + sh_1 \right) + h_2 \left(b + sh_2 \right) \right] \\ &= \frac{L}{2} \left[b \left(h_1 + h_2 \right) + s \left(h_1^r + h_2^r \right) \right] \\ &= L \left[b \left(\frac{h_1 + h_2}{2} \right) + \frac{s}{2} \left(h_1^r + h_2^r \right) \right] \end{aligned}$$

$$C_{p} = \sqrt{T} - \sqrt{p}$$

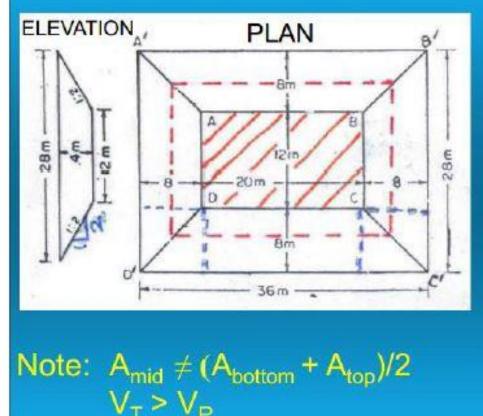
$$= L \left[\frac{S}{2} \left(h_{1}^{2} + h_{2}^{*} \right) - \frac{S}{3} \left(h_{1}^{*} + h_{1}h_{2} + h_{2}^{*} \right) \right]$$

$$= \frac{LS}{6} \left[3 \left(h_{1}^{2} + h_{2}^{*} \right) - 2 \left(h_{1}^{*} + h_{1}h_{2} + h_{2}^{*} \right) \right]$$

$$= \frac{LS}{6} \left[h_{1}^{*} - 2h_{1}h_{2} + h_{2}^{2} \right]$$

$$= \frac{LS}{6} \left[h_{1}^{*} - h_{2}^{*} \right]^{2}$$

Problem 1: Determine Volume of Pond by Prismoidal & Trapezoidal Rule



Top and bottom planes of pond are horizontal & parallel, its volume may be considered as prismoid.

 $A_{bottom} = 20 \times 12 = 240 \text{ m}^2$ $A_{top} = 28 \times 36 = 1008 \text{ m}^2$ $V_T = 4/2 [240+1008] = 2496 \text{ m}^3$

 A_{mid} = 28 x 20 = 560 m² V_P = 4/6 [240+4x560+1008] = 2325 m³

Mathematical Problem

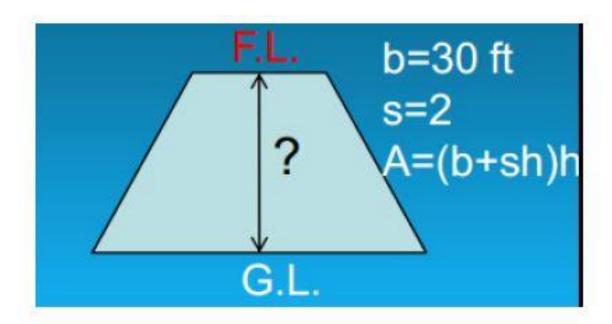
A railway embankment is 300ft long is 30ft wide at the formation level and has a side slope 2 to 1.

Distance (m)	0	100	200	300	
Ground Level (ft)	18	13	12	13	
Formation Level (ft)	15	15	15	15	

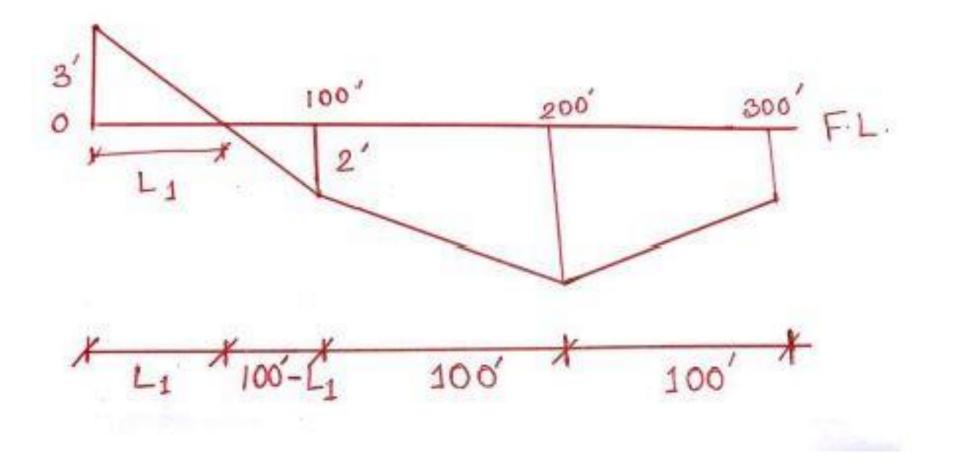
Calculate the volume of earthwork.

Solution:

Here, b = 30ft, s = 2.



Distance (ft)	Ground Level (ft)	Formation Level (ft)	Depth ,h (ft)
0	18	15	3
L ₁	15	15	0
100	13	15	2
200	12	15	3
300	13	15	2



From similar triangle,

$$\frac{3'}{L_1} = \frac{2'}{100 - L_1}$$

$$L_1 = 60'$$

Distance (ft)	Ground Level (ft)	Formation Level (ft)	Depth ,h (ft)	Area, $A = h(b+sh)$	Remarks
0	18	15	3	108	Cut
$L_1 = 60$	15	15	0	0	-
100	13	15	2	68	Fill
200	12	15	3	108	Fill
300	13	15	2	68	Fill

Volume of Cut

$$V_{T(cut)} = \frac{60}{2} (108 + 0) = 3240 ft^{3}$$

$$C_{P(cut)} = \frac{60 \times 2}{6} (3 - 0)^{2} = 180 ft^{3}$$

$$V_{P(cut)} = V_{T} \cdot C_{P} = 3240 \cdot 108 = 3060 ft^{3}$$
Volume of Fill

$$V_{T(Fill)} = \frac{40}{2} (0 + 68) + \frac{100}{2} (68 + 108) + \frac{100}{2} (108 + 68) = 18960 ft^{2}$$

$$C_{P(Fill)} = \frac{40 \times 2}{6} (2 - 0)^{2} + \frac{100 \times 2}{6} (2 - 3)^{2} + \frac{100 \times 2}{6} (3 - 2)^{2}$$

$$= 53.33 + 33.33 + 33.33 ft^{2}$$

$$= 119.99ft^{2} \approx 120 ft^{2}$$

$$V_{P(Fill)} = V_T - C_P = 18960 - 120 = 18840 ft^2$$

Volume from spot levels Ground level Formation level hb TING CU

Volume of square prism = Plan Area X Average depth at four corners.