CE 103: Surveying

Lecture 12: Curve setting

Course Instructor: Saurav Barua (SB)

Assistant Professor, Dept. of Civil Engineering, DIU

Email: saurav.ce@diu.edu.bd

Phone: 01715334075

Outline

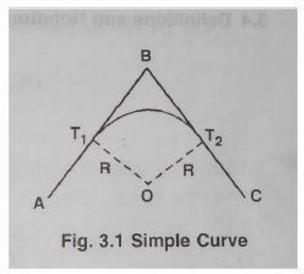
- ☐ Classification of circular curves
- ☐ Designation of a curve
- ☐ Setting out simple curve
- ☐Linear method

 Curves are generally used on highways and railways to change the direction of motion.

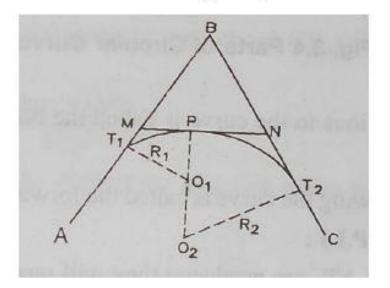
Classification of Circular Curve

- Simple Curve
- Compound Curve
- Reverse Curve

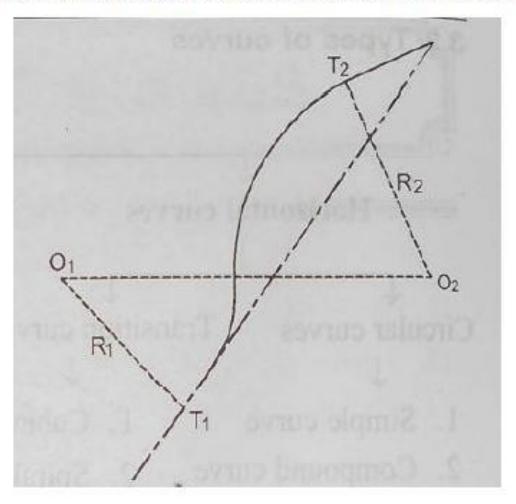
Simple Curve: It consists of a single arc of a circle.



 Compound Curve: It consists of two or more simple arcs that turn in the same direction and join at common tangent points.



 Reverse Curve: It consists of two circular arcs of same or different radii, having their centres to the different sides of the common tangent.



Designation of a curve

Arc definition

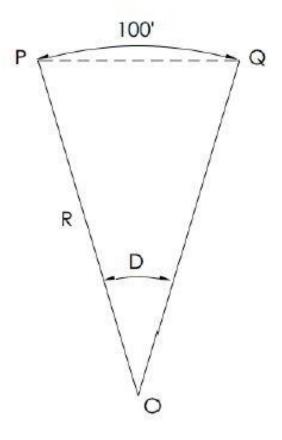
 According to arc definition, degree of curvature is defined as angle in degrees subtended by an arc of 100' length.

$$100: 2\pi R = D^{\circ}: 360^{\circ}$$

$$\Rightarrow R = \frac{360}{D} \times \frac{100}{2\pi}$$

$$= \frac{5729.578}{D} ft$$

$$= \frac{5730}{D} ft$$



Chord Definition

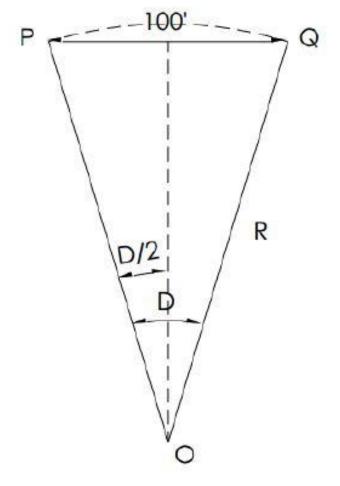
 According to chord definition, degree of curvature is defined as angle in degrees subtended by a chord of 100'.

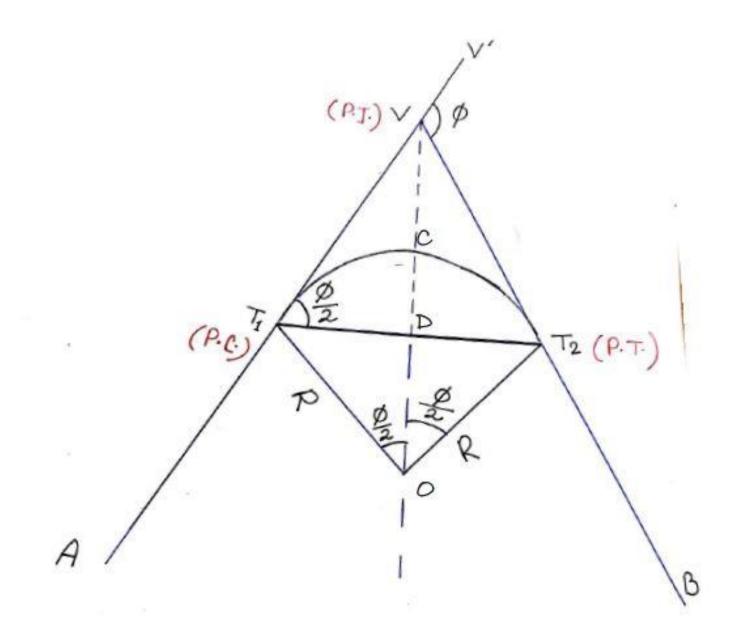
$$\sin\frac{D}{2} = \frac{50}{R}$$

$$\Rightarrow R = \frac{50}{\sin\frac{D}{2}}$$

If D is small, $\sin (D/2)$ can be taken as D/2. So,

$$R = \frac{50}{\frac{D}{2} \times \frac{\pi}{180}} = \frac{5730}{D}$$





- Back tangent AT₁.
- Forward tangent BT₂.
- Point of intersection (P.I.) The point at which two tangents (AT₁ and BT₂) meet.
- Point of curve (P.C.) It is beginning of the curve where the alignment changes from a tangent to a curve.
- Point of tangency (P.T.) It is end of the curve where the alignment changes from a curve to a tangent.
- Length of curve, $l = T_1CT_2 = R\emptyset$, where \emptyset is in radian

$$= \frac{\pi R}{180^{\circ}} \phi \quad \text{where } \emptyset \text{ in degrees.}$$

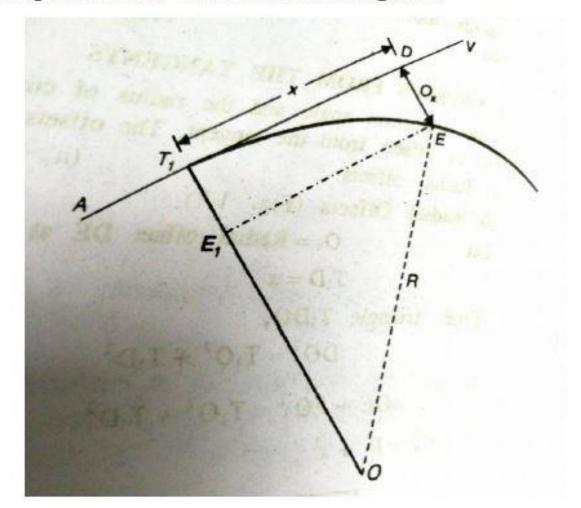
- Tangent length, $T = T_1V = VT_2 = OT_1 \tan (\phi/2) = R \tan (\phi/2)$
- Length of long chord, $L = T_1 T_2 = 2 OT_1 \sin (\emptyset/2) = 2R \sin (\emptyset/2)$
- Mid Ordinate, M = CD = CO-DO = R-R cos (ø/2)
- Apex distance or external distance, E = CV = VO-CO = R sec(ø/2) R

Setting out simple curves

- Linear Method: A chain or a tape is used.
- Angular Method: Theodolite with or without a chain (or tape) is used.

Linear Methods

Perpendicular offsets from tangent:



$$OE^{2} = OE_{1}^{2} + EE_{1}^{2}$$

$$\Rightarrow R^{2} = (OT_{1} - O_{x})^{2} + x^{2}$$

$$\Rightarrow R^{2} = (R - O_{x})^{2} + x^{2}$$

$$\Rightarrow (R - O_{x})^{2} = R^{2} - x^{2}$$

$$\Rightarrow R - O_{x} = \sqrt{R^{2} - x^{2}}$$

$$\Rightarrow O_{x} = R - \sqrt{R^{2} - x^{2}}$$

Calculate the offsets at 50 ft interval along tangents to locate a curve having a radius of 1500 ft.

Solution: R = 1500 ft

Using formula,

$$O_x = R - \sqrt{R^2 - x^2}$$

x (ft)	O _x (ft)
50	0.833
100	3.34
150	7.52
200	13.39