Data Structures - LECTURE 14

Strongly connected components

- Definition and motivation
- Algorithm

Chapter 22.5 in the textbook (pp 552—557).

Connected components

- Find the largest components (sub-graphs) such that there is a path from any vertex in it to any other vertex.
- Applications: networking, communications.
- Undirected graphs: apply BFS/DFS (inner function) from a vertex, and mark vertices as visited. Upon termination, repeat for every unvisited vertex.
- Directed graphs: strongly connected components, not just connected: a path from u to v AND from v to u, which are not necessarily the same!

Example: strongly connected components

Data Structurss. Spring 2004 1. . Ioskowic

Strongly connected components graph

- Definition: the SCC graph $G^{\sim}=\left(V^{\sim}, E^{\sim}\right)$ of the graph $G=(V, E)$ is as follows:
$-V^{\sim}=\left\{C_{1}, \ldots, C_{k}\right\}$. Each SCC is a vertex.
$-E^{\sim}=\left\{\left(C_{i} C_{j}\right) \mid i \neq j\right.$ and $(x, y) \in E$, where $x \in C_{i}$ and $\left.y \in C_{j}\right\}$. A directed edge between components corresponds to a directed edge between them from any of their vertices.
- \boldsymbol{G}^{\sim} is a directed acyclic graph (no directed cycles)!
- Definition: the transpose graph $G^{\mathrm{T}}=\left(V, E^{\mathrm{T}}\right)$ of the graph $G=(V, E)$ is G with its edge directions reversed: $E^{\mathrm{T}}=\{(u, v) \mid(v, u) \in E\}$.

SCC algorithm

Idea: compute the SCC graph $G^{\sim}=\left(V^{\sim}, E^{\sim}\right)$ with two DFS, one for G and one for its transpose G^{T}, visiting the vertices in reverse order.

$\underline{\operatorname{SCC}(G)}$

1. $\operatorname{DFS}(G)$ to compute finishing times $f[v], \forall v \in V$
2. Compute G^{T}
3. $\operatorname{DFS}\left(G^{\mathrm{T}}\right)$ in the order of decreasing $f[v]$
4. Output the vertices of each tree in the DFS forest as a separate SCC.

Example: computing SCC (5)

Example: computing SCC (2)
Labeled transpose graph G^{T}

Proof of correctness: SCC (1)

Lemma 1: Let C and C ' be two distinct SCC of $G=(V, E)$, let $u, v \in C$ and $u^{\prime}, v^{\prime} \in C^{\prime}$. If there is a path from u to u^{\prime}, then there cannot be a path from v to v '.

Definition: the start and finishing times of a set of vertices $U \subseteq V$ is:

$$
\begin{aligned}
d[U] & =\min _{u \in U}\{d[U]\} \\
f[U] & =\min _{u \in U}\{f[U]\}
\end{aligned}
$$

Proof of correctness: SCC (2)

Lemma 2: Let C and C^{\prime} be two distinct SCC of G, and let $(u, v) \in E$ where and $u \in C$ and $v \in C^{\prime}$. Then, $f[C]>f\left[C^{\prime}\right]$
Proof: there are two cases, depending on which strongly connected component, C or C^{\prime} is discovered first.

1. C was discovered before $C^{\prime}: d(C)<d\left(C^{\prime}\right)$

Let x be the first vertex discovered in C. There is a path in G from x to each vertex of C which has not yet been discovered. Because $(u, v) \in E$, for any vertex $w \in C^{\prime}$, there is also a path at time $d[x]$ from x to w in G consisting only of unvisited vertices: $x \rightarrow u \rightarrow v \rightarrow w$. Thus, all vertices in C and C^{\prime} become descendants of x in the depth-first tree. Therefore, $f[x]=f[C]>f\left[C^{\prime}\right]$.

Proof of correctness: SCC (3)

2. $d(C)>d\left(C^{\prime}\right)$

Let y be the first vertex discovered in C^{\prime}. At time $d[y]$, all vertices in C^{\prime} are unvisited. There is a path in G from y to each vertex of C^{\prime} which has only vertices not yet discovered. Thus, all vertices in C^{\prime} will become descendants of y in the depth-first tree, and so $f[y]=f\left[C^{\prime}\right]$. At time $d[y]$, all vertices in C are unvisited. Since there is an edge (u, v) from C to C^{\prime}, there cannot, by Lemma 1, be a path from C^{\prime} to C. Hence, no vertex in C is reachable from y. At time $f[y]$, therefore, all vertices in C are unvisited. Thus, no vertex in C is reachable from y. At time $f[y]$, therefore, all vertices in C are still unvisited. Thus, for anuy vertex w in C :

Proof of correctness: SCC (4)

Corollary: for edge $(u, v) \in E^{\mathrm{T}}$, and $u \in C$ and $v^{\prime} \in C^{\prime}$ $f[C]<f\left[C^{\prime}\right]$
This provides the clue to what happens during the second DFS.
The algorithm starts at x with the SCC C whose finishing time $f[C]$ is maximum. Since there are no vertices in G^{T} from C to any other SCC, the search from x will not visit any other component!
Once all the vertices have been visited, a new SCC is constructed as above.
Proof of $(u, v) \in E^{\mathrm{T}}$, and $u \in C$ and $v^{\prime} \in C$

Proof of correctness: SCC (3)

When u is visited, all the vertices v in its SCC have not been visited. Therefore, all vertices v are descendants of u in the depth-first tree.
By the inductive hypothesis, and the corollary, any edges in G^{T} that leave C must be in SCC that have already been visited. Thus, no vertex in any SCC other than C will be a descendant of u during the depth first search of G^{T}. Thus, the vertices of the depth-first search tree in G^{T} that is rooted at u form exactly one connected component.

Proof of correctness: SCC (4)

Theorem: The SCC algorithm computes the strongly connected components of a directed graph G.
Proof: by induction on the number of depth-first trees found in the DFS of G^{T} : the vertices of each tree form a SCC. The first k trees produced by the algorithm are SCC.
Basis: for $k=0$, this is trivially true.
Inductive step: The first k trees produced by the algorithm are SCC. Consider the $(k+1)^{\text {st }}$ tree rooted at u in SCC C. By the lemma, $f[u]=f[C]>f\left[C^{\prime}\right]$ por SCC ${ }^{\prime}$, that has not yet been visited.

Uses of the SCC graph

- Articulation: a vertex whose removal disconnects G.
- Bridge: an edge whose removal disconnects G.
- Euler tour: a cycle that traverses all edges of G exactly once (vertices can be visited more than once)
All can be computed in $O(|E|)$ on the SCC.

