Separation of variables

If P and Q are function of two variables x and y, then the general first order and first degree ODE can be written as

$$P(x, y) + Q(x, y)\frac{d y}{d x} = 0$$

$$P(x, y) + Q(x, y)\frac{d y}{d x} = 0$$

Or,
$$P(x, y) dx + Q(x, y) dy = 0$$

If these equations can be written as

$$f_{1}(x) + f_{2}(y)\frac{d y}{d x} = 0$$

Or, $f_{1}(x) dx + f_{2}(y) dy = 0$

by some algebraic manipulation, then the variables are said to be separated. Integrated both sides,

$$\int f_1(x) dx + \int f_2(y) dy = c$$

Or, $F_1(x) + F_2(y) = c$.

Problem-1: Solve the ODE:
$$\frac{dy}{dx} = 2xy$$

Solution: Given that.

Separating variables we obtain,

$$\frac{dy}{y} = 2xdx$$

 $\frac{dy}{dx} = 2xy$

Now, integrating,

$$\int \frac{dy}{y} = 2 \int x dx$$

or, $\ln y = 2\frac{x^2}{2} + \ln c$
or, $\ln y = x^2 + \ln c$
or, $\ln y = \ln e^{x^2} + \ln c$
or, $\ln y = \ln(ce^{x^2})$
 $\therefore y = ce^{x^2}$

Problem-2: Solve the ODE: $\frac{dy}{dx} = -\frac{xy}{x+1}$ **Solution:** Given that,

$$\frac{dy}{dx} = -\frac{xy}{x+1}$$

Separating variables we obtain,

$$\frac{dy}{y} = -\frac{xdx}{x+1}$$

or, $\frac{dy}{y} = -\left(1 - \frac{1}{x+1}\right)dx$

Now, integrating,

$$\int \frac{dy}{y} = -\int \left(1 - \frac{1}{x+1}\right) dx$$

or, $\ln y = -x + \ln(x + 1) + \ln c$ or, $\ln y = \ln e^{-x} + \ln(x + 1) + \ln c$ or, $\ln y = \ln(ce^{-x}(x + 1))$ $\therefore y = ce^{-x}(x + 1)$

Problem-3: Solve the ODE: $\frac{dy}{dx} = \frac{x+1}{y^2}$ **Solution:** Given that,

 $\frac{dy}{dx} = \frac{x+1}{y^2}$

Separating variables we obtain,

 $y^2 dy = (x+1)dx$

Now, integrating,

$\int y^2 dy = \int (x+1)dx$ $or, \frac{y^3}{3} = \frac{x^2}{2} + x + c$

Problem-4: Solve the ODE: $\frac{dy}{dx} = x^2 y$ **Solution:** Given that,

 $\frac{dy}{dx} = x^2 y$

Separating variables we obtain,

 $\frac{dy}{y} = x^2 dx$

Now, integrating,

$$\int \frac{dy}{y} = \int x^2 dx$$

or, $\ln y = \frac{x^3}{3} + \ln c$
or, $\ln y = \ln e^{\frac{x^3}{3}} + \ln c$
or, $\ln y = \ln \left(c e^{\frac{x^3}{3}} \right)$
 $\therefore y = c e^{\frac{x^3}{3}}$

Problem-5: Solve the ODE: $\frac{dy}{dx} = e^{x+y}$ **Solution:** Given that,

$$\frac{dy}{dx} = e^{x+y}$$

or, $\frac{dy}{dx} = e^x \cdot e^y$

Separating variables we obtain,

$$\frac{dy}{e^{y}} = e^{x} dx$$

or, $e^{-y} dy = e^{x} dx$

Now, integrating,

$$\int e^{-y} dy = \int e^{x} dx$$

or, $-e^{-y} = e^{x} + c$

Problem-6: Solve the ODE: $\frac{dy}{dx} = e^{x-y}$

Solution: Given that,

$$\frac{dy}{dx} = e^{x-y}$$

or, $\frac{dy}{dx} = e^x \cdot e^{-y}$

Separating variables we obtain,

$$\frac{dy}{e^{-y}} = e^{x} dx$$

or, $e^{y} dy = e^{x} dx$

Now, integrating,

$$\int e^{y} dy = \int e^{x} dx$$

or, $e^{y} = e^{x} + c$

Problem-7: Solve the ODE: $\frac{dy}{dx} = e^{2x+3y}$ **Solution:** Given that,

$$\frac{dy}{dx} = e^{2x+3y}$$

or, $\frac{dy}{dx} = e^{2x} \cdot e^{3y}$

Separating variables we obtain,

$$\frac{dy}{e^{3y}} = e^{2x} dx$$

or, $e^{-3y} dy = e^{2x} dx$

Now, integrating,

$$\int e^{-3y} dy = \int e^{2x} dx$$
$$or, \frac{e^{-3y}}{-3} = \frac{e^{2x}}{2} + c$$

Problem-8: Solve the ODE: $x \frac{dy}{dx} = (1 - 2x^2) \tan y$ **Solution:** Given that,

$$x\frac{dy}{dx} = (1 - 2x^2)\tan y$$

Separating variables we obtain,

$$\frac{dy}{\tan y} = \frac{1 - 2x^2}{x} dx$$

or, $\cot y \, dy = \left(\frac{1}{x} - 2x\right) dx$

Now, integrating,

$$\int \cot y \, dy = \int \left(\frac{1}{x} - 2x\right) dx$$

or, $\ln \sin y = \ln x - 2\frac{x^2}{2} + \ln c$
or, $\ln \sin y = \ln x - x^2 + \ln c$
or, $\ln \sin y = \ln x + \ln e^{-x^2} + \ln c$
or, $\ln \sin y = \ln(cx.e^{-x^2})$
 $\therefore \sin y = cx.e^{-x^2}$

Problems for solution

- 1. $\cos y \, dy = \sec^2 x \, dx$
- $2. \quad 5\cos^2 y \, dx + \csc^2 x \, dy = 0$
- 3. $(e^{y} + 1)\cos x \, dy + e^{y}(\sin x + 1)dx = 0$
- 4. $x \sin y \, dx = (x^2 + 1) \cos y \, dy$

5.
$$\frac{dy}{dx} = \frac{7xe^{2y}}{5+3x^2}$$

6. $\frac{dy}{dx} = (1+y^2) \sin 2x \ e^{5x}$

Some real life problem

(Q) The marginal cost function for producing x units is $MC = 23+16x - 3x^2$ and the total cost for producing 1 unit is Rs.40. Find the total cost function and the average cost function. Solution:

Let C(x) be the total cost function where x is the number of units of output. Then

$$\frac{dC}{dx} = MC = 23 + 16x - 3x^{2}$$

$$\therefore \int \frac{dC}{dx} dx = \int (23 + 16x - 3x^{2}) dx + k$$

$$C = 23x + 8x^{2} - x^{3} + k, \text{ where } k \text{ is a constant}$$

At $x = 1$, $C(x) = 40$ (given)
 $23(1) + 8(1)^{2} - 1^{3} + k = 40 \implies k = 10$

$$\therefore \text{ Total cost function } C(x) = 23x + 8x^{2} - x^{3} + 10$$

Average cost function $= \frac{\text{Total cost function}}{x}$

$$= \frac{23x + 8x^{2} - x^{3} + 10}{x}$$

Average cost function $= 23 + 8x - x^{2} + \frac{10}{x}$

(Q) What is the general form of the demand equation which has a constant elasticity of -1? Solution :

Let x be the quantity demanded at price p. Then the elasticity is given by

$$\eta_d = \frac{-p}{x} \frac{dx}{dp}$$

Given $\frac{-p}{x} \frac{dx}{dp} = -1 \implies \frac{dx}{x} = \frac{dp}{p} \implies \int \frac{dx}{x} = \int \frac{dp}{p} + \log k$
 $\implies \log x = \log p + \log k$, where k is a constant.
 $\implies \log x = \log kp \implies x = kp \implies p = \frac{1}{k}x$
i.e. $p = cx$, where $c = \frac{1}{k}$ is a constant

(Q) The relationship between the cost of operating a warehouse and the number of units of items stored in it is given by $\frac{dy}{dx} = ax + b$ where C is the monthly cost of operating the warehouse and x is the number of units of items in storage. Find C as a function of x if C = C0 when x = 0.

Solution :

 \Rightarrow

Given
$$\frac{dC}{dx} = ax + b$$
 \therefore $dC = (ax + b) dx$
 $\int dC = \int (ax + b) dx + k$, (k is a constant)
 $C = \frac{ax^2}{2} + bx + k$,

when x = 0, $C = C_0$ \therefore (1) \Rightarrow $C_0 = \frac{a}{2}(0) + b(0) + k$ $\Rightarrow k = C_0$

Hence the cost function is given by

$$C = \frac{a}{2}x^2 + bx + C_0$$