Course Title: Introduction to	Course Code:	Prerequisite Course:
Robotics	444	Digital Electronics, Digital Logic
	(CSE/SWE/CIS/ETE/EEE)	Design, Micro-controller,
		Programming
Credit: 3.0	Implicit Lab	Theory Hour: 1.5 Lab Hour: 1.5

Description:

Definition of Robot, Types of Robots (manipulator, legged robot, wheeled robot, autonomous underwater vehicles), Use of Robots, Asimov's laws of Robotics, History of Robotics, Key components of Robot, Sensors: Introduction, working principles and use of sensors (vision, force, LDR, temperature, smoke, accelerometer gyroscope, laser, titlt, compass, PIR, Infrared etc), Actuators and different actuators (DC motor, servo motor, stepper motor etc) working principles and usage, Robot programming with AD conversion and interfacing different hardware, sensors etc, Control theory of robotics; Obstacle avoidance, object tracking and motion control etc; Advance robotic control and operations.

Intended Learning Outcomes:

The module will be open to anyone having all the prerequisite courses with an interest in robotics and a desire to understand how to program robots to make them do useful tasks.

By the end of the course, student will be able to:

- Explain what robots are and what they can do;
- Knowledgeably discuss the ethical considerations of using robots to help solve societal challenges;
- Reflect on the future role and development of robotics in human society;
- Intuitively explain what does sensors and actuators do and how they can be used according to the specifications of the problem and nature of the environments;
- Write appropriate robot programs by understanding the nature of the sensors, and actuators
- Implementstate-of-the-art algorithms for solving robotic tasks;
- Describe mathematically the odometry and the control mechanism for robot manipulation;
- Apply the mathematical, algorithmic and control principles of autonomous mobile robots to implement a working robot through physical construction and software development.

Program Outcome:

- Introduction to Robotics course will strengthen the mathematical, analytical, and synthesis skills of the students which are vital for any engineering student
- This course will enable the students to build software by understanding the hardware
- This course will enrich the knowledge of sensors, actuators and processors, helping them to easily involve with embedded systems and internet of things (IOT) technologies for further study or research
- Most importantly, as a software engineer, they will not only be able to write program for software applications but also hardware applications, providing them the completeness in the field of Software Engineering.

Tools:

• Aurduino Board and other related micro-controllers

Week	Course Content	Lesson Outcomes	Teaching Learning	Assessment Strategy
			Strategy	
Week	Theory Session 1:	Able to acquire the	Lecture and	Quiz
1	Definition of Robot, Types of	knowledge of	Video	
	Robots (manipulator, legged robot,	introductory robotics	Sharing	
	wheeled robot, autonomous			
	underwater vehicles, unmanned			
	aerial vehicles), Use of Robots,			
	Asimov's Laws of Robotics, History			
	of Robotics			
	Lab Session 1:			
	Installation of Proteus ISIS software and get introduced with electronic			
	components			
Week	Theory Session 2:	Able to explain the	Lecture,	Course
2	Key Components of a Robot,	components of robots	Interaction	Project
	Introduction and Working Principles	and sensors	and Group	Assign
	of Sensors (vision sensor, force		Discussion	
	sensor, light dependent resistor			
	(LDR), temperature sensor, smoke			
	sensor, accelerometer gyroscope,			
	laser sensor, tilt sensor, compass)			
	Lab Session 2:			
	Simulating sensors in Proteus ISIS			
Week	Theory Session 3:	Able to differentiate	Lecture,	Class Test 1
3	Introduction and Working Principles	among the sensors and	Interaction	
	of Sensors (infrared transmitter- receiver, infrared sensor array, PIR	understand the working	and Group	
	sensor, sonar sensor)	principles	Discussion	
	Lab Session 3:			
	Simulating sensors using Micro-			
XX 7 1	controller in Proteus ISIS		T. f	Duran ((
Week	Theory Session 4:	Able to explain the	Lecture,	Presentation-
4	Introduction and Working Principles	difference between motors and understand	interaction	1 on Course Project
	of Actuators (DC motor, servo motor, stepper motor)	the working principles	and Group Discussion	Project
	motor, stepper motor)	the working principles	Discussion	
	Lab Session 4:			
	Simulating actuators by reading the			
	sensor data and taking rule-based			
	decisions using Micro-controller in			
	Proteus ISIS			

Week 5	Theory Session 5: Interfacing Hardware (Motor Driver, ADC, Op-Amp) and Micro- controllers	Able to understand the necessity of interface hardware and the basics of micro-controllers	Lecture, interaction and Group Discussion	Class Test 2
	Lab Session 5: Hardware implementation of sensors, actuators, micro-controller, and programming the hardware			
Week	Theory Session 6:	Able to acquire the	Lecture,	
6	Robot Programming (loop, register, signal, rule-based modeling)	knowledge of basic micro-controller programming	interaction and Group Discussion	
	Lab Session 6: Manipulating the real robot for different purposes			
Week	Theory Session 7:	Able to know the usage	Lecture,	Presentation
7	Robot Programming (analog to digital conversion (ADC), interrupt, timer)	of ADC, interrupt and timer	interaction and Group Discussion	2 on Course Project
	Lab Session 7: Manipulating the real robot using ADC and interrupt			
Week	Theory Session 8:	Able to implement	Lecture,	
8	Robot Programming (Pulse Width Modulation (PWM) and motor speed control using PWM)	PWM for motor speed control	interaction and Group Discussion	
	Lab Session 8: Speed Control of the real-robot using PWM			
	Mid-ter	rm Examination		-
Week	Theory Session 9:	Able to acquire the	Lecture,	
9	Wireless Communication (RC module and Bluetooth module interfacing with micro-controller, Teleoperation of Robot)	knowledge of wireless modules and teleoperation	interqaction and Group Discussion	
	Lab Session 9: Teleoperation of the real robot using RC/Bluetooth Module			

Week	Theory Session 10:	Able to understand the	Lecture,	Class Test 3		
10	Control Theory of Robotic Systems	error-	interaction			
	(feedback control, PID controller)	correctiontechniques	and Group			
		using feedback	Discussion			
	Lab Session 10:					
	Manipulating the robot using PID					
	Controller and making it					
	autonomous					
Week	Theory Session 11:	Able to calculate the	Lecture,	Presentation		
11	Control Theory of Robotic Systems	pose of a robot and	interaction	3 on Course		
	(robot odometry, differential drive	navigate the robot using	and Group	Project		
	and navigation)	differential drive	Discussion			
		strategy				
	Lab Session 11:					
	Installation of V-Rep EDU Software					
	and introduction to simulated robots,					
	scripts and objects					
Week	Theory Session 12:	Able to understand the	Lecture,	Course		
12	Obstacle avoidance/tracking for mobile robots	obstacle	interaction	Project		
	mobile robots	avoidance/tracking	and Group	Demo		
	Lab Session 12:	principle and write	Discussion			
	Basic script writing, sensor reading	program according to				
	and wheel velocity controlling for	sensor data				
	obstacle avoidance/tracking using					
	V-Rep)					
Week	Theory Session 13:	Able to acquire the	Lecture,			
13	Motion Planning Strategies for	knowledge of motion	interaction			
	Static Environments,	planning and enable the	and Group			
	Implementation of Motion Planning	robot plan by itself	Discussion			
	Algorithms					
	Lab Session 13;					
	Simulation of the robot and					
	implementing the motion planning					
	algorithms	Evomination				
	Final Examination					
T . 4 P	Recommended Books					
Text Books:						

Text Books:

- 1. Introduction to Robotics: Analysis, Control, Applications, By Saeed B. Niku, 2nd Edition
- 2. Introduction to Autonomous Robots: Kinematics, Perception, Localization and Planning, By ENikolausCorrell, 1st Edition
- 3. Aurduino Robotics by John David Warren, Apress, 2011