Department of Computer Science and Engineering Daffodil International University

Course Code: CSE123 (Batch-64) / CSE134 (Batch-61) Credit Hours: 3

Course Title: Data Structure

Course Intended Learning Outcome:

• Apply structural programming approach to solve more complex computation problems

- Demonstrate applications of standard data structures such as linked lists, stacks, queues, trees, and graph
- Solve computation problems using the data structure
- Apply knowledge in development projects based on data structure

Theory Session Plan:

Week No	Topics	Expected Learning Outcome	Assessments (ASSN/CT/Mid/Final)
WK 1	 Review discussion on the array, pointer and structure, 	Perform exercises on the basic array, pointer, and structure	2/3 problems related to the discussion in the class
WK 2	Discussion on the self- referential structure and dynamic memory allocation	 Solution on computational complexity Identify the data node from the self-referential structure Team formation for the course project 	2/3 problems related to the discussion in the class
WK3-WK5	Discussion on linked listsSingly-linked listDoubly linked list	 Visualization of the link list Write code for the designed linked list Selection of project topic by team 	CLASS TEST 1 (on the last class of the week)
WK6	Discussion on the basic of StackOperation of stack	Basic Idea of the stack and its operation	None
WK7	Stack applicationString application using stack	Writing code for the processing of expression using stack	PRESENTATION 1 (student presents the idea of the team project)
WK8	Discussion on the basicof QueueOperation of Queue	 Problem-solving for expression processing using stack Writing code for the processing of the queue 	CLASS TEST 2
WK9-WK10	midterm week	midterm week	MIDTERM EXAM
WK11	Discussion on Tree data structure	Implementation of tree data structure	None
WK12	Tree traversals and applications	Problem-solving for tree traversal	2/3 problems related to the discussion in the class
WK13	BST and operations on BSTApplications of BST	Implementation of BST and related operationsProblem-solving using BST	PRESENTATION 2 (student present on the design of the project)
WK14	 HEAP data structure and applications of Heap 	Implementation of Heap and operations	2/3 problems related to the discussion in the class
WK15	Basic of AVL Tree and operation	Understanding the balance factor of the nodes	None
WK16	Basic Graph, Operation of BFS and DFS	Implementation of graph data structure	CLASS TEST 3
WK17-WK18	final exam week	final exam week	FINAL EXAM

Department of Computer Science and Engineering Daffodil International University

Course Code : CSE124 (Batch-64) / CSE135 (Batch-61) Credit Hours: 1.5 / 1

Course Title: <u>Data Structure Lab</u>

Lab Session Plan:

Week No	Topics	Expected Learning Outcome	Assessments (ASSN/CT/Mid/Final)
WK 1	Working with array, pointer, and structure	Write code to implement array, pointer, and structure	None
WK 2	 Working with self-referential structure and (dynamic memory allocation) Working on project planning in a team 	 Write code to implement self- referential structure Plan for the project work 	None
WK3 - WK5	 Implement linked list and operations on linked list Working with linked list applications Working on the team project 	 Write code to implement a linked list Plan for the development of the project 	None
WK6	Working with the stackPrepare a presentation of the project	Write code to implement applications of the link list	PRESENTATION 1 (student presents the idea of the team project)
WK7	Stack applicationString application using stack	Writing code for the processing of expression using stack	None
WK8	 Working with Queues and applications Work for the team project 	Writing code for expression processing using queue	None
WK9-WK10	midterm week	midterm week	MIDTERM EXAM
WK11	 Working with Tree data structure Working with Tree traversals and applications Working on the team project 	Implementation of tree data structure	None
WK12	Tree traversals and applications	Problem-solving for tree traversal	PRESENTATION 2 (student present on the design of the project)
WK13	 Working with BST and operations on BST Prepare a presentation of the project 	Implementation of BST and related operations	None
WK14	 Working with HEAP data structure and applications of Heap Working with the team project 	a. Implementation of Heap and operations	None
WK15	Working with the AVL Tree and its operation	Implementation of AVL tree data structure	PRESENTATION 3 (student present on the implementation of the project)
******	 Working with graph data structure and applications of graph 	Implementation of graph data structure	
WK16	Working with the team project	Structure	

Department of Computer Science and Engineering Daffodil International University

Text Book(s):

- Data Structures and Algorithms, Annotated references with example, Granville Barnett, 2008
- Data Structures and Algorithm Analysis in C by Mark Allen Weiss, 2006 (refer time to time)

Reference Material/Book(s):

- Handbook of Data Structures and Applications, Dinesh P. Mehta and Srataj Shani, Chapman and Hall, 2005
- Google search engine