

2.Fixed Point Iteration Method

Procedure of Fixed Point Iteration Method:

Step 1 : The given function = f (x)

Let, $x^{3} + x^{2} - 1 = 0$ Given, $f(x) = x^{3} + x^{2} - 1$

Procedure of Fixed Point Iteration Method:

Step 1 : The given function = f(x)**Step 2 :** Choose, two real numbers a and b Such that, f(a) * f(b) < 0

For,
$$a=0$$
, $f(a)=a^3+a^2-1$
 $\therefore f(0)=0^3+0^2-1=-1$

: $f(a) \times f(b) = f(0) \times f(1) = (-1) \times 1 = -1 < 0$

Since, f(a) = f(0) is negative and f(b) = f(1) is positive So at least one real root lies between 0 and 1.

For $, b = x = 2 : f(b) = b^3 + b^2 - 1$ $\therefore f(2) = 2^3 + 2^2 - 2 = +10 > 0$ For, a = x = -1, $f(a) = a^3 + a^2 - 1$ $\therefore f(-1) = (-1)^3 + (-1)^2 - 1 = -1 < 0$ Let, $x^{3} + x^{2} - 1 = 0$

Given, $f(x) = \chi^{3} + \chi^{2} - 1$

For $, b=1 : f(b)=b^3+b^2-1$ $\therefore f(1) = 1^3 + 1^2 - 1 = +1 > 0$



Step 3 :

Convert from the given equation f(x) = 0 into the form of x = g(x).

 $\therefore x = g(x) \dots (1)$

The given equation is

$$x^{3} + x^{2} - 1 = 0$$

$$\Rightarrow x^{2} (x+1) = 1$$

$$\Rightarrow x^{2} = \frac{1}{(x+1)}$$

$$\Rightarrow x = \frac{1}{\sqrt{(x+1)}}$$

Find out x from the given equation and then give another name like g(x) or $\Phi(x)...$ 1 $f(x) = x = -\frac{1}{\sqrt{(x+1)}}(say)$

: $x = g(x) = \frac{1}{\sqrt{1+x}}$(1)

Step 4: Find g'(x) and |g'(x)| < 1 for $x \in (a,b)$

$$\because g(x) = \frac{1}{\sqrt{(x+1)}}$$

$$\therefore \frac{d}{dx}g(x) = \frac{d}{dx}\frac{1}{\sqrt{(x+1)}}$$

$$\therefore g'(x) = \frac{d}{dx} (x+1)^{-\frac{1}{2}} = -\frac{1}{2} (x+1)^{-\frac{1}{2}}$$
$$= -\frac{1}{2} (x+1)^{-\frac{3}{2}}$$

Therefore, the iteration method is applicable for the given function.

Find g'(x) and check |g'(x)| < 1 for $x \in (a,b)$

$$g'(x) = -\frac{1}{2}(1+x)^{-\frac{1}{2}}$$
$$\therefore |g'(x)| = \left|-\frac{1}{2}(1+x)^{-\frac{3}{2}}\right|$$

we can take, x = 0.5 then, $\therefore |g'(0.5)| = \left| -\frac{1}{2} (1+0.5)^{\frac{3}{2}} \right| < 1 \text{ for } x \in (0,1)$

3

Step 5: Let the initial value, $x = x_0$ for the given function f(x) = 0we substitute the value of $x = x_0$ in the right-hand side of the equation (1) Then we get, First approximate value, $x_1 = g(x_0)$

$$\therefore x = g(x) = \frac{1}{\sqrt{1+x}}....(1)$$

Find the first approximate value from the R.H.S of equ. (1) by using (a, b)

Let, initial value, $x = x_0 = 0$, here $0 \in (0,1)$ then the R.H.S of equation (1) becomes,

First approximate value, $x_1 = g(x_0) = \frac{1}{\sqrt{1+x_0}}$

for $x_0 = 0$: $x_1 = g(0) = \frac{1}{\sqrt{1+0}} = 1$

Step 5 (Remain Part) :

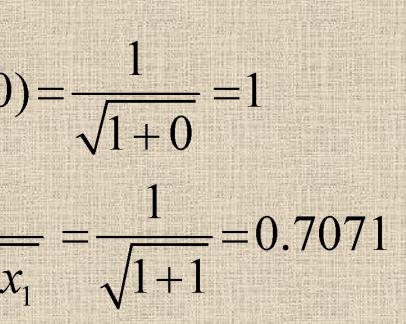
Again, substituting the value of $x = x_1$ in the equation of (1) Then we get, 2nd approximate value, $x_2 = g(x_1)$

First approximate value, $x_1 = g(0) = \frac{1}{\sqrt{1+0}} = 1$

for
$$x = x_1 = 1$$
 : $x_2 = g(x_1) = \frac{1}{\sqrt{1 + x_1}}$

 \therefore 2nd approximate value, $x_2 = 0.7071$

Similarly find the 2nd approximate value



Step 5 (Remain Part) :

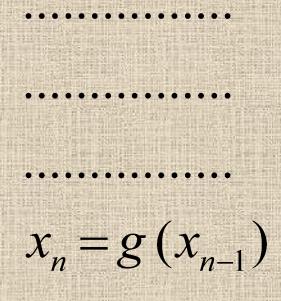
Similarly,

$$x_3 = g(x_2)$$
$$x_4 = g(x_3)$$

$$\therefore x_4 = g($$

Similarly find the 3rd & 4-th approximate value $x_3 = g(x_2) = \frac{1}{\sqrt{1 + x_2}}$ for $x = x_2 = 0.7071$ $\therefore x_3 = g(x_2) = \frac{1}{\sqrt{1 + 0.7071}} = \frac{1}{\sqrt{1.7071}} = 0.7654$ $(x_3) = \frac{1}{\sqrt{1+0.7654}} = \frac{1}{\sqrt{1.7654}} = 0.7526$

Similarly, $x_5 = g(x_4)$



Therefore the iterative formula for successive approximation method is,

 $\therefore x_n = g(x_{n-1})$ for $n = 1, 2, 3, 4, \dots$ etc Here, x_n is the n-th approximation of the desired root of f(x) = 0.

$$x_{5} = g(x_{4}) = \frac{1}{\sqrt{1 + x_{4}}}$$

for $x = x_{4} = 0.7526$
 $\therefore x_{5} = g(x_{4}) = \frac{1}{\sqrt{1 + 0.7526}} = \frac{1}{\sqrt{1.7526}} = 0.7554$
 $\therefore x_{6} = g(x_{5}) = \frac{1}{\sqrt{1 + 0.7554}} = \frac{1}{\sqrt{1.7554}} = 0.7548$
 $\therefore x_{7} = g(x_{6}) = \frac{1}{\sqrt{1 + 0.7548}} = \frac{1}{\sqrt{1.7548}} = 0.7549$
 $\therefore x_{8} = g(x_{7}) = \frac{1}{\sqrt{1 + 0.7549}} = \frac{1}{\sqrt{1.7548}} = 0.7549$

Step 6: We shall continue this iterative cycle until the values of two successive approximations are almost equal.

$$\therefore x_7 = g(x_6) = \frac{1}{\sqrt{1+0.7548}} = \frac{1}{\sqrt{1.7548}} = 0.7549$$
$$\therefore x_8 = g(x_7) = \frac{1}{\sqrt{1+0.7549}} = \frac{1}{\sqrt{1.7548}} = 0.7549$$

 $\sin ce, x_7 \approx x_8$

This above mentioned method is known as **Iteration method.** Or Method of successive approximation or Fixed point Iteration.

Hence the require root is 0.7549.

Problem 1 : Find the real root of the equation Sin x - 5x + 2 = 0 that lies on [0, 1] using fixed point iteration method.

Solution: Given That, Sin x - 5x + 2 = 0Let, $f(x) = \sin x - 5x + 2 = 0$ $\therefore f(x) = \sin x - 5x + 2$ For x = 0, $f(0) = \sin 0 - 5 \times 0 + 2 = 2 > 0$ For x = 1, $f(1) = \sin 1 - 5 \times 1 + 2 = -2.1585290152 < 0$ Since f(0) and f(1) are the opposite sign, So the root lies on [0, 1]

You have to do mode on radian to your calculator.

Now we rewrite the equation f(x) = 0Step 2: $\sin x - 5x + 2 = 0$ $\Rightarrow \sin x - 5x + 2 = 0$ $\Rightarrow -5x = -2 - \sin x$ $\Rightarrow 5x = 2 + \sin x$ $\therefore x = \frac{2 + \sin x}{5}$

Step 3 : Test

$$\therefore g(x) = \frac{2 + \sin x}{5}$$

$$\frac{d}{dx}g(x) = \frac{d}{dx}\left(\frac{2 + \sin x}{5}\right) \Rightarrow g'(x) = \frac{1}{5}\frac{d}{dx}\left(2 + \sin x\right)$$

$$= \frac{1}{5}\left(\frac{d}{dx}2 + \frac{d}{dx}\sin x\right)$$

$$= \frac{1}{5}\left(0 + \cos x\right) = \frac{1}{5}\cos x$$

$$\therefore g'(x) = \frac{1}{5} \cos x$$

$$\therefore |g'(x)| = \left|\frac{1}{5} \cos x\right|$$

$$= \left|\frac{1}{5} \cos 0\right| \ for(0,1)$$

$$\therefore |g'(x)| = \left|\frac{1}{5} \cdot 1\right| < 1 \ for(0,1)$$

Step 4:

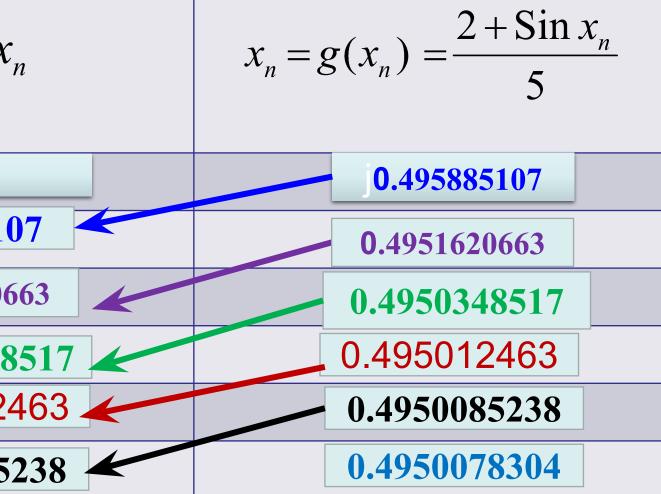
We take Initial Value, $x = x_0 = 0.5$

Step 5: Values of n Values of x_n 0.5 01 0.495885107 02 0.4951620663 03 0.4950348517 04 0.495012463 🖌 05 0.4950085238 **06**

> $\sin ce |x_6 - x_5| \approx 0.000001 = 0$ Hence the root of the given equation is equal to 0.4950078304

You have to do mode on radian to your calculator

, then successive approximation using fixed point iteration method are tabulated below.



Problem 2:

Find the real root of the equation x- $\ln x - 2 = 0$ that lies on [3, 4] using fixed point iteration method.

Solution: Let , $f(x) = x - \ln x - 2 = 0$

For
$$x = 3$$
, $f(3) = 3 - \ln 3 - 2$
= -0.0986<0

Hence there exist a root in (3, 4).

Now, $x - \ln x - 2 = 0$ $\Rightarrow x = \ln x + 2$ $\therefore g(x) = x = \ln x + 2 (say)$

For x = 4, $f(4) = 4 - \ln 4 - 2$ = 0.61370 > 0

$$g'(x) = \frac{1}{x} + 0$$
$$g'(x) = \frac{1}{x}$$

•••

••••

For (3, 4) $\therefore |g'(3)| = \left|\frac{1}{3}\right| < 1$

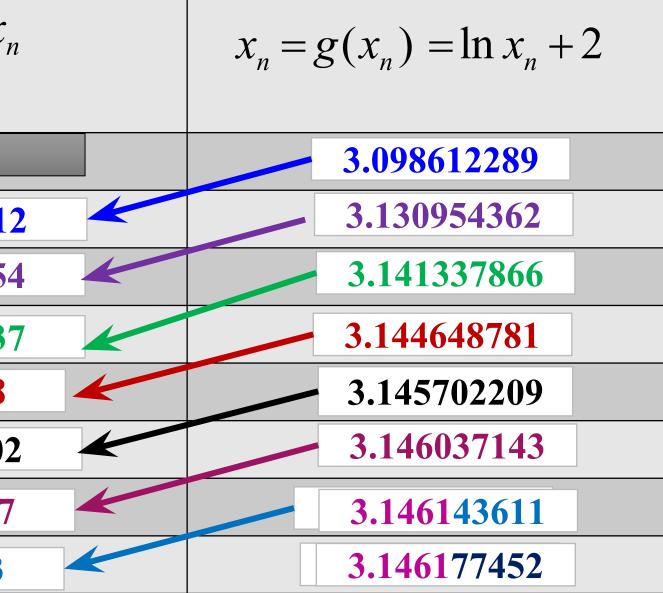
Now let the initial value, $x = x_0 = 3$

Then successive approximation using fixed point iteration method are tabulated below.

a se anna suaiteanna a suaitean a suaitean suaitean anna anna anna anna anna anna anna	and the many subtraction and the second the many subtraction of the
Values of n	Valuesof x
01	03
02	3.09861
03	3.13095
04	3.14133
05	3.144648
06	3.145702
07	3.146037
08	3.146143

 $\sin ce |x_8 - x_7| \approx 0.0000 = 0$

Hence the root of the given equation is equal to 3.1461



Algorithm for Iteration method:

Steps	Task
01	Define g(x)
02	Read initial value, $\boldsymbol{\mathcal{X}}_{O}$
03	Set n =1
04	$x_n = g(x_{n-1})$
05	If $ x_n - x_{n-1} \approx 0.0001$
Then go to step 6	
	else
n=n+1	
	Go to step 4.
06	Print x_n , the desired root
07	Stop

Practice Work

Find the root of the following equation by using Iteration method :

1. $2x = \ln x + 7$ correct to 4 decimal places

2. $3x + \sin x = e^x$ correct to 3 decimal places.

3. $\cos x = 3x - 1$ correct to 3 decimal places.

4. $e^x \tan x = 1$ correct to 3 decimal

5. $3x = \ln_{10} x + 7$ correct to 4 decimal places

