Data Structures— LECTURE 14

Strongly connected components

» Definition and motivation
* Algorithm

Chapter 22.5 in the textbook (pp 552—557).
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Connected components

« Find the largest components (sub-graphs) such
that there is a path from any vertex in it to any
other vertex.

* Applications: networking, communications.

Undirected graphs: apply BFS/DFS (inner

function) from a vertex, and mark vertices as

visited. Upon termination, repeat for every

unvisited vertex.

« Directed graphs: strongly connected components,
not just connected: a path from u to v AND from
v to u, which are not necessarily the same!
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Example: strongly connected components
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Example: strongly connected components
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Strongly connected components

« Definition: the strongly connected components
(SCC) C,, ..., C, of adirected graph G = (V,E) are
the largest digoint sub-graphs (no common vertices
or edges) such that for any two verticesuand vin
C,, thereis a path from u to v and from v to u.

 Equivalence classes of the binary path(u,v) relation,
denoted by u ~v. Therelation is not symmetric!

« Goal: compute the strongly connected components
of Ginlinear time @(|V|+|E]).
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Strongly connected components graph
* Definition: the SCC graph G~ = (V-,E") of the
graph G = (V,E) isasfollows:
-V-={C,, ..., C}. Each SCCisavertex.
—-E ={(C,C)| i# and (xy)E, wherexeC; and yeC}.
A directed edge between components corresponds to a
directed edge between them from any of their vertices.
» G isadirected acyclic graph (no directed cycles)!
« Definition: the transpose graph G™ = (V,E") of the
graph G = (V,E) is G with its edge directions
reversed: E™={(u,v)| (v,u)eE}.
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Example: SCC graph
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Example: transpose graph GT
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SCC algorithm

Idea: compute the SCC graph G~ = (V-,E7) with two
DFS, one for G and one for its transpose GT,
visiting the vertices in reverse order.

SCC(G)

1. DFS(G) to compute finishing timesf [v], VveV

2. Compute GT

3. DFS(G") inthe order of decreasing f [V]

4. Output the vertices of each treein the DFS forest
as a separate SCC.
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Example: computing SCC (1)
2/5

Data Structures, Spring 2004 © L. Joskowicz 10

Example: computing SCC (2)
2/5
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Example: computing SCC (3)
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Example: computing SCC (4)
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Example: computing SCC (5)

Data Structures, Spring 2004 © L. Joskowicz

Example: computing SCC (6)
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Example: computing SCC (2)
Labeled transpose graph GT
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Proof of correctness: SCC (1)
Lemmal: Let Cand C' betwo distinct SCC of
G=(VE),letuve Candu Vv € C'.
If there isa path from u to u’, then there
cannot be apath fromvtoVv'.

Definition: the start and finishing times of a set of
verticesU c Vis

d[U] = min, ,{d [U]}
f[U] = min,_{f [U]}
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Proof of correctness: SCC (2)

Lemma2: Let Cand C' betwo distinct SCC of G, and let
(u,v)eEwhereand ueC and veC'. Then, f [C] > f[C]

Proof: there are two cases, depending on which strongly
connected component, C or C’ is discovered first.

1. Cwasdiscovered before C': d(C) < d(C')
Let x bethefirst vertex discovered in C. Thereis a path
in G from x to each vertex of C which has not yet been
discovered. Because (u,v) €E, for any vertex weC’,
thereisalso apath at time d[x] fromxtowin G
consisting only of unvisited vertices: x>u>v->w. Thus,
all verticesin C and C' become descendants of x in the
depth-first tree. Therefore, f [x] = f[C] >f[C'].
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Example: finishing times
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Proof of correctness: SCC (3)

2.d(C) >d(C)
Let y bethefirst vertex discovered in C'. At timed[y], al
verticesin C' areunvisited. Thereisapath in G fromy to
each vertex of C' which has only vertices not yet discovered.
Thus, all verticesin C’ will become descendants of y in the
depth-first tree, and so f [y] =f[C’]. At timed[y], dl vertices
in C are unvisited. Since thereis an edge (u,v) fromCto C',
there cannot, by Lemma 1, be a path from C’ to C. Hence,
no vertex in C is reachable fromy. At timef [y], therefore,
all verticesin C are unvisited. Thus, no vertex in C is
reachable fromy. At timef [y], therefore, all verticesin C
are still unvisited. Thus, for anuy vertex win C:

susnae LW 2LV 2 F[C] > F[C].

Proof of correctness: SCC (4)
Corallary: for edge (u,v)eET, andueCandv' eC’
f[C] < f[C]
This provides the clue to what happens during the
second DFS.

The agorithm starts at x with the SCC C whose
finishing time f [C] is maximum. Since there are
no verticesin G' from C to any other SCC, the
search from x will not visit any other component!

Once all the vertices have been visited, anew SCCis
constructed as above.
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Proof of correctness: SCC (4)

Theorem: The SCC agorithm computes the strongly
connected components of a directed graph G.

Proof: by induction on the number of depth-first
treesfound in the DFS of G™: the vertices of each
tree form a SCC. The first k trees produced by the
algorithm are SCC.

Basis: for k=0, thisistrivialy true.

Inductive step: Thefirst k trees produced by the
algorithm are SCC. Consider the (k+1) tree rooted
at uin SCC C. By thelemma, f [u] =f[C] >f[C']

tor SCC C' that has not yet been visited.

Proof of correctness: SCC (3)

When uisvisited, all the verticesv in its SCC have
not been visited. Therefore, all verticesv are
descendants of u in the depth-first tree.

By the inductive hypothesis, and the corollary, any
edgesin GT that leave C must be in SCC that
have already been visited. Thus, no vertex in any
SCC other than C will be a descendant of u
during the depth first search of GT. Thus, the
vertices of the depth-first search treein G™ that is
rooted at u form exactly one connected
component.
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Uses of the SCC graph
« Articulation: a vertex whose removal disconnects G.
 Bridge: an edge whose removal disconnects G.

« Euler tour: acycle that traverses al edges of G
exactly once (vertices can be visited more than once)

All can be computed in O(|E|) on the SCC.
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