
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 14

Strongly connected components

• Definition and motivation

• Algorithm

Chapter 22.5 in the textbook (pp 552—557).

Data Structures, Spring 2004 © L. Joskowicz �

Connected components
• Find the largest components (sub-graphs) such

that there is a path from any vertex in it to any
other vertex.

• Applications: networking, communications.
• Undirected graphs: apply BFS/DFS (inner

function) from a vertex, and mark vertices as
visited. Upon termination, repeat for every
unvisited vertex.

• Directed graphs: strongly connected components,
not just connected: a path from u to v AND from
v to u, which are not necessarily the same!

Data Structures, Spring 2004 © L. Joskowicz �

Example: strongly connected components

d

b

f

e

a

c

g

h

Data Structures, Spring 2004 © L. Joskowicz �

Example: strongly connected components

d

b

f

e

a

c

g

h

Data Structures, Spring 2004 © L. Joskowicz �

Strongly connected components
• Definition: the strongly connected components

(SCC) C1, …, Ck of a directed graph G = (V,E) are
the largest disjoint sub-graphs (no common vertices
or edges) such that for any two vertices u and v in
Ci, there is a path from u to v and from v to u.

• Equivalence classes of the binary path(u,v) relation,
denoted by u ~ v. The relation is not symmetric!

• Goal: compute the strongly connected components
of G in linear time

�
(|V|+|E|).

Data Structures, Spring 2004 © L. Joskowicz �

Strongly connected components graph
• Definition: the SCC graph G~ = (V~,E~) of the

graph G = (V,E) is as follows:
– V~ = { C1, …, Ck} . Each SCC is a vertex.

– E~ = { (Ci,Cj)| i � j and (x,y)�E, where x�Ci and y�Cj} .
A directed edge between components corresponds to a
directed edge between them from any of their vertices.

• G~ is a directed acyclic graph (no directed cycles)!

• Definition: the transpose graph GT = (V,ET) of the
graph G = (V,E) is G with its edge directions
reversed: ET= { (u,v)| (v,u)�E} .

Data Structures, Spring 2004 © L. Joskowicz �

Example: SCC graph

C
�

C
�

C
�

C
�

d

b

f

e

a

c

g

h

Data Structures, Spring 2004 © L. Joskowicz �

Example: transpose graph GT

d

b

f

e

a

c

g

h

d

b

f

e

a

c

g

h

G

GT

Data Structures, Spring 2004 © L. Joskowicz �

SCC algorithm
Idea: compute the SCC graph G~ = (V~,E~) with two

DFS, one for G and one for its transpose GT,
visiting the vertices in reverse order.

SCC(G)

1. DFS(G) to compute finishing times f [v],
�

v�V

2. Compute GT

3. DFS(GT) in the order of decreasing f [v]

4. Output the vertices of each tree in the DFS forest
as a separate SCC.

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (1)

1/6

d

b

f

e

a

c

g

h

2/5 3/4

8/13

11/127/16

14/15
9/10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (2)

d

b

f

e

a

c

g

h

6

13

4

15

5

10

12
16

1/6

d

b

f

e

a

c

g

h

2/5 3/4

8/13

11/127/16

14/15
9/10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (3)

d

b

f

e

a

c

g

h

6

13

4

15

5

10

12
16

d

b

f

e

a

c

g

h

3/64/5

2/7
1/8

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (4)

d

b

f

e

a

c

g

h

6

13

4

15

5

10

12
16

d

b

f

e

a

c

g

h
1/1

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (5)

d

b

f

e

a

c

g

h

6

13

4

15

5

10

12
16

d

b

f

e

a

c

g

h

1/1

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (6)

d

b

f

e

a

c

g

h

6

13

4

15

5

10

12
16

d

b

f

e

a

c

g

h

1/4 2/3

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: computing SCC (2)

d

b

f

e

a

c

g

h C
�

C
�

C
�

C
�

1

1

2

2

3

3

4
3’

4

Labeled transpose graph GT

4’

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness: SCC (1)
Lemma 1: Let C and C’ be two distinct SCC of

G = (V,E), let u,v� C and u’ ,v’ � C’ .
If there is a path from u to u’ , then there
cannot be a path from v to v’ .

Definition: the start and finishing times of a set of
vertices U � V is:

d[U] = minu�U{ d [U]}

f [U] = minu�U{ f [U]}

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness: SCC (2)
Lemma 2: Let C and C’ be two distinct SCC of G, and let

(u,v)�E where and u�C and v�C’. Then, f [C] > f [C’]
Proof: there are two cases, depending on which strongly

connected component, C or C’ is discovered first.
1. C was discovered beforeC’: d(C) < d(C’)

Let x be the first vertex discovered in C. There is a path
in G from x to each vertex of C which has not yet been
discovered. Because (u,v)�E, for any vertex w�C’,
there is also a path at time d[x] from x to w in G
consisting only of unvisited vertices: x�u�v�w. Thus,
all vertices in C and C’ become descendants of x in the
depth-first tree. Therefore, f [x] = f [C] > f [C’].

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: finishing times

d

b

f

e

a

c

g

h

1/6

d

b

f

e

a

c

g

h

2/5 3/4

8/13

11/127/16

14/15
9/10

f [C3] = 6

f [C4] = 5

f [C2] = 15
f [C1] = 16 Data Structures, Spring 2004 © L. Joskowicz � �

Proof of correctness: SCC (3)
2. d(C) > d(C’)

Let y be the first vertex discovered in C’ . At time d[y], all
vertices in C’ are unvisited. There is a path in G from y to
each vertex of C’ which has only vertices not yet discovered.
Thus, all vertices in C’ will become descendants of y in the
depth-first tree, and so f [y] = f [C’]. At time d[y], all vertices
in C are unvisited. Since there is an edge (u,v) from C to C’,
there cannot, by Lemma 1, be a path from C’ to C. Hence,
no vertex in C is reachable from y. At time f [y], therefore,
all vertices in C are unvisited. Thus, no vertex in C is
reachable from y. At time f [y], therefore, all vertices in C
are still unvisited. Thus, for anuy vertex w in C:

f [w] > f [y] � f [C] > f [C’].

Data Structures, Spring 2004 © L. Joskowicz � �

Proof of correctness: SCC (4)
Corollary: for edge (u,v)�ET, and u�C and v’�C’

f [C] < f [C’]
This provides the clue to what happens during the

second DFS.
The algorithm starts at x with the SCC C whose

finishing time f [C] is maximum. Since there are
no vertices in GT from C to any other SCC, the
search from x will not visit any other component!

Once all the vertices have been visited, a new SCC is
constructed as above.

Data Structures, Spring 2004 © L. Joskowicz � �

Proof of correctness: SCC (4)
Theorem: The SCC algorithm computes the strongly

connected components of a directed graph G.
Proof: by induction on the number of depth-first

trees found in the DFS of GT: the vertices of each
tree form a SCC. The first k trees produced by the
algorithm are SCC.

Basis: for k = 0, this is trivially true.
Inductive step: The first k trees produced by the

algorithm are SCC. Consider the (k+1)st tree rooted
at u in SCC C. By the lemma, f [u] = f [C] > f [C’]
for SCC C’ that has not yet been visited.

Data Structures, Spring 2004 © L. Joskowicz � �

Proof of correctness: SCC (3)
When u is visited, all the vertices v in its SCC have

not been visited. Therefore, all vertices v are
descendants of u in the depth-first tree.

By the inductive hypothesis, and the corollary, any
edges in GT that leave C must be in SCC that
have already been visited. Thus, no vertex in any
SCC other than C will be a descendant of u
during the depth first search of GT. Thus, the
vertices of the depth-first search tree in GT that is
rooted at u form exactly one connected
component.

Data Structures, Spring 2004 © L. Joskowicz � �

Uses of the SCC graph
• Articulation: a vertex whose removal disconnects G.

• Bridge: an edge whose removal disconnects G.

• Euler tour: a cycle that traverses all edges of G
exactly once (vertices can be visited more than once)

All can be computed in O(|E|) on the SCC.

d

b

f

e

a

c
g

h

C
�

C
�

C
�

C
�

