Separation of variables

If P and Q are function of two variables x and y, then the general first order and first degree ODE can be written as

$$
\begin{gathered}
P(x, y)+Q(x, y) \frac{d y}{d x}=0 \\
\text { Or, } P(x, y) d x+Q(x, y) d y=0
\end{gathered}
$$

If these equations can be written as

$$
\begin{gathered}
f_{1}(x)+f_{2}(y) \frac{d y}{d x}=0 \\
\text { Or, } f_{1}(x) d x+f_{2}(y) d y=0
\end{gathered}
$$

by some algebraic manipulation, then the variables are said to be separated. Integrated both sides,

$$
\begin{aligned}
& \quad \int f_{1}(x) d x+\int f_{2}(y) d y=c \\
& \text { Or, } F_{1}(x)+F_{2}(y)=c
\end{aligned}
$$

Problem-1: Solve the ODE: $\frac{d y}{d x}=2 x y$
Solution: Given that,

$$
\frac{d y}{d x}=2 x y
$$

Separating variables we obtain,

$$
\frac{d y}{y}=2 x d x
$$

Now, integrating,

$$
\begin{aligned}
& \int \frac{d y}{y}=2 \int x d x \\
& \text { or, } \ln y=2 \frac{x^{2}}{2}+\ln c \\
& o r, \ln y=x^{2}+\ln c \\
& \text { or, } \ln y=\ln e^{x^{2}}+\ln c \\
& \text { or }, \ln y=\ln \left(c e^{x^{2}}\right) \\
& \therefore y=c e^{x^{2}}
\end{aligned}
$$

Problem-2: Solve the ODE: $\frac{d y}{d x}=-\frac{x y}{x+1}$
Solution: Given that,

$$
\frac{d y}{d x}=-\frac{x y}{x+1}
$$

Separating variables we obtain,

$$
\begin{aligned}
& \frac{d y}{y}=-\frac{x d x}{x+1} \\
& \text { or, } \frac{d y}{y}=-\left(1-\frac{1}{x+1}\right) d x
\end{aligned}
$$

Now, integrating,

$$
\int \frac{d y}{y}=-\int\left(1-\frac{1}{x+1}\right) d x
$$

$$
\begin{aligned}
& \text { or, } \ln y=-x+\ln (x+1)+\ln c \\
& \text { or, } \ln y=\ln e^{-x}+\ln (x+1)+\ln c \\
& \text { or, } \ln y=\ln \left(c e^{-x}(x+1)\right) \\
& \therefore y=c e^{-x}(x+1)
\end{aligned}
$$

Problem-3: Solve the ODE: $\frac{d y}{d x}=\frac{x+1}{y^{2}}$
Solution: Given that,

$$
\frac{d y}{d x}=\frac{x+1}{y^{2}}
$$

Separating variables we obtain,

$$
y^{2} d y=(x+1) d x
$$

Now, integrating,

$$
\begin{gathered}
\int y^{2} d y=\int_{x^{2}}(x+1) d x \\
\text { or, } \frac{y^{3}}{3}=\frac{x^{2}}{2}+x+c
\end{gathered}
$$

Problem-4: Solve the ODE: $\frac{d y}{d x}=x^{2} y$
Solution: Given that,

$$
\frac{d y}{d x}=x^{2} y
$$

Separating variables we obtain,

$$
\frac{d y}{y}=x^{2} d x
$$

Now, integrating,

$$
\begin{gathered}
\int \frac{d y}{y}=\int x^{2} d x \\
\text { or, } \ln y=\frac{x^{3}}{3}+\ln c \\
\text { or, } \ln y=\ln e^{\frac{x^{3}}{3}}+\ln c \\
\text { or, } \ln y=\ln \left(c e^{\frac{x^{3}}{3}}\right) \\
\therefore y=c e^{\frac{x^{3}}{3}}
\end{gathered}
$$

Problem-5: Solve the ODE: $\frac{d y}{d x}=e^{x+y}$
Solution: Given that,

$$
\begin{gathered}
\frac{d y}{d x}=e^{x+y} \\
\text { or, } \frac{d y}{d x}=e^{x} \cdot e^{y}
\end{gathered}
$$

Separating variables we obtain,

$$
\begin{aligned}
& \frac{d y}{e^{y}}=e^{x} d x \\
& \text { or, } e^{-y} d y=e^{x} d x
\end{aligned}
$$

Now, integrating,

$$
\begin{aligned}
& \int e^{-y} d y=\int e^{x} d x \\
& o r,-e^{-y}=e^{x}+c
\end{aligned}
$$

Problem-6: Solve the ODE: $\frac{d y}{d x}=e^{x-y}$

Solution: Given that,

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x-y} \\
& \text { or, } \frac{d y}{d x}=e^{x} \cdot e^{-y}
\end{aligned}
$$

Separating variables we obtain,

$$
\begin{gathered}
\frac{d y}{e^{-y}}=e^{x} d x \\
o r, e^{y} d y=e^{x} d x
\end{gathered}
$$

Now, integrating,

$$
\begin{aligned}
\int e^{y} d y & =\int e^{x} d x \\
o r, e^{y} & =e^{x}+c
\end{aligned}
$$

Problem-7: Solve the ODE: $\frac{d y}{d x}=e^{2 x+3 y}$
Solution: Given that,

$$
\begin{aligned}
& \frac{d y}{d x}=e^{2 x+3 y} \\
& \text { or, } \frac{d y}{d x}=e^{2 x} \cdot e^{3 y}
\end{aligned}
$$

Separating variables we obtain,

$$
\begin{gathered}
\frac{d y}{e^{3 y}}=e^{2 x} d x \\
\text { or } e^{-3 y} d y=e^{2 x} d x
\end{gathered}
$$

Now, integrating,

$$
\begin{aligned}
& \int e^{-3 y} d y=\int e^{2 x} d x \\
& \text { or, } \frac{e^{-3 y}}{-3}=\frac{e^{2 x}}{2}+c
\end{aligned}
$$

Problem-8: Solve the ODE: $x \frac{d y}{d x}=\left(1-2 x^{2}\right) \tan y$
Solution: Given that,

$$
x \frac{d y}{d x}=\left(1-2 x^{2}\right) \tan y
$$

Separating variables we obtain,

$$
\begin{aligned}
& \frac{d y}{\tan y}=\frac{1-2 x^{2}}{x} d x \\
& \text { or, } \cot y d y=\left(\frac{1}{x}-2 x\right) d x
\end{aligned}
$$

Now, integrating,

$$
\begin{aligned}
& \int \cot y d y=\int\left(\frac{1}{x}-2 x\right) d x \\
& \text { or, } \ln \sin y=\ln x-2 \frac{x^{2}}{2}+\ln c \\
& \text { or, } \ln \sin y=\ln x-x^{2}+\ln c \\
& \text { or, } \ln \sin y=\ln x+\ln e^{-x^{2}}+\ln c \\
& \text { or, } \ln \sin y=\ln \left(c x \cdot e^{-x^{2}}\right) \\
& \therefore \sin y=c x \cdot e^{-x^{2}}
\end{aligned}
$$

Problems for solution

1. $\cos y d y=\sec ^{2} x d x$
2. $5 \cos ^{2} y d x+\csc ^{2} x d y=0$
3. $\left(e^{y}+1\right) \cos x d y+e^{y}(\sin x+1) d x=0$
4. $x \sin y d x=\left(x^{2}+1\right) \cos y d y$
5. $\frac{d y}{d x}=\frac{7 x e^{2 y}}{5+3 x^{2}}$
6. $\frac{d y}{d x}=\left(1+y^{2}\right) \sin 2 x e^{5 x}$

Some real life problem

(Q) The marginal cost function for producing x units is $M C=23+16 x-3 x^{2}$ and the total cost for producing 1 unit is Rs. 40 . Find the total cost function and the average cost function.
Solution:
Let $\mathrm{C}(\mathrm{x})$ be the total cost function where x is the number of units of output. Then
(Q) What is the general form of the demand equation which has a constant elasticity of -1 ?

Solution :
Let x be the quantity demanded at price p . Then the elasticity is given by

$$
\eta_{d}=\frac{-p}{x} \frac{d x}{d p}
$$

Given $\frac{-p}{x} \frac{d x}{d p}=-1 \Rightarrow \frac{d x}{x}=\frac{d p}{p} \Rightarrow \int \frac{d x}{x}=\int \frac{d p}{p}+\log k$

$$
\Rightarrow \quad \log x=\log p+\log k, \quad \text { where } k \text { is a constant. }
$$

$$
\Rightarrow \quad \log x=\log k p \Rightarrow x=k p \Rightarrow p=\frac{1}{k} x
$$

i.e. $\quad p=c x$, where $c=\frac{1}{k}$ is a constant

$$
\begin{aligned}
& \frac{d \mathrm{C}}{d x}=\mathrm{MC}=23+16 x-3 x^{2} \\
& \therefore \int \frac{d \mathrm{C}}{d x} d x=\int\left(23+16 x-3 x^{2}\right) d x+k \\
& \mathrm{C}=23 x+8 x^{2}-x^{3}+k \text {, where } k \text { is a constant } \\
& \text { At } x=1, \mathrm{C}(x)=40 \text { (given) } \\
& 23(1)+8(1)^{2}-1^{3}+k=40 \Rightarrow k=10 \\
& \therefore \text { Total cost function } C(x)=23 x+8 x^{2}-x^{3}+10 \\
& \text { Average cost function }=\frac{\text { Total cost function }}{x} \\
& =\frac{23 x+8 x^{2}-x^{3}+10}{x} \\
& \text { Average cost function }=23+8 x-x^{2}+\frac{10}{x}
\end{aligned}
$$

(Q) The relationship between the cost of operating a warehouse and the number of units of items stored in it is given by $\frac{d y}{d x}=a x+b$ where C is the monthly cost of operating the warehouse and x is the number of units of items in storage. Find C as a function of x if $\mathrm{C}=$ C 0 when $\mathrm{x}=0$.
Solution :

$$
\begin{aligned}
& \text { Given } \frac{d \mathrm{C}}{d x}=a x+b \quad \therefore d \mathrm{C}=(a x+b) d x \\
& \int \quad \int d \mathrm{C}=\int(a x+b) d x+k,(k \text { is a constant }) \\
& \Rightarrow \quad \mathrm{C}=\frac{a x^{2}}{2}+b x+k,
\end{aligned}
$$

$$
\text { when } x=0, \quad \mathrm{C}=\mathrm{C}_{0} \quad \therefore(1) \Rightarrow \quad \mathrm{C}_{0}=\frac{a}{2}(0)+\mathrm{b}(0)+k
$$

$$
\Rightarrow k=\mathrm{C}_{0}
$$

Hence the cost function is given by

$$
\mathrm{C}=\frac{a}{2} x^{2}+b x+\mathrm{C}_{0}
$$

