

Microwave Engineering ETE 415

LECTURE 4 SMITH CHART

The Smith Chart

- It was developed by **Phillip H. Smith** in the 1930s.
- Began its existence as a very useful **graphical calculator** for the analysis and design of TLs.
- **Remains a useful tool today to visualize the results of TL analysis,** oftentimes combined with computer analysis and visualization as an aid in design.
- **Based on the normalized TL impedance** defined as

$$
\tilde{z} \equiv \frac{Z(z)}{Z_0} = \frac{1+\Gamma(z)}{1-\Gamma(z)}
$$

 \rightarrow where is the total TL impedance at and

$$
\Gamma(z) = \frac{\tilde{z} - 1}{\tilde{z} + 1} = \Gamma_L e^{+j2\beta z}
$$

generalized reflection coefficient at z .

Substituting $\Gamma(z) \equiv \Gamma_r(z) + j\Gamma_i(z)$, gives

The Smith Chart

Now, we will define $\tilde{z}(z) \equiv r + jx$ and separate the above equation into its real and imaginary parts

> $\tilde{z}(z) \equiv r + jx = \frac{1 + (\Gamma_r + j\Gamma_i)}{1 - (\Gamma_r + j\Gamma_i)} \cdot \frac{1 - (\Gamma_r + j\Gamma_i)^*}{1 - (\Gamma_r + j\Gamma_i)^*}$ $1 + j2\Gamma_i - (\Gamma_r^2 + \Gamma_i^2)$ $\boxed{1-2\Gamma_r+\Gamma_r^2+\Gamma_i^2}$

Equating the real and imaginary parts

Rearranging both of these leads us to the final two equations

 $\left(\Gamma_r - \frac{r}{1+r}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1+r}\right)^2$

 $r=\frac{1-(\Gamma_r^2+\Gamma_i^2)}{(1-\Gamma_r)^2+\Gamma_r^2} \quad \text{and} \quad x=\frac{2\Gamma_i}{(1-\Gamma_r)^2+\Gamma_r^2}$

resistance circles

reactance circles

F resistance circles have centers lying on the Γ _r axis (with Γ ⁱ = 0) ⁴

The Smith Chart: Resistance Circles

The Smith Chart: Reactance Circles

The Smith Chart: Nomographs

- At the bottom of Smith chart (left side), nomograph is added to read out with a ruler the following
- \blacktriangleright (1st ruler) above SWR

below: SWR in dB , 20 $log_{10}SWR$

- \rightarrow (2nd ruler) above: return loss in dB, -20 log₁₀ | Γ | **below**: power reflection $|\Gamma|^2(P)$
- \blacktriangleright (3rd ruler) above: reflection coefficient $|\Gamma|$ (E or I)

Given $Z(-\ell) \Rightarrow$ Find $\Gamma(-\ell)$

Normalize the impedance

Find the circle of constant **normalized resistance** r. **AND READER**

 $\tilde{z}(-\ell) = \frac{Z(-\ell)}{Z_0} = \frac{R}{Z_0} + j\frac{X}{Z_0} = r + jx.$

- Find the arc of constant **normalized reactance** . **AND READER**
- The **intersection** of the two curves indicates the reflection **AND READER** coefficient in the complex plane.

The chart provides directly the magnitude and the phase angle of $\Gamma(-\ell)$.

Example: Find $\Gamma(-\ell)$, given

 $Z(-\ell) = 25 + j100 \Omega$ with $Z_0 = 50 \Omega$

Plotting Γ and Reading Out Impedance

- Determine the complex point representing the given reflection coefficient $\Gamma(-\ell)$ on the chart.
- Read the values of the normalized resistance r and of the normalized reactance \overline{x} that correspond to the reflection coefficient point.
- \blacktriangleright The normalized impedance is $\tilde{z}(-\ell) = r + jx$ and the actual impedance is

 $Z(-\ell) = Z_0 \tilde{z}(-\ell) = Z_0(r + jx)$

Tracking Impedance Changes with ℓ

At $z = -\ell$, $\Gamma(-\ell) = \Gamma_L e^{-j2\beta\ell}$

NOTE: the magnitude of the reflection coefficient is constant along a loss-less TL terminated by a specified load, since

 $|\Gamma(-\ell)| = |\Gamma_L e^{-j2\beta \ell}| = |\Gamma_L|$ $Z(-\ell) = Z_0 \frac{1 + \Gamma_L e^{-j2\beta \ell}}{1 - \Gamma_L e^{-j2\beta \ell}} \Rightarrow \tilde{z}(-\ell) = \frac{1 + \Gamma_L e^{-j2\beta \ell}}{1 - \Gamma_L e^{-j2\beta \ell}}$

 \blacksquare on Smith chart, the point corresponding to $\tilde{z}(-\ell)$ is rotated by − 2ℓ (**decreasing angle, clockwise rotation**) with respect to the point corresponding to $\tilde{z}(0)$ along the circle of $|\Gamma(-\ell)| = |\Gamma_L|$ (**toward generator**).

 $\tilde{z}_L(0) = \frac{1+\Gamma_L}{1-\Gamma_L}$

Read Out Distance to Load

+j1.0 Toward generator ⇒ \star ^{0.5} $+2$ **&** Known load $L_A = 0.194 \lambda$ $Z_L = 75 + j75 \Omega$ **&** Known $+10^{12}$ $+i5.0$ $Z_0 = 50 \Omega$ **Measured** $Z_{in} = 23 - j34 \Omega$ 0.2 0.5 Θ 2.0 .
5. ق 0.0 0 0 7 0 9 7 0 -j0.2 -j5 $\mathcal L$ **E** Unknown distance \boldsymbol{B} to load in terms of λ $z_{\rm in} = 0.46 - j0.68$ $D_n = D/\lambda$ $D_n = L_B - L_A = 0.2 \lambda + n \frac{\lambda}{2}$ -10.5 $\frac{1}{2}$.0 -j1.0 $L_B = 0.394\lambda$

Given Γ_L and $Z_L \Rightarrow$ Find VSWR

The VSWR is defined as

The normalized impedance at a maximum location of the standing wave pattern is given by

 $\frac{V_{\textrm{max}}}{\pi} = \frac{1+\pi^2}{2}$

$$
\tilde{z}(-\ell_{\max}) = \frac{1 + \Gamma(-\ell_{\max})}{1 - \Gamma(-\ell_{\max})} = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} = \text{VSWR}
$$

This quantity is always real and ≥ 1 .

VSWR

The VSWR is simply obtained on the Smith chart, by reading the value of the **(real) normalized impedance**, at the **location** ℓ_{max} where is real and positive.

Given Γ_L and $Z_L \Rightarrow$ Find ℓ_{max} and ℓ_{min}

- **Identify on the Smith chart the load reflection coefficient** Γ_L or the **normalized load impedance** .
- Draw the circle of **constant reflection coefficient amplitude Contract Contr** $\Gamma(-\ell)$ = $|\Gamma_L|$. The circle intersects the real axis of the reflection coefficient at two points which identify ℓ_{max} (when $\Gamma(-\ell)$) Real positive) and ℓ_{\min} (when $\Gamma(-\ell)$ Real negative).
- The **angles**, between the vector Γ and the real axis, also provide a **All Contracts** way to compute ℓ_{max} and ℓ_{min} .

Switching Between Impedance and Admittance

Consider the definition of the negative generalized reflection coefficient
 $-\Gamma(z) = \Gamma_L e^{j(2\beta z + \pi)} = \Gamma_L e^{j(2\beta z + \pi/2\beta \lambda/4)}$

 $=\Gamma_L e^{j2\beta(z+\frac{\lambda}{4})}=\Gamma(z+\frac{\lambda}{2})$ The **normalized TL admittance** $\Gamma(z) \equiv \frac{1}{\tilde{z}(z)} = \frac{1-\Gamma(z)}{1+\Gamma(z)} = \frac{1+\Gamma\left(z+\frac{\lambda}{4}\right)}{1-\Gamma\left(z+\frac{\lambda}{4}\right)}$

But what is $z + \frac{\lambda}{4}$? It's a **half rotation** around the Smith chart. Keep in mind $\tilde{z}(z +$ λ 4 $=\tilde{y}(z)$ is only valid for normalized impedance and admittance. The actual values are given by

 $Z(z+\frac{\lambda}{4})=Z_0\cdot \tilde{z}\left(z+\frac{\lambda}{4}\right) \ \ \text{and} \ Y(z)=Y_0\cdot \tilde{y}(z)=\frac{y(z)}{z}$

Example:
$$
Z_L = 25 + j100 \Omega
$$
, $Z_0 = 50 \Omega$ Find Y_L

Thank you Very Much !!!