Welcome To....

Chapter 02: Data Presentation (part 1)

Learning outcomes

□ Know the appropriate tool for data presentation

Exploring fact from data

Definition of Frequency Distribution with Examples

Construction of Frequency Distribution for quantitative data

Graphical presentation of quantitative data

Frequency distribution:

A grouping of data into mutually exclusive categories or different classes showing the number of observations in each category or class is called **frequency distribution**.

Types of Frequency Distribution:

Fasting blood glucose level in diabetics at the time of diagnosis

Fasting	No of diabetics		
glucose level	Male	Female	Total
120-129	8	4	12
130-139	4	4	8
140-149	6	4	10
150-159	5	5	10
160-169	9	6	15
170-179	9	9	18
180-189	3	2	5
	44	34	78

Frequency distribution for Quantitative data

Type of smartphone	Tally	Fr
Android	141 141	П
Window Phone	1444	
Iphone	1711 1711	144
Amazon's fire phone	1111	
		Sur
Frequency distribution of types of smartphon		

Frequency distribution for Qualitative data

Construction of frequency distribution:

Example:

Mr. Rahman is a professor of X University. He wishes prepare to a report showing the number of hours per week students spend studying. He selects a random sample of 30 students and determines the number of hours each student studied last week.

15.0, 23.7, 19.7, 15.4, 18.3, 23.0, 14.2, 20.8, 13.5, 20.7, 17.4, 18.6, 12.9, 20.3, 13.7, 21.4, 18.3, 29.8, 17.1, 18.9, **10.3**, 26.1, 15.7, 14.0, 17.8, **33.8**, 23.2, 12.9, 27.1, 16.6.

Organize the data into a frequency distribution.

Construction of frequency distribution for quantitative data

Step 1: Decide on the number of classes using the formula

 $2^k \ge n$ Where k=number of classes n=number of observations

There are 30 observations so n=30 Two raised to the fifth power is 32. Therefore, we should have **at least** 5 classes, i.e., k=5.

Step 2: Determine the class interval or width using the formula

 $i \ge (H - L)/k = \frac{(33.8 - 10.3)}{5} = 4.7$. Round up to the next integer of 5 hours.

Step 3: Set the individual class limits and

Steps 4 and 5: Tally and count the number of items in each class.

Construction of frequency distribution for quantitative data

Table-1: Frequency Distribution of the number of hours per week students spend on studying

Upper limit	Hours studying	Tally	Frequency, f
Lower limit	10-15	HHH II	7
	15-20	IIII IIII II	12
Exclusive frequency	20-25	HHH II	7
table	25-30	III	3
	30-35	Ι	1
	L	1	.1
Class interval=			
Jpper limit-Lower limit=			
15-10=5			

Three types of graphical presentation for quantitative data are:

1.Histogram 2.Frequency Polygon 3. Ogive Curve/ Cumulative Frequency Curve

Class	
boundaries	Frequency
99.5-104.5	2
104.5-109.5	8
109.5-114.5	18
114.5-119.5	13
119.5-124.5	7
124.5-129.5	1
129.5-134.5	1

Draw the following graphs for this temperature data.

- Histogram ۲
- Frequency Polygon
- Ogive Curve/ Cumulative Frequency Curve

From the calculation of the following table we will learn how to draw all the 3 mentioned graphs.

	Col-1	Col-2	Col-3	Col-4	Col-5	Col-6
cl	ass	Frequency	Relative	Percentage	Midpoints	Cumulative
		(<i>f</i> _i)	frequency($\frac{f_i}{-}$)	frequency	(U+L)/2	Frequency
	$\mathcal{N}(\mathcal{N})$		i î'n'	$(\frac{f_i}{n} * 100)$		
9	9.5-104.5	2	2/50	2/50*100	102	2
1	04.5-109.5	8	8/50	8/50*100	107	10
1	09.5-114.5	18	18/50	18/50*100	112	28
1	14.5-119.5	13	13/50	13/50*100	117	41
1	19.5-124.5	7	7/50	7/50*100	122	48
1	24.5-129.5	1	1/50	1/50*100	127	49
1	29.5-134.5	1	1/50	1/50*100	132	50
	otal 🔿	_n=50	1			
				·		

Lower limits

upper limits

1. Histogram: Col-1& 2.

2. Frequency polygon: Col-1, 2 & 5.

2. Ogive curve: Col-1(upper limits)& col-6.

class	Frequency (f _i)
99.5-104.5	2
104.5-109.5	8
109.5-114.5	18
114.5-119.5	13
119.5-124.5	7
124.5-129.5	1
129.5-134.5	1
Total	n=50

 The largest concentration is in the class 109.5 – 114.5.

class	Frequency (f _i)	Midpoints (U+L)/2
99.5-104.5	2	102
104.5-109.5	8	107
109.5-114.5	18	112
114.5-119.5	13	117
119.5-124.5	7	122
124.5-129.5	1	127
129.5-134.5	1	132
Total	n=50	

class	Frequency (f _i)	Cumulative Frequency
99.5-104.5	2	2
104.5-109.5	8	10
109.5-114.5	18	28
114.5-119.5	13	41
119.5-124.5	7	48
124.5-129.5	1	49
129.5-134.5	1	50
Total	n=50	

The number of walking shoes sold in 20 different shops are given below: 45, 70, 70, 55, 75, 73, 70, 65, 68, 60, 74, 83, 80, 58, 68, 85, 90, 64, 75, 82

- Construct a frequency distribution table using appropriate class interval.
- Draw Histogram, frequency polygon and ogive curve.
- How many shops were able to sold more than 70 shoes?

