Correlation Analysis (Part 2)

Munmun Akter

Lecturer, NFE, DIU

2. Partial correlation

- It is used to explore the relationship between two variables while controlling for the effects of one or more additional variables, known as "control variables" or "covariates."
- The purpose of partial correlation is to isolate the unique association between the two main variables of interest, removing the influence of the control variables.

$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{1 - r_{13}^2}\sqrt{1 - r_{23}^2}}$$

Useful with three variables - predicted variables

control variable

Correlation Partial

is

– relationship between two variables while controlling for a third variable

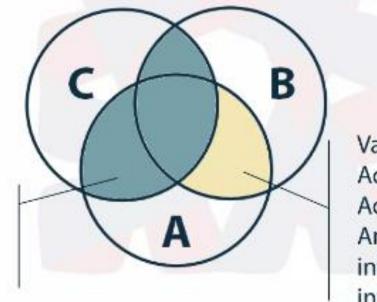
- type of Pearson correlation coefficient

Used in models which assume a linear relationship

- data is supposed to be interval in nature

example relationship between height & weight, while controlling for age

assist in understanding regression

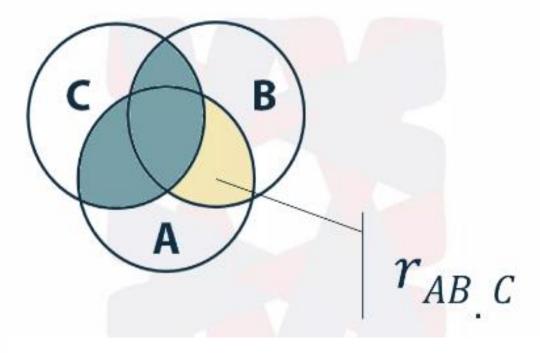

range in value from -1 to +1

conducted to understand why two variables are correlated

Data of academic	achievement, and	kiety and intellige	A Academic Achievement	
Subject	Academic Achievement	Anxiety	Intelligence	B Anxiety
1	15	6	25	AnAlety
2	18	3	29	C Intelligence
3	13	8	27	r = 0.260 $r = 0.019$
4	14	6	24	$r_{AB} = -0.369$ $r_{AC} = 0.918$
5	19	2	30	$r_{BC} = -0.245$
6	11	3	21	$r = r_{10,0} = (-0.369) - (0.918)(-0.245)$
7	17	4	26	$r_p = r_{AB,C} = \frac{(-0.369) - (0.918)(-0.245)}{\sqrt{(1 - 0.918^2)(1 - (-0.245)^2)}}$
8	20	4	31	-0.1441
9	10	5	20	$r_p = r_{AB \ C} = -0.400$
10	16	7	25	$r_p = r_{AB_c} = -0.375$

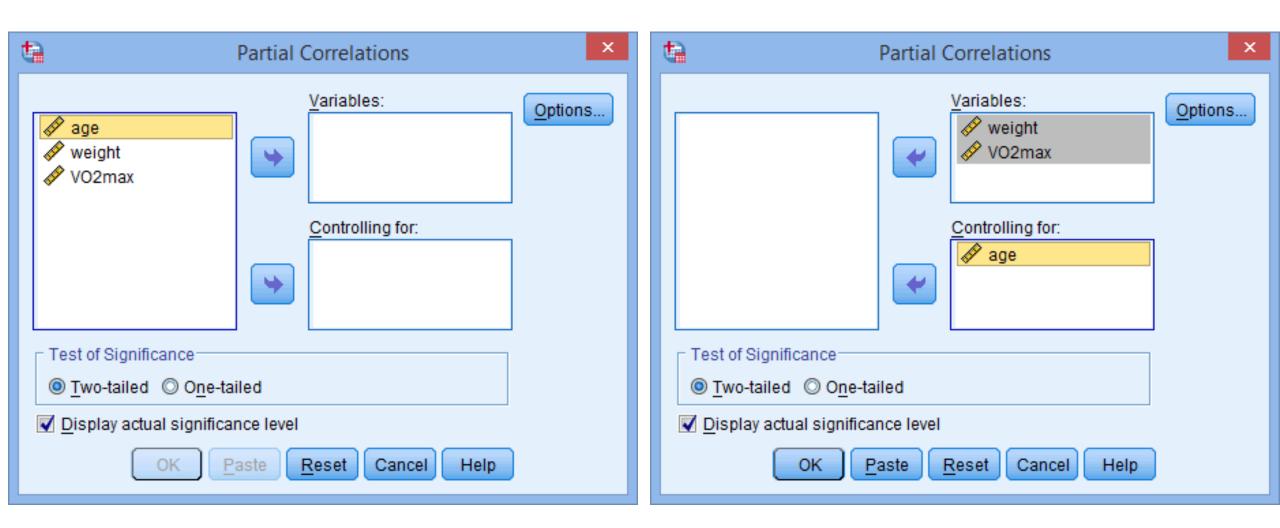
Graphical Explanation of partial correlation between Academic

Achievement and Anxiety controlled for Intelligence



Variance

explained by


Intelligence

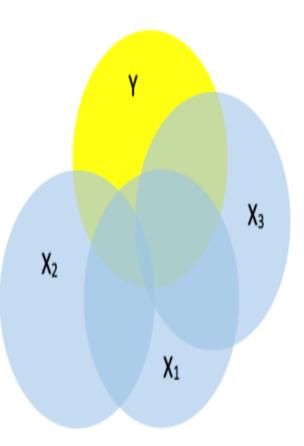
Variance shared by Academic Achievement and Anxiety not influenced by intelligence

Calculate Partial correlation in SPSS

te -							partia	al-corre	lation.sav [Da	ataSet2] - IBI
<u>F</u> ile	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	Analyze	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> n	s <u>W</u> indow	<u>H</u> elp
					Repor	ts		•	*,	
					D <u>e</u> scri	iptive Statis	stics	•		
					Co <u>m</u> p	are Means		•		
		age		weight	<u>G</u> ener	al Linear M	lodel	•	var	var
1	1	63		50.34	Gener	ali <u>z</u> ed Line	ar Models	•		
2	2	64		73.38	Mi <u>x</u> ed	Models		•		
3	3	28		103.23	<u>C</u> orrel	ate		•	Bivariate	
4	1	52		88.83	Regre	ssion		•	Partial	
5	5	34		50.00	Loglin	ear		•		5
6	5	26		62.59	Classi	ify			<u> D</u> istances	-
7	7	26		90.63		 nsion Redu	uction	•		
3	3	53		78.67	_	Sc <u>a</u> le Sc <u>a</u> le <u>N</u> onparametric Tests Forecas <u>t</u> ing <u>S</u> urvival		•		
9	9	53		87.28	_					
1	0	24		72.29	_					
1	1	51		93.76						
1	2	48		97.46	_					
1	3	26		53.43		e Respons	se	P		
1.	4	32		64.00	Simula Simula					
1	5	37		56.18		y Control		•		
1	6	31		112.59	ROC C	curve				
1	7	40		58.07	40.90					
1	8	28		115.42	38.12					
1	9	21		78.45	38.70					
2	0	24		60.90	37.09					

The **Correlations** table is split into two main parts:

(a) the Pearson product-moment correlation coefficients for all your variables – that is, your dependent variable, independent variable, and one or more control variables – as highlighted by the blue rectangle; and (b) the results from the partial correlation where the Pearson product-moment correlation coefficient between the dependent and independent variable has been adjusted to take into account the control variable(s), as highlighted by the red rectangle.


Control V	ariables		Weight	VO2max	Age
-none- ^a	Weight	Correlation	1.000	307	004
		Significance (2-tailed)		.002	.972
		df	0	98	98
	V02max	Correlation	307	1.000	191
		Significance (2-tailed)	.002		.057
		df	98	0	98
	Age	Correlation	004	191	1.000
		Significance (2-tailed)	.972	.057	
		df	98	98	0
Age	Weight	Correlation	1.000	314	
		Significance (2-tailed)		.002	
		df	0	97	
	VO2max	Correlation	314	1.000	
		Significance (2-tailed)	.002		
		df	97	0	

Correlations

a. Cells contain zero-order (Pearson) correlations.

3. Multiple Correlation:

- It examines the relationship between one dependent variable and two or more independent variables, an extension of simple correlation.
- In multiple correlation, the goal is to understand how a single dependent variable is related to a combination of several independent variables.
- Multiple correlation is often used in regression analysis, where the dependent variable is predicted based on the values of multiple independent variables.
- The multiple correlation coefficient is represented by "R" and is the square root of the coefficient of determination (R-squared) in regression analysis. R-squared represents the proportion of the variance in the dependent variable that is explained by the independent variables. It ranges from 0 to 1.

Multiple Correlation Coefficient The formula for *R* is

$$R = \sqrt{\frac{r_{yx_1}^2 + r_{yx_2}^2 - 2r_{yx_1} \cdot r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2}}$$

where

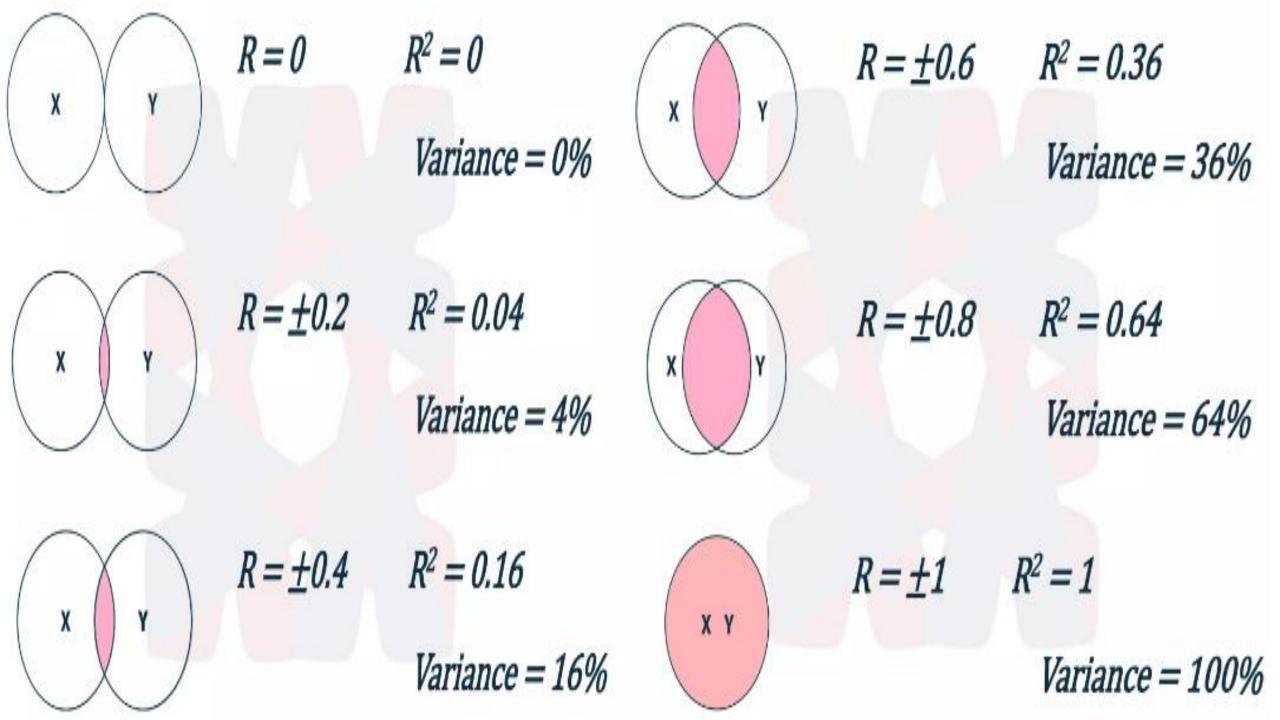
 r_{yx_1} = correlation coefficient for y and x_1 r_{yx_2} = correlation coefficient for y and x_2 $r_{x_1x_2}$ = correlation coefficient for x_1 and x_2

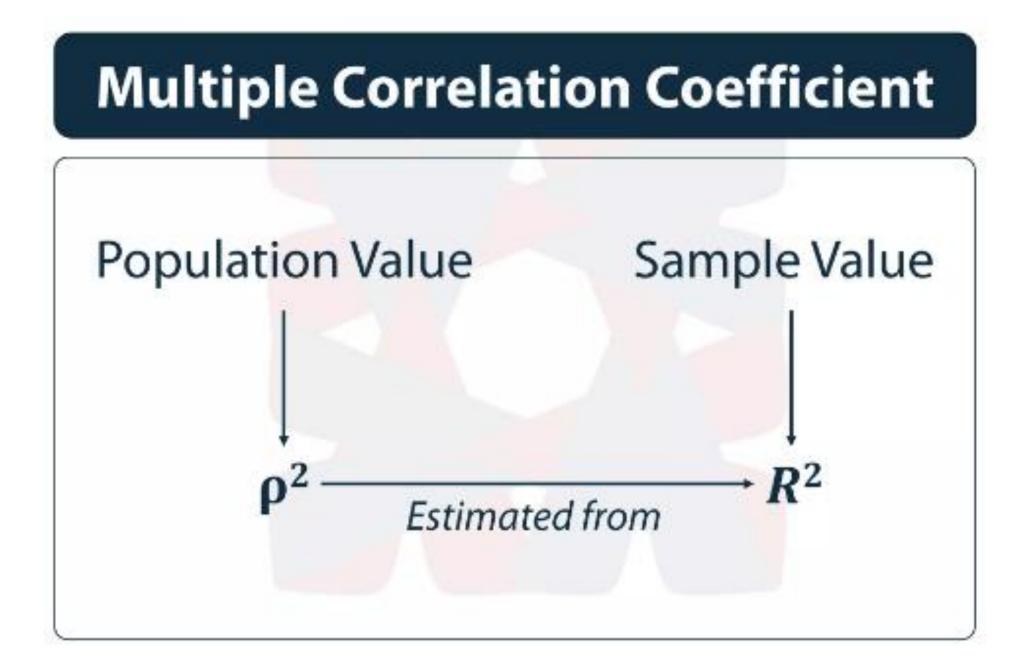
Problem 3

If the simple correlation coefficients have the values $r_{12} = 0.6$, $r_{13} = 0.65$, $r_{23} = 0.8$, find the multiple correlation coefficient $R_{1,23}$

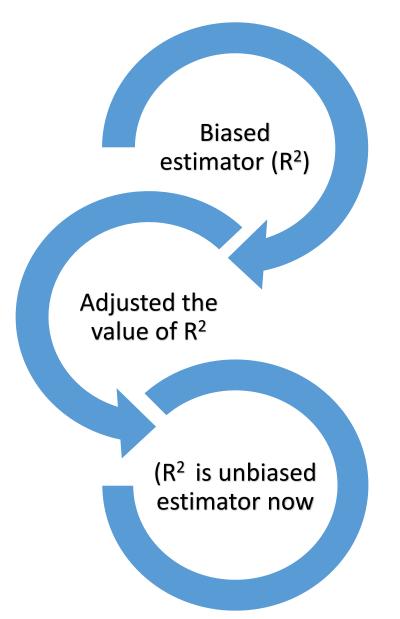
Solution:

We have


$$R_{1.23} = \frac{\sqrt{r^2_{12} + r^2_{13} - 2r_{12}r_{13}r_{23}}}{\sqrt{1 - r^2_{23}}}$$
$$= \frac{\sqrt{(0.6)^2 + (0.65)^2 - 2x0.6x0.65x0.8}}{\sqrt{1 - (0.8)^2}}$$


Data of academic achievement, anxiety and intelligence for 10 subjects

Subject	Academic Achievement	Anxiety	Intelligence	A= Academic achievement B= Anxiety
1	15	6	25	C= Intelligence
2	18	3	29	
3	13	8	27	r _{AB} = -0.369
4	14	6	24	r _{AC} = 0.918
5	19	2	30	1 _{AC} – 0.918
6	11	3	21	r _{BC} = -0.245
7	17	4	26	$R_{A.BC} = 0.929$
8	20	4	31	
9	10	5	20	
10	16	7	25	


Interpretation of multiple correlation coefficient

- What is the meaning of $R_{A,BC} = 0.929$?
- This means that the multiple correlation between academic achievement and the linear combination of intelligence and anxiety is 0.929 or 0.93.
- What is R² ?
- The R² is the percentage of variance in academic achievement explained by the linear combination of intelligence and anxiety.
- In this sample R=0.929 or 0.93; so, the value of R² is about 0.865. It means that the linear combination of intelligence and anxiety explain 86.5 percent variance in the academic achievement.

Reduced biasness

A biased estimator is one that deviates from the true population value. An unbiased estimator is one that does not deviate from the true population parameter. Formula: $R^{2} = 1 - (1 - R^{2})(n - 1)/(n - k - 1)$

Where,

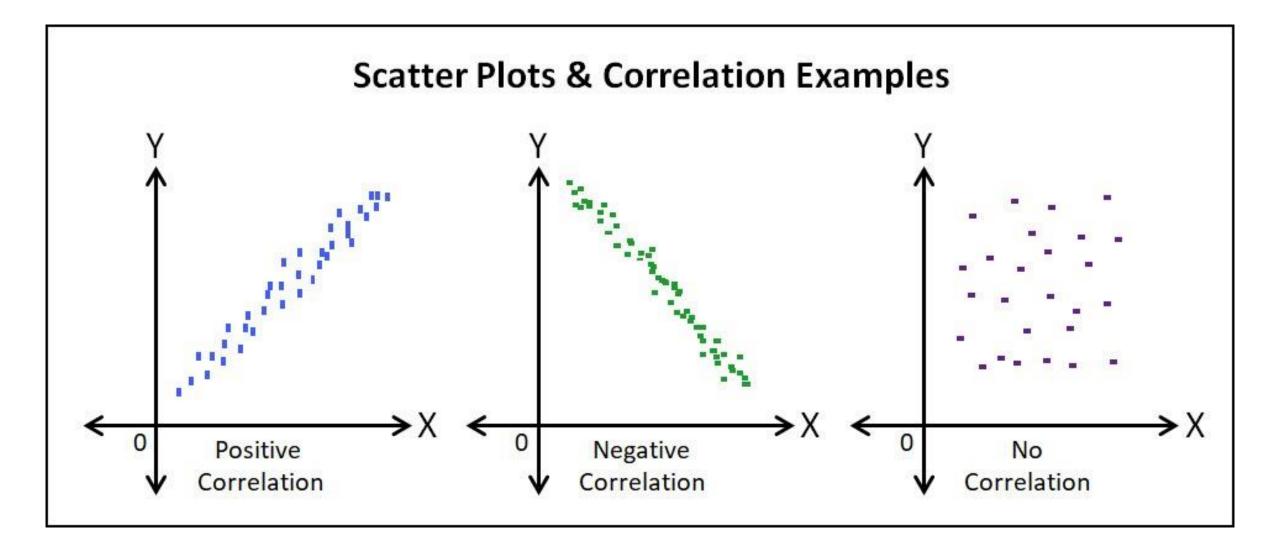
n = number of participants / sample size
k = number of predicted variables
R*2 = is the adjusted value of R

 $\widetilde{R}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k - 1}$ $= 1 - \frac{(1 - 0.865)(10 - 1)}{10 - 2 - 1}$ $= 1 - \frac{1.217}{-}$ = 0.826

Multiple Correlation Coefficient by SPSS

	te		standard multiple	regression.s	av [DataSet3]] - IBM SPS	S Sta	ta Linear Regression ×
	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities Ad	d- <u>o</u> ns <u>W</u> ind	ow <u>H</u> elp			Durantert
			Reports •	2 AA	*	5	2	✓ Caseno
			Descriptive Statistics				€ L	Plots
	40 : age	28	Compare Means			10		weight Block 1 of 1
		caseno age	<u>G</u> eneral Linear Model	gender	VO2max	var		A heart rate Previous Next
	1	1	Generalized Linear Models	Male	55.79			Options
	2	2	[€] Mi <u>x</u> ed Models ▶	Female	35.00			Independent(s):
	3	3	3 <u>C</u> orrelate ▶	Male	42.93			weight
	4	4	2 <u>R</u> egression	Automa	atic Linear Mode	ling		A heart_rate
	5	5	Loglinear	Linear.				
	6	6	2 Classify ▶		 Estimation	2		Method: Enter
	7	7	2 <u>D</u> imension Reduction ►			_		
	8	8	2 Sc <u>a</u> le >		Lea <u>s</u> t Squares			Selection Variable:
	9	9	Nonparametric Tests	👪 Binary I	Lo <u>g</u> istic	_		Rule
	10	10	Forecasting	🔛 <u>M</u> ultino	mial Logistic	_		Case Labels:
	11	11	Survival	🔣 Or <u>d</u> ina	I	_		
	12	12	4 — Multiple Response ►	Probit				
	13	13	Simulation	Nonline				WLS Weight:
	14	14	Quality Control		Estimation			
	15	15						OK Paste Reset Cancel Help
	16	16	2 ROC Curve		e Least Squares	š		
	17		37 56.18 163 30 86.13 156	Male Male	47.23			
1	18	18	30 86.13 156	Male	45 06			

Scatter Plot or Scatter Diagram


•The scatter plot and correlation complement each other in understanding the relationship between two variables.

•It is a type of graphical representation used to visualize the relationship between two continuous variables.

•Each data point is plotted as a dot on the graph, with one variable represented on the x-axis and the other variable on the y-axis.

•When the points in the scatter plot are tightly clustered along a straight line, the correlation coefficient tends to be close to +1 or -1, indicating a strong linear relationship.

•When the points in the scatter plot are scattered randomly with no apparent pattern, the correlation coefficient tends to be close to 0, indicating a weak or no linear relationship.

