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Data Structures – LECTURE 14 

Strongly connected components

• Definition and motivation

• Algorithm

Chapter 22.5 in the textbook (pp 552—557).
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Connected components
• Find the largest components (sub-graphs) such 

that there is a path from any vertex in it to any 
other vertex.

• Applications: networking, communications.
• Undirected graphs: apply BFS/DFS (inner 

function) from a vertex, and mark vertices as 
visited. Upon termination, repeat for every 
unvisited vertex.

• Directed graphs: strongly connected components, 
not just connected: a path from u to v AND from 
v to u, which are not necessarily the same! 
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Example: strongly connected components
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Example: strongly connected components
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Strongly connected components
• Definition: the strongly connected components 

(SCC) C1, …, Ck of a directed graph G = (V,E) are 
the largest disjoint sub-graphs (no common vertices 
or edges) such that for any two vertices u and v in
Ci, there is a path from u to v and from v to u. 

• Equivalence classes of the binary path(u,v) relation, 
denoted  by u ~ v. The relation is not symmetric!

• Goal: compute the strongly connected components 
of G in linear time 

�
(|V|+|E|). 
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Strongly connected components graph 
• Definition: the SCC graph G~ = (V~,E~) of the 

graph G = (V,E) is as follows:
– V~ = { C1, …, Ck} .  Each SCC is a vertex.

– E~ = { (Ci,Cj)|  i � j and (x,y)�E, where x�Ci and y�Cj} .   
A directed edge between components corresponds to a 
directed edge between them from any of their vertices.  

• G~ is a directed acyclic graph (no directed cycles)!

• Definition: the transpose graph GT = (V,ET) of the 
graph G = (V,E) is G with its edge directions 
reversed: ET= { (u,v)| (v,u)�E} . 
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Example: SCC graph
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Example: transpose graph GT
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SCC algorithm
Idea: compute the SCC graph G~ = (V~,E~) with two 

DFS, one for G and one for its transpose GT, 
visiting the vertices in reverse order.

SCC(G)

1. DFS(G) to compute finishing times f [v], 
�

v�V

2. Compute GT

3. DFS(GT) in the order of decreasing  f [v]

4. Output the vertices of each tree in the DFS forest 
as a separate SCC. 
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Example: computing SCC (1) 
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Example: computing SCC (2) 
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Example: computing SCC (3) 
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Example: computing SCC (4) 
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Example: computing SCC (5) 
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Example: computing SCC (6) 
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Example: computing SCC (2) 
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Proof of correctness: SCC (1)
Lemma 1:  Let C and C’ be two distinct SCC of   

G = (V,E), let u,v� C and u’ ,v’ � C’ .                 
If there is a path from u to u’ , then there 
cannot be a path from v to v’ .

Definition:  the start and finishing times of a set of 
vertices U � V is:  

d[U] = minu�U{ d [U]}

f [U] = minu�U{ f [U]}

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness: SCC (2)
Lemma 2:  Let C and C’ be two distinct SCC of  G, and let 

(u,v)�E where and u�C and v�C’. Then, f [C] > f [C’ ]
Proof: there are two cases, depending on which strongly 

connected component, C or C’ is discovered first.
1. C was discovered beforeC’: d(C) < d(C’ )

Let x be the first vertex discovered in C. There is a path 
in G from x to each vertex of C which has not yet been 
discovered. Because (u,v)�E, for any vertex w�C’, 
there is also a path at time d[x] from x to w in G
consisting only of unvisited vertices: x�u�v�w. Thus, 
all vertices in C and C’ become descendants of x in the 
depth-first tree. Therefore, f [x] = f [C] > f [C’ ].
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Example: finishing times 
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f [C4] = 5

f [C2] = 15
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Proof of correctness: SCC (3)
2. d(C) > d(C’ )

Let y be the first vertex discovered in C’ . At time d[y], all 
vertices in C’ are unvisited. There is a path in G from y to 
each vertex of C’ which has only vertices not yet discovered. 
Thus, all vertices in C’ will become descendants of y in the 
depth-first tree, and so f [y] = f [C’ ]. At time d[y], all vertices 
in C are unvisited. Since there is an edge (u,v) from C to C’, 
there cannot, by Lemma 1, be a path from C’ to C. Hence, 
no vertex in C is reachable from y. At time f [y], therefore, 
all vertices in C are unvisited. Thus, no vertex in C is 
reachable from y. At time f [y], therefore, all vertices in C
are still unvisited. Thus, for anuy vertex w in C:

f [w] > f [y] � f [C] > f [C’ ].
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Proof of correctness: SCC (4)
Corollary: for edge (u,v)�ET, and u�C and v’�C’

f [C] < f [C’ ]
This provides the clue to what happens during the 

second DFS. 
The algorithm starts at x with the SCC C whose 

finishing time f [C] is maximum. Since there are 
no vertices in GT from C to any other SCC, the 
search from x will not visit any other component!

Once all the vertices have been visited, a new SCC is 
constructed as above. 
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Proof of correctness: SCC (4)
Theorem: The SCC algorithm computes the strongly 

connected components of a directed graph G.
Proof: by induction on the number of depth-first 

trees found in the DFS of GT: the vertices of each 
tree form a SCC. The first k trees produced by the 
algorithm are SCC.  

Basis: for k = 0, this is trivially true.
Inductive step: The first k trees produced by the 

algorithm are SCC. Consider the (k+1)st tree rooted 
at u in SCC C. By the lemma, f [u] = f [C] > f [C’ ] 
for SCC C’ that has not yet been visited.  
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Proof of correctness: SCC (3)
When u is visited, all the vertices v in its SCC have 

not been visited. Therefore, all vertices v are 
descendants of u in the depth-first tree. 

By the inductive hypothesis, and the corollary, any 
edges in GT that leave C must be in SCC that 
have already been visited. Thus, no vertex in any 
SCC other than C will be a descendant of u
during the depth first search of GT. Thus, the 
vertices of the depth-first search tree in GT that is 
rooted at u form exactly one connected 
component. 

Data Structures, Spring 2004 © L. Joskowicz � �

Uses of the SCC graph 
• Articulation: a vertex whose removal disconnects G. 

• Bridge: an edge whose removal disconnects G.

• Euler tour: a cycle that traverses all edges of G
exactly once (vertices can be visited more than once)

All can be computed in O(|E|) on the SCC.
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