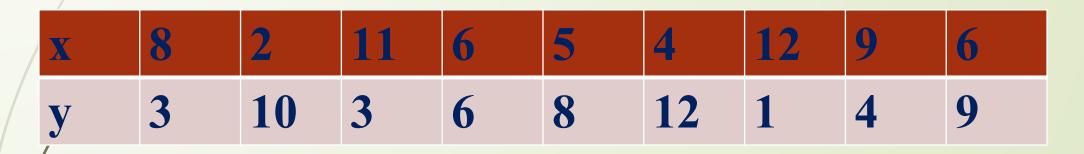


Curve Fitting Chapter 4

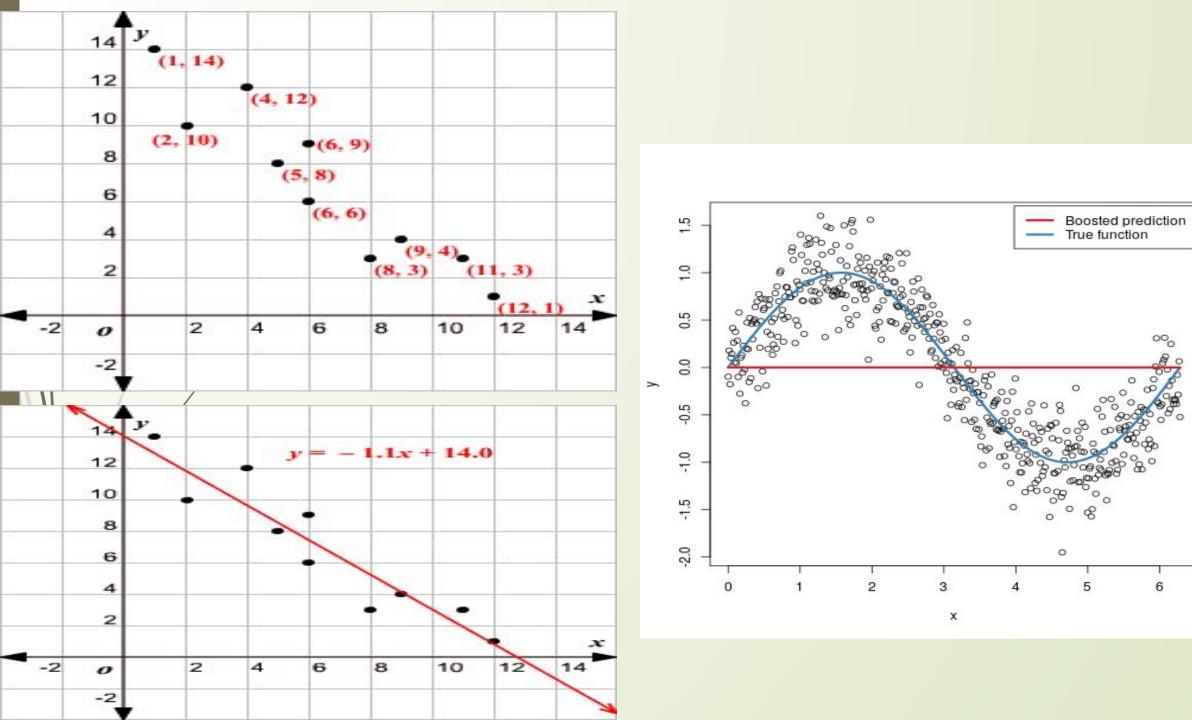
Curve fitting

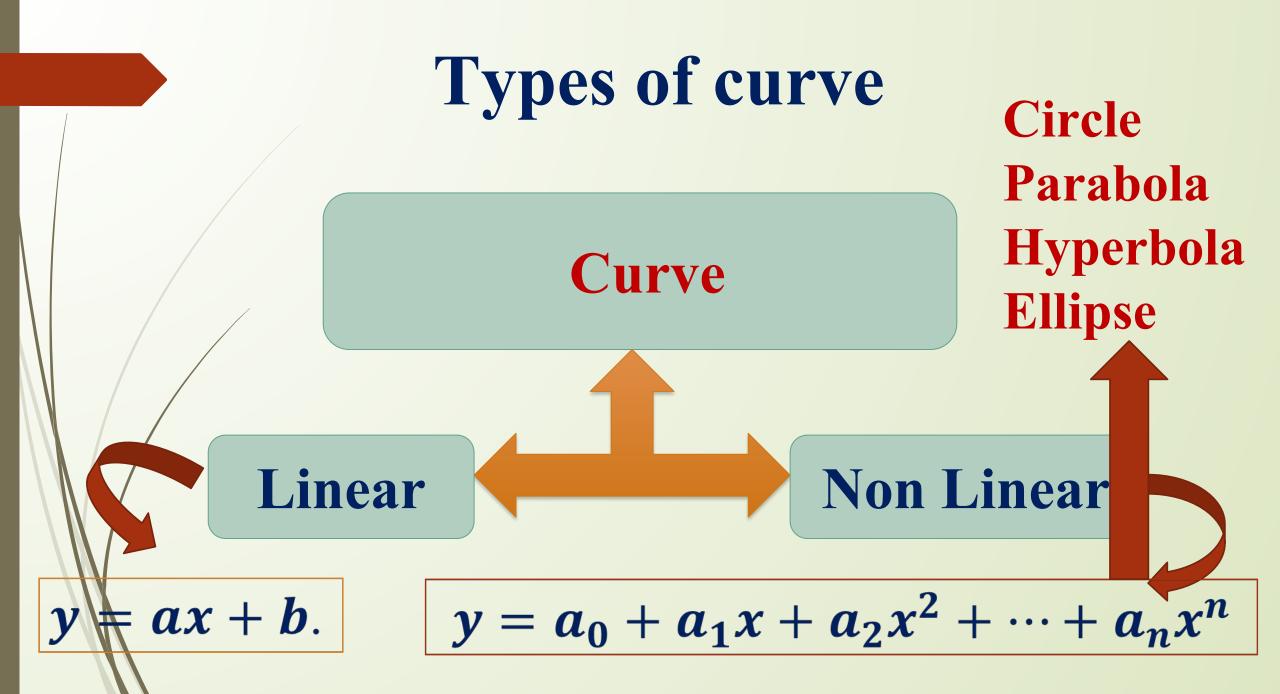
Curve fitting is the process of constructing a curve. or The procedure in finding a curve which matches a series of data points, possibly subject to constraints.

Plot the line.

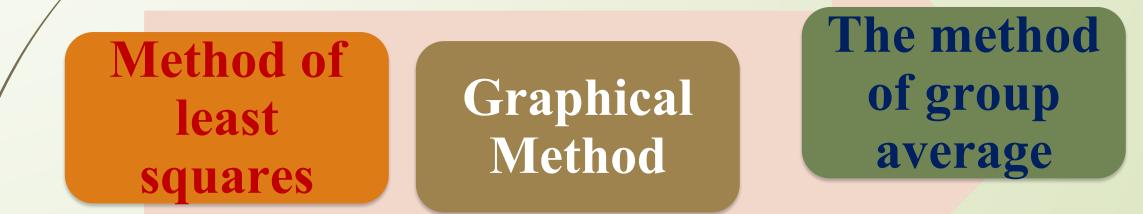


(8,3),(2,10),(11,3),(6,6),(5,8),(4,12),(12,1),(9,4),(6,9).





Types of Methods on curve
The constant occurring in the equation y = f(x) of the approximating curve can be found by several methods mentioned in the followings:



Linear Curve Fitting

There are two useful methods for finding a straight line.

The Least square method

The graphical method

Linear Curve Fitting

The Least Square method for finding a straight line.

The Least square method

Linear Curve Fitting Least Square Formula for fitting the linear Curve : Normal Equations:

$$y = ax + b$$

= a

Procedure of Linear Curve Fitting Task: (i) y = ax + b(1) (ii) $\sum_{i=1}^{n} y_i = a \sum_{i=1}^{n} x_i + bn$.(2) $\sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i$

Procedure of Linear Curve Fitting

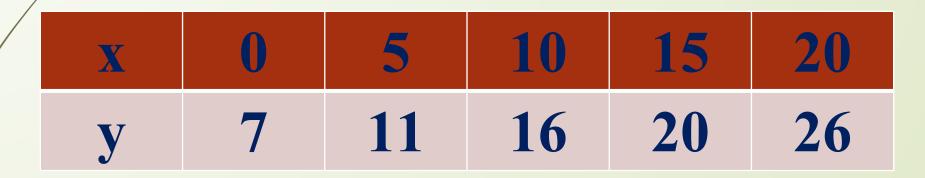
Task:

(iv) Make a table to calculate the necessary summations.
(v) Substituting those values in normal equations make two equations of *a* and *b*(vi) Solve two equations for *a* and *b*.

(vii) substitute the values of a and b in y = ax + b.

Problem

Problem 01: Use the method of least squares to fit a straight line to the following data:



Estimate the value of y when x = 25.

Solution :

Let the least square straight line to be fitted to the Then the normal Equations are: Here the number of data points of x, n = 5.

Calculation for finding the coefficients *a* and *b* of the least square line.

0	7	0	0
5	11	55	25
10	16	160	100
15	20	300	225
20	26	520	400
$\sum x = 50$	$\sum y = 80$	$\sum xy = 1035$	$\sum x^2 = 750$

Now putting these values in the above equations (2) and (3) we get

 $50a + 5b = 80 \dots (4)$ $750a + 50b = 1035 \dots (5)$ Solving above equations we get, a = 0.94 and b = 6.6

Putting these values in the equation y = ax + bwe get the required line as y = 0.94x + 6.6Therefore, the expected value of y at x = 25 is $y(25) = 0.94 \times 25 + 6.6 = 30.1$ as x = 25.

Problem

02: Find the Least square line y = ax + bfor the data points (-1, 10), (0,9), (1,7), (2,5), (3,4), (4,3), (5,0), and (6, -1).

Solution

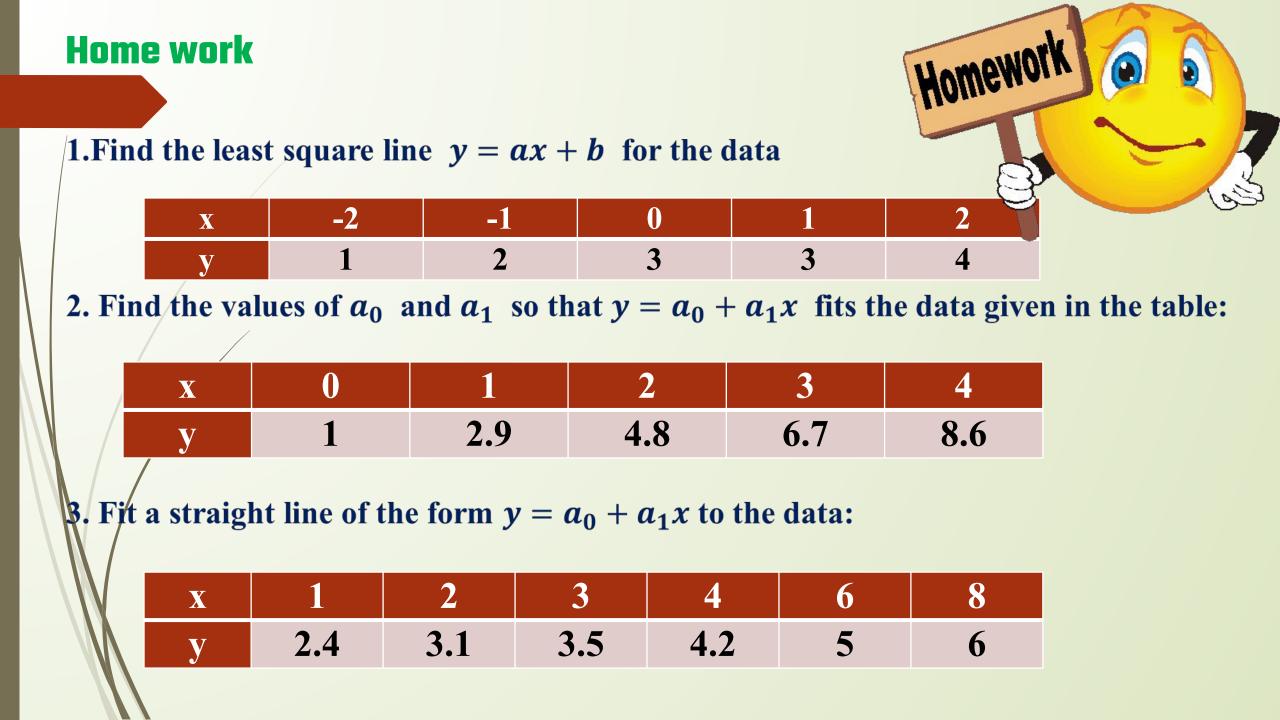
Let the least square straight line to be fitted to the Then the normal Equations are: Here the number of data points of x, n = 8.

Calculation for finding the coefficients *a* and *b* of the least square line.

Now putting these values in the above equations (2) and (3) we get 92a + 20b = 25(4) 20a + 8b = 37.....(5)

Solving above equations we get, a = -1.60714 and b = 8.64286

Putting these values in the equation y = ax + bwe get the required line as y = -1.6071x + 8.64286.



Exercise 4

4.The table below gives the temperature T (in 0^0 C) and length l(in mm) of a heated rod. If $l = a_0 + a_1 T$ find the values of a_0 and a_1 using linear least squares

Τ	40	50	60	70	80	
l	600.5	600.6	600.8	600.9	601	

5./Find the least square line y = ax + b for the data

X	-4	-2	0	2	4
У	1.2	2.8	6.2	7.8	13.2

