Numerical Differentiation 3rd Part : Runge- kutta of 4th order

Runge-Kutta Method of 4th orderConsider
$$\frac{dy}{dx} = f(x, y)$$
, $y(x_0) = y_0$ The Runge-Kutta method of 4th order is given by $y_{n+1} = y_n + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4]$

where
$$k_1 = hf(x_n, y_n)$$

 $k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$
 $k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$
 $k_4 = hf(x_n + h, y_n + k_3)$

Problem

Apply Runge-Kutta method of fourth order to find an approximate value of y(0.1) and y(0.2) of $\frac{dy}{dx} = x + y^2$, y(0)=1 correct to three decimal

places. Solution :

Given data:
$$f(x,y) = x + y^2$$
, h=0.1
 $x_0 = 0$ $x_1 = 0.1$ $x_2 = 0.2$
 $y_0 = 1$ $y_1 = ?$ $y_2 = ?$

The Runge-Kutta method of 4th order is given by

$$\begin{array}{l} y_{n+1} = y_n + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4] \\ \text{where } k_1 = hf(x_n, y_n) \\ k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right) \\ k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right) \\ k_4 = hf(x_n + h, y_n + k_3) \end{array}$$

Put n=0 in Eqn(1)

$$y_{1} = y_{0} + \frac{1}{6} [k_{1} + 2k_{2} + 2k_{3} + k_{4}] ------(2)$$
where $k_{1} = hf(x_{0}, y_{0})$
 $k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$
 $k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$
 $k_{4} = hf(x_{0} + h, y_{0} + k_{3})$

 $k_1 = hf(x_0, y_0)$ $=h x_0 + (y_0)^2$ $(= 0.1 0 + (1)^2 = 0.1$

 $\frac{dy}{dx} = f(x, y)$

$$\frac{dy}{dx} = x + y^2$$

$$x_0 = 0$$

 $y_0 = 1$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$= h\left[\left(x_{0} + \frac{h}{2}\right) + \left(y_{0} + \frac{k_{1}}{2}\right)^{2}\right]$$

$$k_{0} = 0$$

$$x_{0} = 0$$

$$y_{0} = 1$$

$$h = 0.1$$

$$h = 0.1$$

$$k_{1} = 0.1$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$
$$= h\left[\left(x_{0} + \frac{h}{2}\right) + \left(y_{0} + \frac{k_{2}}{2}\right)^{2}\right]$$
$$= 0.1\left[\left(0 + \frac{0.1}{2}\right) + \left(1 + \frac{0.1152}{2}\right)^{2}\right]$$
$$= 0.1168$$

$$\frac{dy}{dx} = x + y^2$$
,
 $x_0 = 0$
 $y_0 = 1$
 $h=0.1$
 $k_2 = 0.1152$

$$k_{4} = hf(x_{0} + h, y_{0} + k_{3})$$
$$= h\left[(x_{0} + h) + (y_{0} + k_{3})^{2}\right]$$
$$= 0.1\left[(0 + 0.1) + (1 + 0.1168)^{2}\right]$$
$$= 0.1347$$

$$\frac{dy}{dx} = x + y^2,$$
$$x_0 = 0,$$
$$y_0 = 1$$
$$h=0.1$$
$$k_3 = 0.1168$$

Substituting all these values in Eqn(2), we get

$$y_1 = 1 + \frac{1}{6} [0.1 + 2(0.1152) + 2(0.1168) + 0.1347] = 1.1164$$

$$y_2 = y_1 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$
 -----(3)

Where

$$k_1 = hf(x_1, y_1)$$

 $k_2 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right)$
 $k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$
 $k_4 = hf(x_1 + h, y_1 + k_3)$

 $k_1 = hf(x_1, y_1)$ $=h x_1 + (y_1)^2$ $= 0.1 (0.1) + (1.1164)^2$ = 0.1346

 $\frac{dy}{dx} = x + y^2$ h=0.1

 $X_1 = 0.1$

y1=1.1164

 $k_2 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right)$ $= h \left(x_1 + \frac{h}{2} \right) + \left(y_1 + \frac{k_1}{2} \right)^2 \right|$ $= 0.1 \left(0.1 + \frac{0.1}{2} \right) + \left(1.1164 + \frac{0.1346}{2} \right)^2 \right]$ = 0.1551

$$\frac{dy}{dx} = x + y^2,$$

h=0.1
 $x_1 = 0.1$
 $y_1 = 1.1164$
k_1 = 0.1346

 $k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$ $= h \left[\left(x_1 + \frac{h}{2} \right) + \left(y_1 + \frac{k_2}{2} \right)^2 \right]$ $= 0.1 \left(0.1 + \frac{0.1}{2} \right) + \left(1.1164 + \frac{0.1551}{2} \right)^2 \right]$ = 0.1575

 $\frac{dy}{dx} = x + y^2$ h=0.1 $X_1 = 0.1$ = 1.1164 $k_2 = 0.1551$

 $k_4 = hf(x_1 + h, y_1 + k_3)$ $=h(x_1+h)+(y_1+k_3)^2$ $= 0.1 (0.1 + 0.1) + (1.1164 + 0.1575)^2$ = 0.1822

 $\frac{dy}{dx} = x + y^2$ h=0.1 $X_1 = 0.1$

 $y_1 = 1.1164$ $k_3 = 0.1575$

Substituting all these values in Eqn(3), we get

$$y_2 = 1.1164 + \frac{1}{6} [0.1346 + 2(0.1551) + 2(0.1575) + 0.1822]$$
$$= 1.2734$$



Solve $y' = 1 + y^2$ with y(0) = 0 for x = 0.2 (0.2) 0.6 by Runge-Kutta method of fourth order. [NUH-1999]

Ans : y(0.6) = 0.6841

Solve the following initial value problem using Runge-Kutta method of fourth order :

(i)
$$\frac{dy}{dx} = (1 + x) y$$
 with $y(0) = 1$ for $x = 0(0.2) 0.6$, $y(0.2) = 1.2247$,
 $y(0.4) = 1.5240$, $y(0.6) = 1.9581$
(ii) $y' = \frac{1}{x + y}$ with $y(0) = 1$ for $x = 0.5$ (0.5) 2.
Ans : $y(0.5) = 1.3571$, $y(1.0) = 1.5873$, $y(1.5) = 1.7555$,
 $y(2.0) = 1.8956$

