
The 4+1 View

*The 4+1 V?ew Model

addresses a speczj% set of concerns.

organizes a description of a

sojimare architecture usingjive

concurrent views, each of which

Model of
Architecture
PHILIPPE B . KRUCHTEN, Rational Software

many books and articles in which a
e all have

single diagram attempts to capture the

seen

gist of a system architecture. But when
you look carefully at the diagram’s
boxes and arrows, it becomes clear that
the authors are struggling to represent

overemphasizing one aspect of devel-
opment (like data engineering or run-

turely partitioning the software or

time efficiency), development strategy,
or team organization. Other software
architectures fail to address the con-
cerns of all “customers.”

Architects capture their design

decisions in four- views and use

thefiJZh view to illustrate and

validate them.

more in one diagram than is practical.
Do the boxes revpresent running pro-
grams? Chunks of source code?
Physical computers? Or merely logical
groupings of functionality? Do the
arrows represent compilation depen-
dencies? Control flows? Dataflows?
Usually the answer is that they repre-
sent a bit of everything.

Does an architecture need a single
architectural style? Sometimes the
software architecture suffers from sys-
tem designers who go too far, prema-

Several authors have noted the
problem of architectural representa-
tion, including David Garlan and
Mary Shaw,’ Gregory Abowd and
Robert Allen,’ and Paul C1ements.j

The 4 + I View Model was devel-
oped to remedy the problem. The 4 +
1 model describes software architec-
ture using five concurrent views. As
Figure 1 shows, each addresses a spe-
cific set of concerns of interest to dif-
ferent stakeholders in the system.

+ The logical view describes the

42 O/407459/94/$04 00 0 1994 WE NOVEMBER 1995

design’s object model when an object-
oriented design method is used. To
design an application that is very data-
driven, you can use an alternative
approach to develop some other form
of logical view, such as an entity-
relationship diagram.

+ The process view describes the
design’s concurrency and synchroniza-
tion aspects.

+ The physical view describes the
mapping of the software onto the
hardware and reflects its distributed
aspect.

+ The development view describes
the software’s static organization in its
development environment.

Software designers can organize the
description of their architectural deci-
sions around these four views, and
then illustrate them with a few selected
use cases, or scenarios, which constitute
a fifth view. The architecture is partial-
ly evolved from these scenarios.

At Rational, we apply Dewayne
Perry and Alexander Wolfs formula’

Software architecture = [Elements,
Forms, Rationale/Constraints}

independently on each view. For each
view we define the set of elements to

use (components, containers, and con-
nectors), capture the forms and pat-
terns that work, and capture the ratio-
nale and constraints, connecting the
architecture to some of the require-
ments.

Each view is described by what we
call a “blueprint” that uses its own par-
ticular notation. The architects can
also pick a certain ahitectural style for
each view, thus allowing the coexis-
tence of multiple styles in one system.

The 4+1 View Model is rather
generic: You can use notations and
tools other than those we describe, as
well as other design methods, especial-
ly for the logical and process decom-
positions.

4tl VIEW MODEL

Software architecture deals with
abstraction, decomposition and com-
position, and style and aesthetics. It
also deals with the design and imple-
mentation of software’s high-level
structure.

Designers build architectures using
several architectural elements in well-
chosen forms. These elements satisfy

I ~~
End users Programmers

l functionality l software management

Logical view . Development ‘,~ew

**.I)-=-. .< .? _
Scenarios

’ hb*.e ’ _/-
Process view - Physical view

. IIexe ,_s_l . . - ” .wi ”
System integrators System engineers

l performance l system topology
l scolobility l delivery
l throughput l installation

l telecommunication

Figure 1. The 4+1 View Model is
used to organize the description of the
architecture of a software-intensive
system.

the major functionality and perfor-
mance requirements of the system as
well as other, nonfunctional require-
ments such as reliability, scalability,
portability, and system availability.

Logical view. The logical view pri-
marily supports the functional require-
ments - the services the system
should provide to its end users.
Designers decompose the system into

Simulation and
Class

‘; Class utility

~~~~~ Assotiotion 

Containment, 
oggregotion 

Usage 

-+ Inheritance 
formal orguments 

porometerized -- -~---, kiStontiOtiOn 

class 

Class category 

Display nnd 
user ~olerfote 

External Interfores/ 

Conversolion ~ 
Translation : troining 

services 
.- xw&A-&1- 

-. 

Terminal 

Controller 

Connection i, 
services r: 

.-+&J 

Flight Air troific 
manogement monogement 
*- 9 Y  L . .a, 

Aeronautical 
mformotion 

Figure 2. (A) Notation jh the logical blueprint; (B) logical blueprint for the Tt!lic PBX; (C) bluepht for an ail--traj 
control system. 

Best Copy Available 
IEEE SOFTWARE ---- ~~ 43 



a set of key abstractions, taken mainly 
from the problem domain. These 
abstractions are objects or object classes 
that exploit the principles of abstrac- 
tion, encapsulation, and inheritance. In 
addition to aiding functional analysis, 
decomposition identifies mechanisms 
and design elements that are common 
across the system. 

We use the RationaUBooch 
approach’ to represent the logical view 
through class diagrams and templates. 
A class diagram shows a set of classes 
and their logical relationships: associa- 
tion, usage, composition, inheritance, 
and so on. Designers can group sets of 
related classes into class categories. Class 
templates focus on each individual class; 
they emphasize the main class opera- 
tions and identify key object character- 
istics. If an object’s internal behavior 
must be defined, we use state-transi- 
tion diagrams or state charts. Class util- 
ities define common mechanisms or 
services. 

NOM~OII. We derived the logical-view 
notation in Figure 2a from the Booth 
notation, which we simplified consid- 

erably to account for only those items 
that are architecturally significant. The 
numerous adornments are not very 
useful at this level of design. We use 
Rational Rose to support the logical- 
view design. 

Style. For the logical view, we use an 
object-oriented style. The main design 
guideline we follow is to keep a single, 
coherent object model across the 
entire system, avoiding the premature 
specialization of classes and mecha- 
nisms for each site or processor. 

Examples. Figure 2b shows the main 
classes involved in a sample PBX archi- 
tecture we developed at Alcatel. A PBX 
establishes communication among ter- 
minals. A terminal might be a tele- 
phone, a trunk line (a line to the cen- 
tral of&e), a tie line (a private PBX-to- 
PBX line), or a feature phone line. 

Different lines are supported by dif- 
ferent line-interface cards. The 
Controller object decodes and injects 
all the signals on the line-interface 
card, translating card-specific signals to 
and from a small, uniform set of 

events, such as a “start,” “stop,” or 
“digit.” The controller also bears all 
the hard real-time constraints. This 
class has many subclasses that cater to 
different interfaces. 

The Terminal object maintains the 
state of a terminal and negotiates ser- 
vices on behalf of that line. For exam- 
ple, it uses the services of the 
Numbering Plan object to interpret 
dialing. 

The Conversation object represents 
a set of terminals engaged in a conver- 
sation. It uses the Translation Services 
object (for accessing a directory, map- 
ping a logical address to a physical one, 
and routing) and the Connection 
Services object to establish a voice path 
among the terminals. 

Larger systems contain dozens of 
architecturally significant classes, such 
as the top-level class diagram of an air- 
traffic control system’ in Figure 2c. 
The system, developed by Hughes 
Aircraft of Canada, contains eight class 
categories. 

Process view. The process view takes 
into account some nonfunctional 

Component Connectors 
~~ Unspecified 

Controller process 

Process 

Terminal process 

-- . 

Best Copy Available NOVEMBER 1995 

tontroller tosk 
(low rote) 

-wA.r 
. 

(ontroller task “...S 
[high rate) 

.&‘ YS. - 

&we 3. (A) Notation for the process view; (B) partial process blueprint for the Tt!lic PBX. 



requirements, such as performance and 
system availability. It addresses con- 
currency and distribution, system 
integrity, and fault-tolerance. The 
process view also specifies which 
thread of control executes each opera- 
tion of each class identified in the logi- 
cal view. 

Designers describe the process view 
at several levels of abstraction, each 
one addressing a different concern. At 
the highest level, the process view can 
be seen as a set of independently exe- 
cuting logical networks of communi- 
cating programs (“processes”) that are 
distributed across a set of hardware 
resources, which in turn are connected 
by a bus or local area network or wide 
area network. Multiple logical net- 
works may exist simultaneously, shar- 
ing the same physical resources. For 
example, you can use independent log- 
ical networks to separate on- and off- 
line operational systems and to repre- 
sent the coexistence of simulation or 
test versions of the software. 

A process is a group of tasks that 
form an executable unit. Processes rep- 
resent the level at which the process 
view can be tactically controlled (start- 
ed, recovered, reconfigured, shut 
down, and so on). In addition, process- 
es can be replicated to distribute pro- 
cessing load or improve system avail- 
ability. 

fortifioning. To develop the process 
view, designers partition the software 
into a set of independent tasks: separate 
threads of control that can be individu- 
ally scheduled on separate processing 
nodes. 

We separate tasks into two groups: 
+ Major tasks are the architectural 

elements that can be uniquely 
addressed (designated from another 
task). They communicate through a 
set of well-defined intertask-commu- 
nication mechanisms: synchronous 
and asynchronous message-based 
communication services, remote pro- 
cedure calls, event broadcasts, and so 
on. Major tasks should not make 
assumptions about their collocation in 

the same process or processing node. 
+ Minor tasks are additional tasks 

introduced locally for implementation 
reasons such as cyclical activities, 
buffering, and time-outs. They can be 
implemented as Ada tasks or light- 
weight threads, for example, and com- 
municate bv rendezvous or shared 

Example. Figure 3b shows a partial 
process view for the PBX introduced 
in Figure 2b. All terminals are handled 
by a single terminal process that is dri- 
ven by messages in its input queues. 
The Controller objects are executed 
on one of three tasks that comprise the 
controller m-ocess: a low cvcle-rate 

We ‘use the process 
blueprint to estimate 
message flow and 
process loads. It is also 

TO DEVELOP 
THE PROCESS VIEW , 

possible to implement THE DESIGNER 
a “hollow” process 
view with dummy 

PARTITIONS THE 
process loads and mea- 
sure its performance 
on a target system.’ 

SOFTWARE INTO 
SEPARATE TASKS. 

i 
memorv. ’ task, which scans all 

inactive terminals (200 
ms) and puts any termi- 
nal becoming active in 
the scan list of the high 
cycle-rate task (10 ms), 
which detects any signif- 
icant changes of state 
and passes them to the 
main controller task, 
which interprets the 
changes and communi- 

Ivofufion. Our process-view notation is cates them by message to the corre- 
expanded from Booth’s original nota- sponding terminal. Message passing 
tion for Ada tasking and focuses on within the controller nrocess is done 

1 

architecturally significant elements, as through shared memory. 
Figure 3a shows. 

We have used TRW’s Universal Development view. The develonment 
Network Architecture Services to view foc&es on the organizationLof the 
build and implement the processes and actual software modules in the soft- 
tasks (and their redundancies) into net- ware-development environment. The 
works of m-ocesses. UNAS contains a 1 software is nackaged in small chunks 

I  

tool - the Software Architects 
Lifecycle Environment - that sup- 
ports our notation. SALE lets us depict 
the process view graphically, including 
specifications of the possible intertask- 
communication paths. It can then 
automatically generate the correspond- 
ing Ada or C++ source code. Because it account internal requirements related 
supports automatic code generation, to ease of development, software man- 
SALE makes it easier to change the agement, reuse or commonality, and 
nrocess view. constraints imnosed bv the toolset or 

- program’ librahes or subsystems - 
that can be developed by one or more 
developers. The subsystems are orga- 
nized in a hierarchy of layers, each 
layer providing a narrow and well- 
defined interface to the layers above it. 

The development view takes into 

I  , 
the program;ning language. The 

Style. Several styles would fit the development view supports the alloca- 
process view. For example, picking 
from Garlan and Shaw’s taxonomy- 1 

tion of requirements and work to 
teams, and supports cost evaluation, 

you can use pipes and filters or planning, monitoring of project 
client/server, with variants of multi- progress, and reasoning about software 
ple-client/single-server and multiple- reuse, portability, and security. It is the 
clients/multiple-servers. For more basis for establishing a line of product. 
complex systems, you can use a style The development view is represent- 
similar to the ISIS system’s process ed by module and subsystem diagrams 
groups, as described by Kenneth that show the system’s export and 
Birman using another notation and import relationships. You can describe 
toolset.* the complete development view only 

IEEE SOFTWARE 45 



Components connector 

. 

Module 

Reference 
lomp~lation 
dependency 

(include, “with”) 

Layer 

Figure 4. Notation for a developmen; 
blueprint. 

Human-computer interface 
Layer ’ Externol rvrtemr 

ATC fu&onal areas: flight manage- 
Layer 4 ment, sector monogement, ond IO on. 

Aeronouticol closles 
‘Oyer 3 ATt classes 

Support mechanisms: 
Layer 2 communication, time, storoge, 

resource management, and so on 

Layer 1 Bindings Common utilities ,ow~,eve, rerviter 

Figure fi. The five layers of Hughes 
Air Trafic System. 

after you have identified all the soft- 
ware elements. However, you can list 
the rules that govern the development 
view - partitioning, grouping, and 
visibility - before you know every ele- 
ment. 

Ivotahr. As Figure 4 shows, we again 
use a variation of the Booth notation, 
limited to architecturally significant 
items. Rational’s Apex development 
environment supports the definition 
and implementation of the develop- 
ment view, the layering strategy 
described above, and design-rule 
enforcement. Rational Rose can draw 
the development blueprints for Ada 
and C++ at the module and subsystem 
level, in forward engineering, and by 
reverse engineering from the develop- 
ment source code. 

Style. We recommend you define 
four to six layers of subsystems in the 
development view. One design rule we 
follow here is that a subsystem can 
only depend on subsystems in the same 
or lower layers. This minimizes the 
development of very complex networks 
of dependencies between modules in 

Components 

mm*, . *.v 
Processor 

,a-- 
Other device 

(Al 

Communicafion line 

Communication (non-permanent) 

- * Unidirectional communication 

- High-bondwidth communication, 
BUS 

. . 

K 

(Bl 

favor of a simpler, layer-by-layer 
release strategy. 

Examples. As Figure 5 shows, the 
Hughes Air Traffic System has five 
development layers.’ Layers 1 and 2 - 
utilities and support mechanisms - 
constitute a domain-independent, dis- 
tributed infrastructure that is common 
across the line of products. These lay- 
ers shield the application from varia- 
tions in hardware platforms, operating 
systems, or off-the-shelf products such 
as database-management systems. To 
this infrastructure, layer 3 adds an air- 
traffic control framework to form a 
domain-specific software architecture. 
Layer 4 adds a palette of functionality, 
and layer 5 contains most of the user 
interface and the interfaces to external 
systems. This top layer is customer- 
and product-dependent. Spread across 
the five layers are some 72 subsystems, 
each containing from 10 to 50 mod- 
ules. We represent these subsystems 
on additional, more detailed blue- 
prints. 

Physical view. The physical view 
takes into account the system’s non- 

-A .A 

F F 
primary * ) backup 

*&SW V,‘S “’ 

.C 4. 

K K 

, ._ 

. . PC .C .I 

K K K K 

.* 

K 

‘igure 6. (A) Notation fey a physical blueprint; (@ a PBX physical blueprint. 

46 Best Copy Available 
--- 

NOVEMBER 1995 



functional requirements such as system 
availability, reliability (fault-tolerance), 
performance (throughput), and scala- 
bility. The software executes on a net- 
work of computers (the processing 
nodes). The various elements identi- 
fied in the logical, process, and devel- 
opment views - networks, processes, 
tasks, and objects - must be mapped 
onto the various nodes. Several differ- 
ent physical configurations will be used 
- some for development and testing, 
others for system deployment at vari- 
ous sites or for different customers. 
The mapping of the software to the 
nodes must therefore be highly flexible 
and have a minimal impact on the 
source code itself. 

F 
hverralion 

( 

process prorerr 
w* _q * v--w-- 

v 

Termlnol F * 
proteir Pseudo-tentrol 

F * 
keudo-cenrrol 

.__ I - 
prOtW pot&S 

‘* “?’ r-=- A 

K ’ 
. . 

Controller (onveriotion hrerrotion 
prorerr prow prow5 

(Al 
b_,i -” *‘A  - I * 

. 7 
Terminal Terminal 
process prow 

~‘? c p”- ‘. A= 

process proterr prcters 
’ =‘** L _‘-” *-“x-- , 

tw * 
. . 

tine tardr he turds he cords 

Notation. Because physical blueprints 
can become very messy in large sys- 

___ ___ 
Fip-e 7. (A) A 

terns, we organize them in several 
small PBX physical view with process allocation; (B) a physical 

forms, with or without the mapping 
blueprint for a larger- PBX; C, F, and K are three types of computers that have 

from the process view, as Figures 6 and 
different capacities azd support three different executables. 

7 show. 
UNAS provides us with a data-dri- ers discover architectural elements 

ven means of mapping the process 
5. When a valid sequence of digits 

view onto the physical view. This lets 
during the architecture design, and has been entered, the terminal opens a 

+ it validates and illustrates the conversation. 
us make many changes to the mapping 
without modifying the source code. 

architecture design, both on paper and 
as the starting point for the tests of an 

Figure 6b shows a possible hard- architectural prototype. CORRESPONDENCE AMONG VIEWS 
ware configuration for a large PBX; 
Figures 7a and 7b show mappings of Nototion. The scenario notation is 
the process view on two different phys- 

The various views are not fully 

ical views, a small and a large PBX. 
very similar to that used for the logical independent. Elements of one view are 
view, except that it uses the connectors connected to elements in other views, 
from the process view to indicate 

Scenarios. We use a small subset of 
following certain design rules and 

object interactions. As for the logical heuristics. 
important scenarios - instances of use view, we manage object-scenario dia- 
cases - to show that the elements of 
the four views work together seamless- 

grams using Rational Rose. Figure 8 From logical view to process view. We 
shows a fragment of a scenario for the 

ly. For each scenario, we describe the 
identify several important characteris- 

corresponding scripts (sequences of 
small PBX. The corresponding script tics of the logical view classes: autono- 
reads: 

interactions between objects and 
my, persistence, subordination and dis- 

1. The controller of Joe’s phone tribution. 
between processes) as described by detects and validates the transition 
Ken Rubin and Adele Goldberg.’ The 

Autonomy identifies whether objects 
from on-hook to off-hook and sends a are active, passive, or protected. An 

scenarios are in some sense an abstrac- 
tion of the most important require- 

message to wake the corresponding active object invokes other objects’ 
terminal object. 

ments. Their design is expressed using 
operations or its own operations, and 

2. The terminal allocates some 
object-scenario and object-interaction 

has full control over other objects 
resources and tells the controller to 

diagrams.’ 
invoking its operations. Apassive object 

emit a dial tone. 
This view is redundant with the 

never spontaneously invokes any oper- 
ations, and has no control over other 

other ones (hence the “+l”), but it 
3. The controller receives digits 

and transmits them to the terminal. 
plays two critical roles: 

objects invoking its operations. A pro- 
4. The terminal uses the number- tected object never invokes sponta- 

+ it acts as a driver to help design- ing plan to analyze the digit flow. neously any operations but arbitrates 

IEEE SOFTWARE Best Copy Available 
-- 

47 



- 

(1) off-hook ) 

loe:tonlroller . (‘) diol ‘One c 1oe:terminol (4) digit * 
(3) digit 

Numbering plan 

(5) open tonverrotion 
. 

tonverrotion 

Figure 8. A scenario example from a local-call selectiolz phase. 

the invocation of its own operations. 
Persistence identifies whether objects 

are transient or permanent. Do they 
survive the failure of a process or 
processor? Subordination determines if 
the existence or persistence of an 
object depends upon another object. 
Distribution determines if the object’s 
state or operations are accessible from 
many nodes in the physical view and 
from several processes in the process 
view. 

In the logical view of the architec- 
ture, we could consider each object as 
active and potentially concurrent; that 
is, behaving in parallel with other 
objects and paying no more attention 
to the exact degree of concurrency than 
it needs to achieve this effect. Hence 
the logical view takes into account only 
the requirements’ functional aspects. 

However, when we define the 
process view, it is not practical to 
implement each object with its own 
thread of control (such as its own Unix 
process or Ada task) because of the 
huge overhead this imposes. More 
over, if objects are concurrent, there 
must be some form of arbitration for 
invoking their operations. 

On the other hand, multiple threads 
of control are needed to 

+ react rapidly to certain classes of 
external stimuli, including time-relat- 
ed events; 

+ take advantage of multiple CPUs 
in a node or multiple nodes in a dis- 
tributed system; 

+ increase CPU utilization by allo- 
cating CPUs to other activities when a 
thread of control is suspended during 
another activity (such as access to some 
external device or access to some other 
active object); 

+ prioritize activities (and thus 
potentially improve responsiveness); 

+ support system scalability (by hav- 

ing additional processes sharing the 
load); 

+ separate concerns between differ- 
ent areas of the software; and 

+ achieve a higher system availabili- 
ty (with backup processes). 

Determining concurrency. We use two 
strategies simultaneously to determine 
the “right” amount of concurrency and 
define the set of necessary processes. 
Keeping in mind the set of potential 
physical target views, we can proceed 
either from the inside out or the out- 
side in. 

+ Inside out. Starting from the logi- 
cal view, we define agent tasks that 
multiplex a single thread of control 
across multiple active objects of a given 
class. We execute subordinate objects 
on the same agent as their parent. 
Classes that must be executed in mutu- 
al exclusion, or that require a minimal 
amount of processing share a single 
agent. This clustering proceeds until 
we have reduced the processes to a 
small number that still allows distribu- 
tion and use of the physical resources. 

+ Outside in. Starting with the physi- 
cal view, we identify external stimuli 
(requests) to the system, and then 
define client processes to handle the 
stimuli and server processes that pro- 
vide (rather than initiate) services. We 
use the problem’s data integrity and 
serialization constraints to define the 
right set of servers and allocate objects 
to the client and servers agents. We 
then identify which objects must be 
distributed. 

The result is a mapping of classes 
(and their objects) onto a set of tasks 
and processes of the process view. 
Typically, there is an agent task for an 
active class, with some variations, such 
as several agents for a given class to 
increase throughput or several classes 

mapped onto a single agent either to 
assure sequential execution or because 
the class operations are infrequently 
invoked. 

Finally, this is not a linear, deter- 
ministic process leading to an optimal 
process view; it requires a few itera- 
tions to reach an acceptable compro- 
mise. There are numerous other ways 
to proceed.‘,‘” 

Exumple. The exact method used to 
construct the mapping is complex. 
However, a brief example from a hypo- 
thetical air-traffic control system can 
illustrate it. Figure 9 shows how a 
small set of classes from the system can 
be mapped onto processes. 

The flight class is mapped onto a set 
of flight agents that must quickly 
process many flights and spread the 
load across multiple CPUs while con- 
tending with large numbers of external 
stimuli. The persistence and distribu- 
tion aspects of the flight processing are 
deferred to a flight serve?‘, which is 
duplicated to assure system availability. 
Flight profile or jhgbt clearance is always 
subordinate to a flight, and although 
there are complex classes, they share 
the processes of the flight class. Flights 
are distributed to several other 
processes, notably for display and 
external interfaces. 

A sectorization class establishes a par- 
titioning of airspace to assign con- 
troller jurisdiction over flights. Because 
of its integrity constraints, this class 
must be handled by a single agent, but 
it can share the server process with the 
flight, as updates are infrequent. 
Locations, airspace, and other static 
aeronautical information are protected 
objects, shared among several classes. 
These are rarely updated and mapped 
on their own server and distributed to 
other processes. 

From logical view to development view. A 
class is usually implemented as a mod- 
ule, and large classes are decomposed 
into multiple packages. Collections of 
closely related classes - class cate- 
gories - are grouped into subsystems. 

48 Best Copy Available NOVEMBER 1995 



flight ierlorizotion 

0 l 0 

rleoronce profile 

l ’ 

To define subsystems, we must consid- 
er additional constraints, such as team 
organization, expected magnitude of 
code (typically 5,000 to 20,000 lines of 
code per subsystem), degree of expect- 
ed reuse and commonality, as well as 
strict layering principles (visibility 
issues), release policy, and configura- 
tion management. Thus, we usually 
end up with a view that does not have a 
one-to-one correspondence with the 
logical view. 

General issues. The logical and devel- 
opment views are very close, but 
address very different concerns. We 
have found that the larger the project, 
the greater the distance between these 
views. This also holds for the process 
and physical views. For example, com- 
paring Figure 2c with Figure 5, there is 
no one-to-one mapping from the class 
categories to the layers. The External 
Interface/Gateway category is spread 
across several layers: communications 
protocols are in subsystems in or below 
layer 1, general gateway mechanisms 
are in subsystems in layer 2, and the 
actual specific gateways are in layer 5 
subsystems. 

Processes and process groups are 
mapped onto the available physical 
hardware in various configurations for 
testing or deployment. Birman 
describes some very elaborate schemes 
for this mapping in the ISIS project.” 

In terms of which classes are used, 
scenarios relate mainly to the logical 
view, or to the process view when 
interactions between objects involve 
more than one thread of control. 

ITERATIVE PROCESS 

Bernard Witt and his colleagues 
describe four phases for architectural 
design - k t h’ s e c mg, organizing, speci- 
fying, and optimizing - and subdivide 
them into 12 steps. lo Although they do 
indicate that some backtracking may 
be needed, we think their approach is 
too linear for ambitious or unprece- 
dented projects, because too little is 

~orotlon girspote 
(Al 

flight 

proflle 
. 
. 

v 

Sotkup 

clearonte Multiple flight ogents Flight server 
I 

jettorlzotlon . 

Single sectorizotion agent 

lototion 

riirrpote 
Aeronouwi info server 

Figure 9. Mappingfi-om the (A) logical to the (B) process view. 

known at the end of the phases to vali- 
date the architecture. We advocate a 
more iterative development, in which 
the architecture is actually prototyped, 
tested, measured, and analyzed, and 
then refined in subsequent iterations. 

Our approach not only mitigates 
the risks associated with the architec- 
ture, it also helps build teams and 
improves training, architecture famil- 
iarity, tool acquisition, the initial run- 
in period for procedures and tools, and 
so on. (This holds for evolutionary, 
rather than throwaway prototypes.) An 
iterative approach also helps you refine 
and better understand the require- 
ments. 

Scenario-driven approach. Scenarios 
capture the system’s critical functional- 
ity - functions that are the most 
important, are used most frequently, 
or present significant technical risk. 

To begin, select a few scenarios on 
the basis of risk and criticality. You 
may synthesize a scenario by abstract- 
ing several user requirements. Then 

create a strawman architecture and 
script the scenarios, identifying major 
abstractions (such as classes, mecha- 
nisms, processes, subsystems)” and 
decomposing them into sequences of 
pairs (object, operation). 

Next, organize the architectural 
elements into the four views, imple- 
ment the architecture, test it, and 
measure it. This analysis helps you 
detect flaws or potential enhance- 
ments. Finally, capture lessons 
learned. 

Begin the next iteration by reassess- 
ing the risks, extending the scenarios 
to consider, and selecting a few addi- 
tional scenarios on the basis of risk or 
extending architecture coverage. Then 
try to script those scenarios in the pre- 
liminary architecture and discover 
additional architectural elements - or 
significant architectural changes - 
that must occur to accommodate these 
scenarios. Update the four views and 
revise the existing scenarios on the 
basis of these changes. Next, upgrade 
the implementation (the architectural 

IEEE SOFTWARE Best Copy Available ~-~ 
49 



prototype) to support the new extend- 
ed set of scenarios. 

At this point, you should test the 
architecture by measuring under load 
(in the target environment, if possible) 
and review all five views to detect 
potential simplifications, commonali- 
ties, and opportunities for reuse. Then 
update the design guidelines and ratio- 
nale and capture lessons learned. And 
then loop again. 

Finally, the initial architectural pro- 
totype evolves to become the real sys- 
tem. After two or three iterations, the 
architecture itself should become sta- 
ble, and you should find no new major 
abstractions, subsystems, processes, or 
interfaces. The rest is in the realm of 
software design - where you can con- 
tinue development using very similar 
methods and process. 

Timetable. The duration of these iter- 
ations varies considerably, depending 
on the size of the project, the number 
of people involved, and their expertise 
in the domain and the development 
method. It also varies relative to the 

development organization. Hence the 
iteration may last two to three weeks 
for a small project (10,000 lines of 
code), or from six to nine months for a 
large command-and-control system 
(700,000 lines of code or larger). 

Tailoring the model. Not all software 
architectures need every view in the 
4+1 View Model. Views that are use- 
less can be omitted. For example, you 
could eliminate the physical view if 
there is only one processor or the 
process view if there is only one 
process or program. For very small 
systems, logical and development views 
are sometimes so similar that they can 
be described together. The scenarios 
are useful in all circumstances. 

Documentation. The documentation 
produced during the architectural 
design is captured in two documents: 

+ a software architecture document, 
organized by the 4+ 1 views, and 

6 a software design guideline, which 
captures (among other things) impor- 
tant design decisions that must be 

ACKNOWLEDGMENTS 
For their help in shaping or experimenting with the 4+1 View Model I thank my many 

colleagues at Rational, Hughes Aircraft of Canada, CelsiusTech AB, Alcatel, and elsewhere, 
and in particular, Chris Thompson, Alex Bell, Mike Devlin, Grady Booth, Walker Royce, 
Joe Marasco, Rich Reitman, Viktor Ohnjec, Ulf Olson, and Ed Schonberg. 

REFERENCES 
1. D. Garlan and M. Shaw, “An Introduction to Software Architecture,” A&wnce.r in SgFu(nre 

Engineering and f iwmledge Engnzeel-ing, Vol. 1, World Scientific Publishing Co., Singapore, 1993. 
2. G. Abowd, R. Allen, and D. Garlan, “Using Style tu Understand Descriptions of Software 

Architecture,” ACM Sofnuwe Eng. Notes, Dec. 1993, pp. 9-20. 
3. Paul Clements, “From Domain Model to Architectures,” A. Abd-Allah et al., eds., Focused Workshop 

on Sofinr-e Architemwe, 1994, pp. 404-420. 
4. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture,” ACM Sojhwe 

Eng. Xm, Oct. 1992, pp. 40.52. 
5. G. Booth, Objecr-OrrentedAnal and Design with ,4pplications, 2nd. ed., Benjamin-Cummings, 

Redwood City, Calif., 1993. 
6. P. Kruchten and C. Thompson, “An Object-Oriented, Distributed Architecture for Large Scale Ada 

Systems,” Pnx. TRLAdu ‘94, ACM Press, New York, 1994, pp. 262-27 1. 
7. A. Filarey et al., “Software First: Applying Ada Megaprogramming Technology to Target Platform 

Selection Trades,” Proc. TN-Ada ‘91, ACM Press, New York, 1993. 
8. K.P. Birman and R. Van Renesse, Reliable Distributed Computmg with the Isn Toolkit, IEEE CS Press, 

Los Alamitos, Calif. 1994. 
9. K. Rubin and A. Goldberg, “Object Behavior Analysis,” Comnz. ACl!I, Sept. 1992, pp. 48-62. 
10. B. I. Witt, F. T. Baker, and E.W. Merritt, Sojiware Architectwe and Design Pmzciples. .2i[odel.r, and 

Methods, Van Nostrand Reinholt, New York, 1994. 

respected to maintain the architectural 
integrity of the system. 

W  e have used the 4+1 View Model 
on several large projects, cus- 

tomizing it and adjusting the termi- 
nology somewhat.5 We have found 
that the model actually allows the vari- 
ous stakeholders to find what they 
need in the software architecture. 
System engineers approach it first 
from the physical view, then the 
process view; end users, customers, 
and data specialists approach it from 
the logical view; and project managers 
and software-configuration staff mem- 
bers approach it from the develop- 
ment view. 

Other sets of views have been pro- 
posed and discussed at our company 
and elsewhere, but we have found that 
proposed views can usually be folded 
into one of the four existing views. A 
cost and schedule view, for example, 
folds into the development view, a data 
view into the logical view, and an exe- 
cution view into a combination of the 
process and physical view. + 

Philippe Kmchten is a 
senior technical consultant 
at Rational Software, 
where he is in charge of 
the Software Architecture 
Practice area. Kruchten 
has 20 years experience in 
software development. He 
has been associated with 
several large-scale soft- 
ware-intensive projects 

around the world, including the Alcatel2505 and 
Alcatel 2600 private telephone exchanges in France, 
the Ship System 2000 command-and-control sys- 
tem in Sweden, and several other projects in avion- 
ics, defense, transportation, and compilation. Since 
August 1992, he has been the lead software archi- 
tect for the Canadian Automated Air Traffic 
System, developed by Hughes Aircraft of Canada in 
VXKOUVeI.  

Kruchten received an M.Sc. in mechanical engi- 
neering from Ecole Centrale de Lyon, France, and 
a PhD in information technology from the French 
National Institute of Telecommunications, Paris. 
IIe is a member of the IEEE Computer Society and 
the ACM. 

Address questions about this article to Kruchten 
at Rational Software Corp., 240-10711 Cambie Rd., 
Richmond BC V6X 3GS; pkruchten9rational.com 

50 NOVEMBER 1995 


