Forward Kinematics

Israt Jahan Lecturer Department of Computer Science and Engineering Daffodil International University

Forward Kinematics

Given: The values of the joint variables

Identified: The position and orientation of the end effector

Forward Kinematics

Forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters..

The kinematics equations of the robot are used in robotics, computer games, and animation.

Right hand Rule

Roll, Pitch and Yaw Angles

We know, Z-axis rotation, X-axis rotation, Y-axis rotation

$$\operatorname{rotate-z}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$\operatorname{rotate-x}(\phi) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \phi & -\sin \phi\\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$
$$\operatorname{rotate-y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi\\ 0 & 1 & 0\\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

 ${}^{U}_{B}R_{composite, rpy} = ROT(\widehat{Z}_{U}, \gamma)ROT(\widehat{Y}_{U}, \beta)ROT(\widehat{X}_{U}, \alpha)$

$$= \begin{bmatrix} c\beta c\gamma & -c\alpha s\gamma + s\alpha s\beta c\gamma & s\alpha s\gamma + c\alpha s\beta c\gamma \\ c\beta s\gamma & c\alpha c\gamma + s\alpha s\beta s\gamma & -s\alpha c\gamma + c\alpha s\beta s\gamma \\ -s\beta & c\beta s\alpha & c\alpha c\beta \end{bmatrix}$$

We compare with

We get

$${}^{U}_{B}R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\alpha = \tan^{-1}\left(\frac{r_{32}}{r_{33}}\right)$$
$$R = \tan^{-1}\left(\frac{-r_{31}}{\sqrt{r_{11}^2 + r_{21}^2}}\right)$$
$$\gamma = \tan^{-1}\left(\frac{r_{21}}{r_{11}}\right)$$

A Numerical Example

The concept of roll, pitch and yaw angles has been used to represent the rotation of a finite (b) that the above rotation can $\beta = \tan^{-1}\left(\frac{-r_{31}}{\sqrt{r_{11}^2 + r_{21}^2}}\right)$ represent the rotation of a frame {B} with respect to the reference

$${}^{U}_{B}R = \begin{bmatrix} -0.250 & 0.433 & -0.866 \\ 0.433 & -0.750 & -0.500 \\ -0.866 & -0.500 & 0.000 \end{bmatrix}$$

Determine the angles of rolling, pitching and yawing.

Solution:

Angle of rolling
$$\alpha = \tan^{-1} \frac{r_{32}}{r_{33}} = \tan^{-1} \frac{-0.500}{0.000} = 90^{\circ}$$

Angle of pitching
$$\beta = \tan^{-1} \frac{31}{\sqrt{r_{11}^2 + r_{21}^2}}$$

= $\tan^{-1} \frac{0.866}{\sqrt{(-0.250)^2 + (0.433)^2}}$

Angle of yowing
$$\gamma = \tan^{-1} \frac{r_{21}}{r_{11}} = \tan^{-1} \frac{0.433}{-0.250}$$

= -59.99 \approx -60°

Denavit-Hartenberg Notations

Link and Joint Parameters

- Length of link_i (a_i): It is the mutual perpendicular distance between Axis_{i-1} and Axis_i
- Angle of twist of link_i (Q_i): It is defined as the angle between Axis_{i-1} and Axis_i

Notes:
•Revolute joint: θ_i is variable
•Prismatic joint: d_i is variable

 Offset of link; (d_i): It is the distance measured from a point where a_{i-1} intersects the Axis_{i-1} to the point where a_i intersects the Axis_{i-1} measured along the said axis

 Joint Angle (θ_i): It is defined as the angle between the extension of a_{i-1} and a_i measured about the Axis_{i-1}

D

• (joint angle) θ_1 is angle from x0 to x1 measured about Z0

DH prameters

 (Link Offset) d1 distance from O0 to O1 measured along z0

(Link Length) a1 distance from z0 to z1 measured along x1

(Link twist) ^α₁ is angle from z0 to z1 measured about x1

- 1. Link length a_i is the distance between z_{i-1} and z_i axes along the x_i -axis. a_i is the kinematic length of link (i).
- 2. Link twist α_i is the required rotation of the z_{i-1} -axis about the x_i -axis to become parallel to the z_i -axis.
- 3. Joint distance d_i is the distance between x_{i-1} and x_i axes along the z_{i-1} -axis. Joint distance is also called *link offset*.
- 4. Joint angle θ_i is the required rotation of x_{i-1} -axis about the z_{i-1} -axis to become parallel to the x_i -axis.

FIGURE 5.3. DH parameters $a_i, \alpha_i, d_i, \theta_i$ defined for joint *i* and link (*i*).

DH Techniques

- Matrix A_i representing the four movements is found by: four movements
- 1. Rotation of θ about current Z axis
- 2. Translation of d along current Z axis
- 3. Translation of a along current X axis
- 4. Rotation of α about current X axis

$$A_{i} = Rot_{z,\theta_{i}} Trans_{z,d_{i}} Trans_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$A_i = R_{z,\theta_i} \operatorname{Trans}_{z,d_i} \operatorname{Trans}_{x,a_i} R_{x,\alpha_i}$

 $= \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Frame	θ_i	d_i	α_i	ai
1	θ_1	0	0	L_1
2	θ_2	0	0	L_2

$${}_2^{Base}T = {}_1^{Base}T {}_2^1T$$

$$\begin{array}{lcl} {}^{Base}T &=& ROT(\hat{Z},\theta_1)TRANS(\hat{X},L_1) \\ &=& \left[\begin{array}{cccc} c_1 & -s_1 & 0 & L_1c_1 \\ s_1 & c_1 & 0 & L_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \end{array}$$

Frame	θ_i	d_i	α_i	ai
1	θ_1	0	0	L_1
2	θ_2	0	0	L_2

$$\begin{array}{rcl} \frac{1}{2}T &=& ROT(\hat{Z},\theta_2)TRANS(\hat{X},L_2) \\ &=& \left[\begin{array}{cccc} c_2 & -s_2 & 0 & L_2c_2 \\ s_2 & c_2 & 0 & L_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \end{array}$$

Frame	θ_i	d_i	α_i	ai
1	θ_1	0	0	L_1
2	θ_2	0	0	L_2

$_2^{Base}T$ =	=	$_1^{Base}T_2^1$	T		
		C12	$-s_{12}$	0	$L_1c_1 + L_2c_{12}$
	_	s12	c_{12}	0	$L_1s_1 + L_2s_{12}$
	-	0	0	1	0
		0	0	0	1

Link

T

 $\frac{2}{3}$

4

 a_i

 a_1

 a_2

0

0

* joint variable

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{4}^{0} = A_{1} \cdots A_{4} = \begin{bmatrix} c_{12}c_{4} + s_{12}s_{4} & -c_{12}s_{4} + s_{12}c_{4} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12}c_{4} - c_{12}s_{4} & -s_{12}s_{4} - c_{12}c_{4} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & -1 & -d_{3} - d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

23

Example 3 The three links cylindrical

Link	a_i	α_i	d_i	θ_i
1	0	0	d_1	θ_1^*
2	0	-90	d_2^*	0
3	0	0	$d_3^{\overline{*}}$	0

* variable

Example 3 The three links cylindrical

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{0} = A_{1}A_{2}A_{3} = \begin{bmatrix} c_{1} & 0 & -s_{1} & -s_{1}d_{3} \\ s_{1} & 0 & c_{1} & c_{1}d_{3} \\ 0 & -1 & 0 & d_{1} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 4 Spherical wrist

Example 4 Spherical wrist

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad T_{6}^{3} = A_{4}A_{5}A_{6} = \begin{bmatrix} R_{6}^{3} & O_{6}^{3} \\ 0 & 1 \end{bmatrix} \quad (1)$$

$$A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{6} = \begin{bmatrix} c_{6} - s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The three links cylindrical with Spherical wrist

T

The three links cylindrical with Spherical wrist

$$T_6^0 = T_3^0 T_6^3$$

• given by example 3 given by example 4.

 T_{3}^{6}

The three links cylindrical with Spherical wrist

$$\begin{split} T_6^0 &= \begin{bmatrix} c_1 & 0 & -s_1 & -s_1d_1 \\ s_1 & 0 & c_1 & c_1d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_4c_5c_6 - s_4s_6 & -c_4c_5s_6 - s_4c_6 & c_4s_5 & c_4s_5d_6 \\ s_4c_5c_6 + c_4s_6 & -s_4c_5s_6 + c_4c_6 & s_4s_5 & s_4s_5d_6 \\ -s_5c_6 & s_5c_6 & c_5 & c_5d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

- $r_{11} = c_1 c_4 c_5 c_6 c_1 s_4 s_6 + s_1 s_5 c_6$
- $r_{21} = s_1 c_4 c_5 c_6 s_1 s_4 s_6 c_1 s_5 c_6$
- $r_{31} = -s_4 c_5 c_6 c_4 s_6$
- $r_{12} = -c_1 c_4 c_5 s_6 c_1 s_4 c_6 s_1 s_5 c_6$
- $r_{22} = -s_1 c_4 c_5 s_6 s_1 s_4 s_6 + c_1 s_5 c_6$
- $r_{32} = s_4 c_5 c_6 c_4 c_6$

$$r_{13} = c_1 c_4 s_5 - s_1 c_5$$

- $r_{23} = s_1 c_4 s_5 + c_1 c_5$
 - $r_{33} = -s_4 s_5$
 - $d_x = c_1 c_4 s_5 d_6 s_1 c_5 d_6 s_1 d_3$
 - $d_y = s_1 c_4 s_5 d_6 + c_1 c_5 d_6 + c_1 d_3$

 $d_z = -s_4 s_5 d_6 + d_1 + d_2.$

FIGURE 5.4. Illustration of a 3R planar manipulator robot and DH frames of each link.

FIGURE 5.5. 3R PUMA manipulator and links coordinate frame.

References

- Lecture on Kinematics-Fall2019 by Honorable Prof. Dr. Syed Akhter Hossain Sir
- Lectures by honourable Prof D K Pratihar of NPTEL
- <u>https://youtu.be/6Wb0rmlvIII</u>
- <u>https://youtu.be/AbRhzpReb2Q</u>
- <u>https://youtu.be/h4_2xAPj3y0</u>