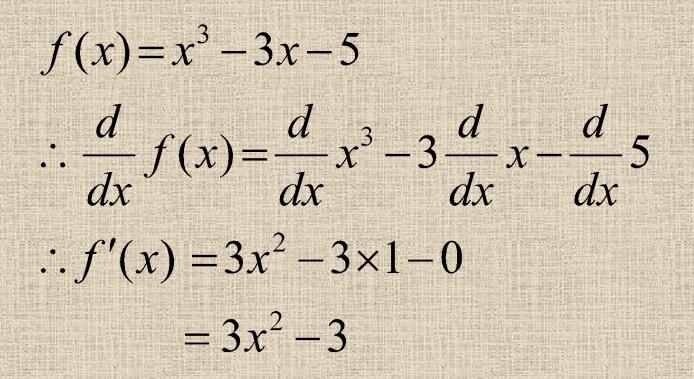


3. Newton - Raphson Method

Procedure of Newton – Raphson Method:

Step 1 : The given function = f(x) and find f'(x)

Given, $x^3 - 3x - 5 = 0$ let, $f(x) = x^3 - 3x - 5$



Find f(x) and f'(x)in the step 1

Procedure of Newton – Raphson Method:

Step 2: Choose, two real numbers a and b such that, $f(a) \times f(b) < 0$

 $f(x) = x^3 - 3x - 5$

:. for x = a = 2, $f(a) = a^3 - 3 \times a - 5$ $\therefore f(2) = 2^3 - 3 \times 2 - 5$ = 8 - 11 = -3 < 0

: $f(a) \times f(b) = f(2) \times f(3) = (-3) \times 13 = -39 < 0$

Since, f(a) = f(2) is negative and f(b) = f(3) is positive. So at least one real root lies between 2 and 3.

$f(x) = x^3 - 3x - 5$

:. for x = b = 3, $f(b) = b^3 - 3 \times b - 5$ $\therefore f(b) = b^3 - 3 \times b - 5$ = 27 - 9 - 5 = 13 > 0

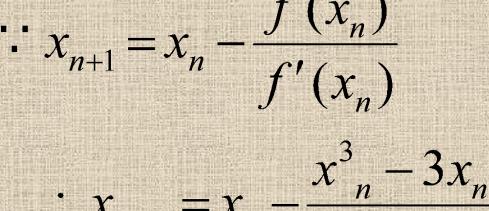
Find the Interval

between (a, b)

in the step 2

Step 3 : Find the following equation (1) by Newton – Raphson formula.

we know that from Newton-Rapshon formula,



Newton – **Raphson formula**

Step 4: Let, the initial value, $x = x_0 \in (a,b)$ and putting the value, n = 0 in the above equation (1) we are capable to find the successive improved approximations are as follows:

 $\therefore x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$(1) putting n = 0, and let the initial value, $x = x_0$ in equation (1)

$$x_{0+1} = x_0 - \frac{f(x_0)}{f'(x_0)}$$
$$f(x_0)$$

$$x_1 = x_0 - \frac{1}{f'(x_0)}$$

Putting , n=0 and then take initial value and then find first approximate value.

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n - 5}{3x_n^2 - 3} \dots \dots (1)$$

For,
$$n = 0$$
 and $x = x_0 = 2(say)$ in equation (1)
 $x_{0+1} = x_0 - \frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}$
 $\therefore x_1 = x_0 - \frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}$

 $\therefore x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \dots \dots (1)$ $putting n = 0, let the initial value, x = x_0 in equation(1)$ $x_{0+1} = x_0 - \frac{f(x_0)}{f'(x_0)}$ $\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

Putting , n= 0 and then take initial value and then find first approximate value.

Step 4: Remain part

$$\therefore x_1 = x_0 - \frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}$$

For $x = x_0 = 2(say)$; [From int erval (2,3)] $x_1 = x_0 - \frac{x_0^3 - 3x_0 - 5}{3x_0^2 - 3}$ $= 2 - \frac{2^3 - 3 \times 2 - 5}{3 \times 2^2 - 3} = 2.333$

putting n = 1, let the initial value, $x = x_1$ in equation (1)

 $x_{1+1} = x_1 - \frac{f(x_1)}{f'(x_1)}$ $\therefore x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

Similarly find the others approximate value.

Step 4: Remain part

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n - 5}{3x_n^2 - 3} \dots (1)$$

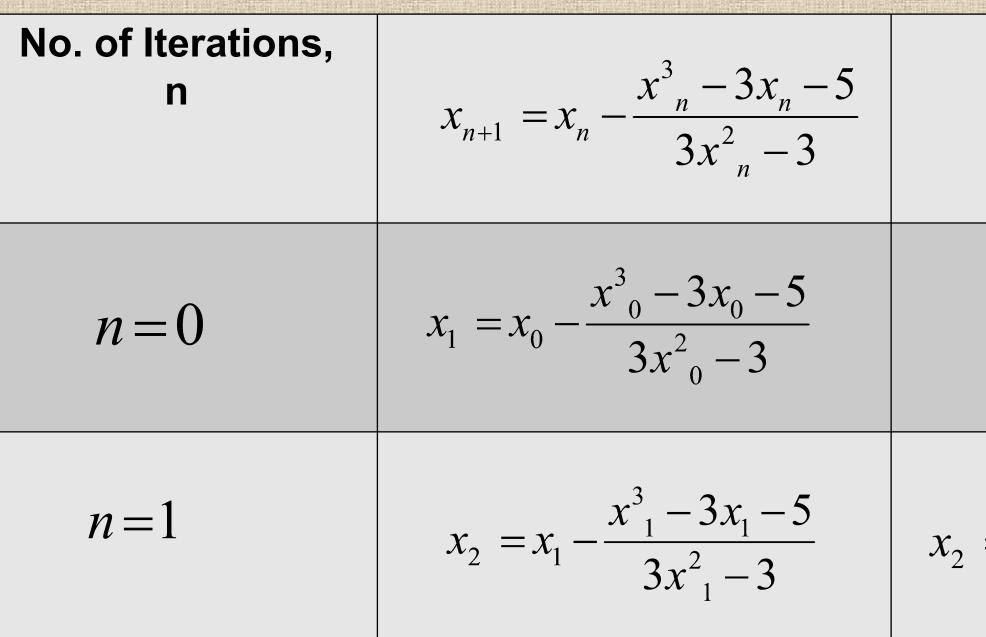
Again, putting $n = 1, x = x_1$ in equation (1)
$$x_2 = x_1 - \frac{x_1^3 - 3x_1 - 5}{3x_1^2 - 3}$$

$$=2.333 - \frac{(2.333)^3 - 3 \times 2.333 - 5}{3 \times (2.333)^2 - 3} = 2.2806$$

For $x = x_1 = 2.333$

 $x_2 = x_1 - \frac{x_1^3 - 3x_1 - 5}{3x^2 - 3}$

Let see the above data by the following table: Step 4: Remain part



$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n - 5}{3x_n^2 - 3}$$

$$x_1 = 2 - \frac{2^3 - 3 \times 2 - 5}{3 \times 2^2 - 3} = 2.333$$

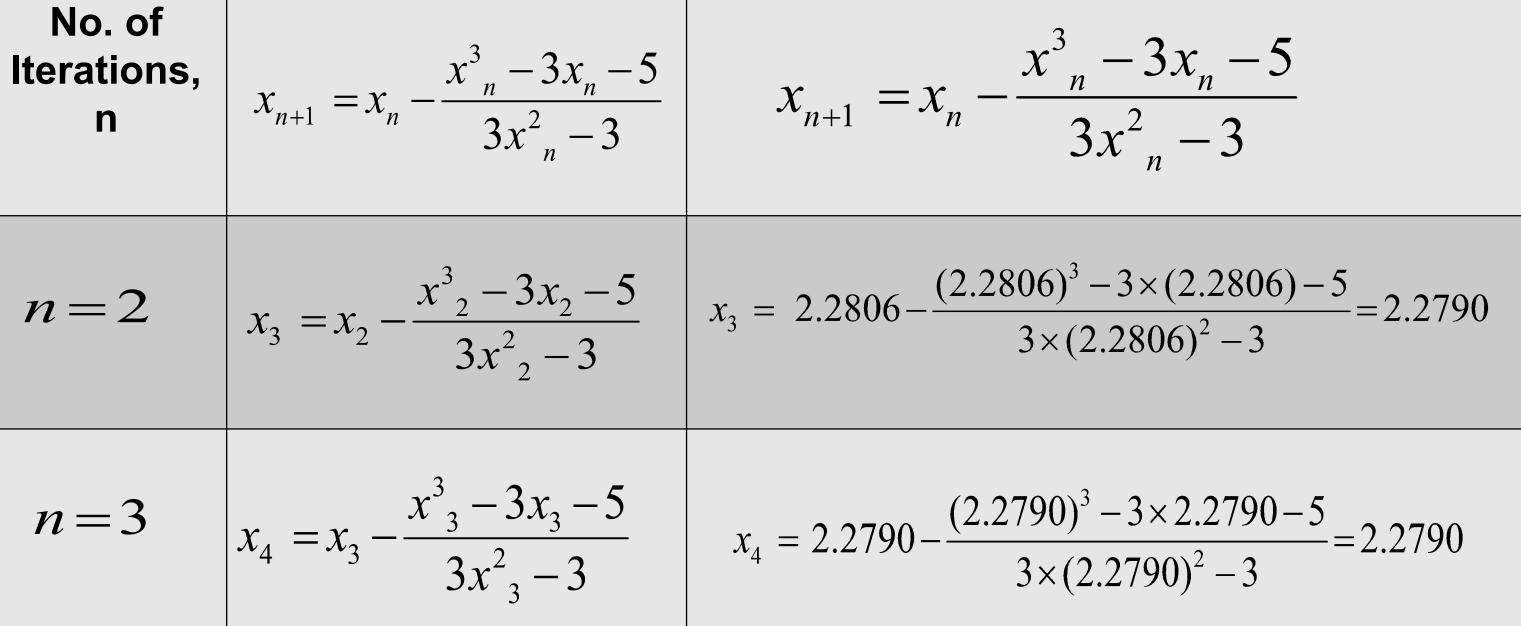
$$= 2.333 - \frac{(2.333)^3 - 3 \times 2.333 - 5}{3 \times (2.333)^2 - 3} = 2.2806$$

Similarly, $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$

Step 4: Remain part

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ | Iter

No. of



Step 5 : We shall continue this iterative process until the value of two successive approximation are approximately equal.

That is, $x_n \approx x_{n-1}$ or $f(x_n) \approx 0$.

Hence the require root is 2.2790.

Since $x_n = x_{n-1}$ that is, $x_4 = x_3$ from the above table (slide no 10)

So the Newton - Rapshon method gives no new values of x

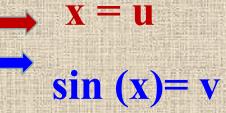
Therefore, the approximate root is correct to four decimal places.

How to solve Newton – Raphson Method by using Calculator

Newton Raphson Method tachnique und 1) Definit of CASIO anscendental fx-991ES **NATURAL DISPLAY** TWO WAY POWER Math 🔺 3 Alz Equ ng cubic ON MODE SETUP SHIFT ALPHA 2 = 0-5=0

Problem 1: Find the root of the equation $x \sin(x) + \cos(x) = 0$, using Newton-Rapshom method. Given that, $x \sin(x) + \cos(x) = 0$ Solution : Let, $f(x) = x \sin(x) + \cos(x)$ $\therefore f'(x) = \frac{d}{dx} x \sin(x) + \frac{d}{dx} \cos(x)$

Step 1



$$f'(x) = \left\lfloor x \frac{d}{dx} \sin(x) + \sin(x) \frac{d}{dx} x \right\rfloor - \sin(x)$$

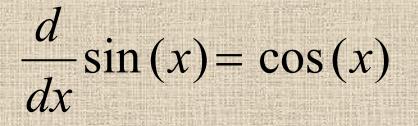
 $f'(x) = \left[x\cos(x) + \sin(x).1\right] - \sin(x)$

 $\therefore f'(x) = x \cos(x) + \sin(x) - \sin(x)$ $= x \cos(x)$

Step 1 :

 $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$

 $\frac{d}{dx}\cos(x) = -\sin(x)$



 $\frac{d}{dx}x = 1$

fppt.com

Step 2 :

 $f(x) = x \sin(x) + \cos(x)$ for , x = 2, then $f(2) = 2\sin(2) + \cos(2)$ =1.40>0

Since f(2) and f(3) are of opposite sign so at least one real root lies between 2 and 3. **Step 3 :** we know that from Newton-Rapshon method,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{x_n \sin(x_n) + \cos(x_n)}{x_n \cos(x_n)} \dots \dots (1)$$

Hints: Calculator must be in radian Mode.

$f(x) = x \sin(x) + \cos(x)$ for , x = 3, then $f(3) = 3\sin(3) + \cos(3)$ =-0.56 < 0

 $f(x) = x \sin(x) + \cos(x)$ $\therefore f(x_n) = x_n \sin(x_n) + \cos(x_n)$

 $f'(x) = x \cos(x)$ $\therefore f'(x_n) = x_n \cos(x_n)$

Step 4 :

Now Putting n = 0 and Let, the initial value $x_0 = 2.79$ in the above equation of (1)

Step 5 :

we are capable to find the successive improved approximations are as following table:

No. of
Iterations ,n

$$\mathcal{X}_n$$
 $x_{n+1} = x_n - \frac{x_n \, \text{s}}{x_n}$

 O
 $x_0 = 2.79 \, (say)$
 $x_1 = 2.79 - \frac{2.79 \, \text{s}}{x_1}$

 I
 $x_1 = 2.7984$
 $x_2 = 2.7984 - \frac{2.79}{x_2}$
 $x_{0+1} = x_0 - \frac{x_0 \sin(x_0) + \cos(x_0)}{x_0 \cos(x_0)}$
 $x_{1+1} = x_1 - \frac{x_1}{x_1}$
 $x_1 = 2.79 - \frac{2.79 \sin(2.79) + \cos(2.79)}{2.79 \cos(2.79)}$
 $x_2 = x_1 - \frac{x_1 \sin x_2}{x_2}$
 $x_1 = 2.7984$
 $x_2 = 2.7984 - \frac{2.7984}{x_2}$

 $\frac{x_n \sin(x_n) + \cos(x_n)}{x_n \cos(x_n)}$

 $\frac{79\sin(2.79) + \cos(2.79)}{2.79\cos(2.79)} = 2.7984$

 $\frac{.7984\sin(2.7984) + \cos(2.7984)}{2.7984\cos(2.7984)} = 2.79834$

 $\frac{x_1\sin(x_1)+\cos(x_1)}{x_1}$

 $x_1 \cos(x_1)$

 $x_1\sin(x_1) + \cos(x_1)$

 $x_1 \cos(x_1)$

 $2.7984\sin(2.7984) + \cos(2.7984)$

 $2.7984 \cos(2.7984)$

From the above table, we get,

 $\therefore x_1 = 2.7984$ and $\therefore x_2 = 2.79834$

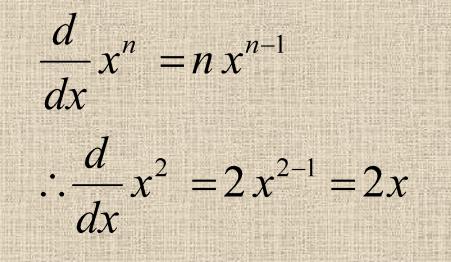
 $\therefore x_2 \approx x_1$

The approximate root is correct to three decimal places. Hence the require root is 2.7984.

Problem 02: Find the real root of the equation $x^2 - 4\sin(x) = 0$ correct to four decimal places using Newton-Rapshon method. Solution

Solution: Given that, $x^2 - 4\sin(x) = 0$ let, $f(x) = x^2 - 4\sin(x)$ $\therefore f'(x) = \frac{d}{dx}x^2 - \frac{d}{dx}4\sin(x)$ $\therefore f'(x) = 2x - 4\cos(x)$

You have to do mode on radian to your calculator



$$\frac{d}{dx}af(x) = a\frac{d}{dx}f(x) = af'(x)$$

$$\frac{d}{dx} 4\sin(x) = 4\frac{d}{dx}\sin(x) = 4\cos(x)$$

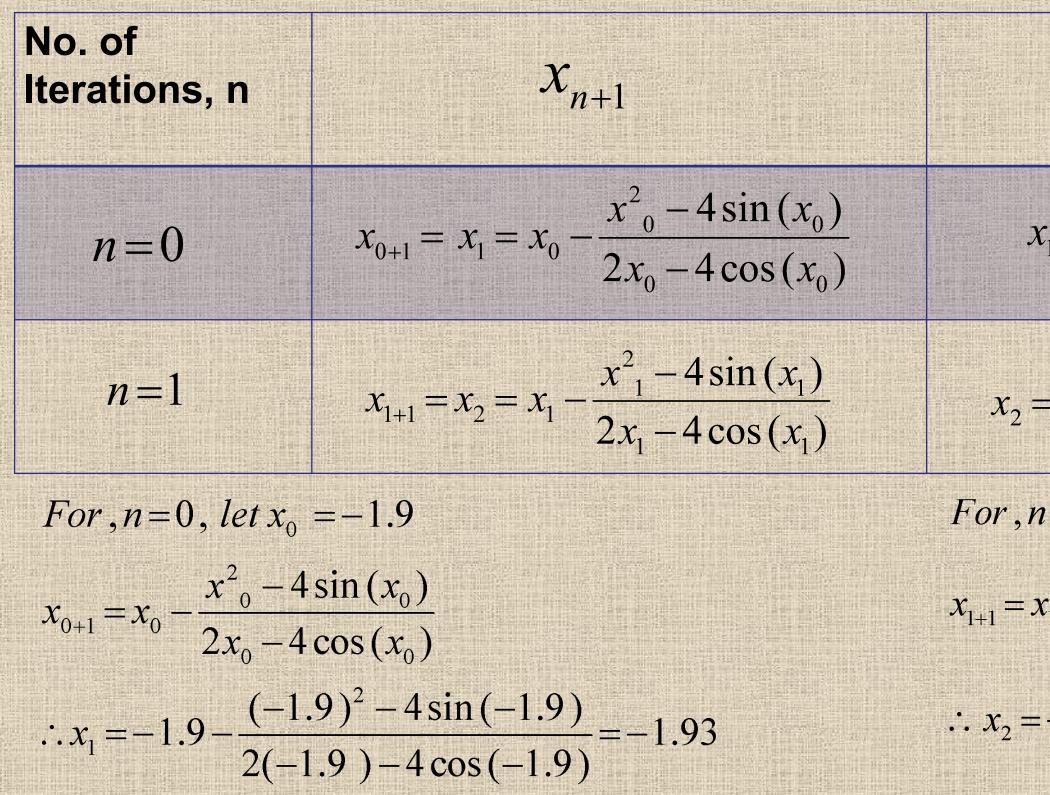
$$\frac{d}{dx}\sin\left(x\right) = \cos\left(x\right)$$

 $f(x) = x^2 - 4\sin(x)$ for x = a = -1, then $f(a) = a^2 - 4\sin(a)$ $\therefore f(-1) = (-1)^2 - 4\sin(-1) = -2.36 < 0$ Since f(-1) and f(-2) are of opposite sign, so at least one real root lies between -1 and -2. we know that from Newton-Rapshon method, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $f(x) = x^2 - 4\sin(x)$

 $f(x) = x^2 - 4\sin(x)$ for x = b = -2, then $f(b) = b^2 - 4\sin(b)$: $f(-2) = (-2)^2 - 4\sin(-2) = 0.36 > 0$

 $\therefore f'(x) = 2x - 4\cos(x)$: $f(x_n) = x_n^2 - 4\sin(x_n)$: $f'(x_n) = 2x_n - 4\cos(x_n)$ Now Putting n = 0 and Let, the initial value, $x_0 = -1.9$ in the above equation of (1)

we are capable to find the successive improved approximations are as following table:



=-1.9 in the above equation of (1)

$$x_{n+1} = x_n - \frac{x_n^2 - 4\sin(x_n)}{2x_n - 4\cos(x_n)}$$

$$x_1 = -1.9 - \frac{(-1.9)^2 - 4\sin(-1.9)}{2(-1.9) - 4\cos(-1.9)} = -1.93$$

$$= -1.93 - \frac{(-1.93)^2 - 4\sin(-1.93)}{2(-1.93) - 4\cos(-1.93)} = -1.9338$$

For n=1, and $x_1 = -1.93$ $x_{1+1} = x_1 - \frac{x_1^2 - 4\sin(x_1)}{2x_1 - 4\cos(x_1)}$ $\therefore x_2 = -1.93 - \frac{(-1.93)^2 - 4\sin(-1.93)}{2(-1.93) - 4\cos(-1.93)} = -1.9338$ From the above table, we get,

 $x_1 = -1.93$ and $x_2 = -1.9338$

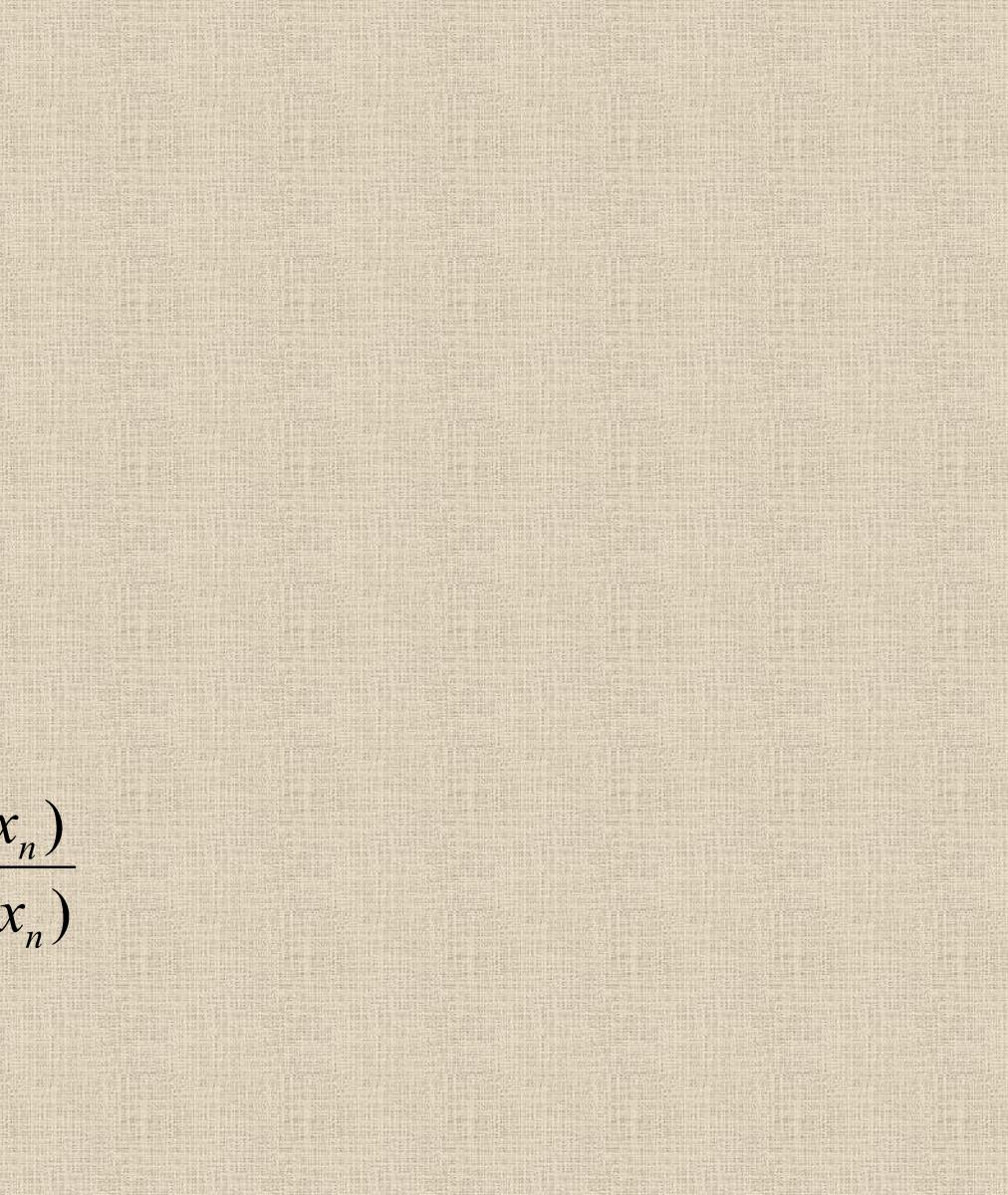
 $\therefore x_2 \approx x_1$

The approximate root is correct to two decimal places. Hence the require root is -1.93

Algorithm for Newton-Raphson method:

- StepsTask01Define f(x)02Define , f'(x)
 - 02 Read the initial value, x_0
 - 03 Set, n = 004 n = n+1

05 Calculate, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$



Algorithm for Newton-Raphson method:

Steps Task If $|x_n - x_{n-1}| \approx 0.0001$ 06 Then go to step 8 elseif n=n+1Gotostep 5. Print χ_n , the desired root 07 80 Stop

Practice Work

Find the root of the following equation by using Newton – Raphson method :

1. $2x = \ln x + 7$ correct to 4 decimal places

2. $3x + \sin x = e^x$ correct to 3 decimal places.

3. $\cos x = 3x - 1$ correct to 3 decimal places.

4. $e^x \tan x = 1$ correct to 3 decimal

5. $3x = \ln_{10} x + 7$ correct to 4 decimal places

