### Fiber dispersion

• Fiber dispersion results in *optical pulse broadening* and hence *digital signal degradation*.



**Dispersion mechanisms**: 1. Modal (or *intermodal*) dispersion

- 2. Chromatic dispersion (CD)
- 3. Polarization mode dispersion (PMD)

### Pulse broadening limits fiber bandwidth (data rate)



• An *increasing number of errors* may be encountered on the digital optical channel as the ISI becomes more pronounced.

### 1. Modal dispersion

- When numerous waveguide modes are propagating, they all travel with different net velocities with respect to the waveguide axis.
- An input waveform distorts during propagation because its energy is distributed among several modes, each traveling at a different speed.
- Parts of the wave arrive at the output before other parts, spreading out the waveform. This is thus known as multimode (modal) dispersion.
- Multimode dispersion does *not* depend on the source linewidth (even a *single* wavelength can be simultaneously carried by *multiple modes* in a waveguide).
- Multimode dispersion would *not* occur if the waveguide allows *only* one mode to propagate the advantage of *single*-mode waveguides!<sub>24</sub>

# Modal dispersion as shown from the mode chart of a symmetric slab waveguide



• Phase velocity for mode  $m = \omega/\beta_m = \omega/(n_{eff}(m) k_0)$  (note that m = 0 mode is the *slowest* mode)

### Modal dispersion in multimode waveguides



The carrier wave can propagate along all these different "zig-zag" ray paths of *different path lengths*.

## Modal dispersion as shown from the LP mode chart of a silica optical fiber



• Phase velocity for LP mode =  $\omega/\beta_{lm} = \omega/(n_{eff}(lm) k_0)$  (note that LP<sub>01</sub> mode is the *slowest* mode)

### Modal dispersion results in pulse broadening



modal dispersion: different modes arrive at the receiver with different delays => pulse broadening

28

#### Estimated modal dispersion pulse broadening using phase velocity

• A zero-order mode traveling near the waveguide axis needs time:

$$t_0 = L/v_{m=0} \approx Ln_1/c \qquad (v_{m=0} \approx c/n_1)$$

• The highest-order mode traveling near the critical angle needs time:

$$t_{\rm m} = L/v_{\rm m} \approx Ln_2/c$$

$$(v_m \approx c/n_2)$$



=> the *pulse broadening* due to modal dispersion:

$$\Delta T \approx t_0 - t_m \approx (L/c) (n_1 - n_2)$$

$$\approx (L/2cn_1) NA^2$$

$$(n_1 \sim n_2)$$

e.g. How much will a light pulse spread after traveling along 1 km of a step-index fiber whose NA = 0.275 and  $n_{core} = 1.487$ ?

### How does modal dispersion restricts fiber bit rate?

Suppose we transmit at a low bit rate of 10 Mb/s

 $\Rightarrow$  Pulse duration =  $1/10^7$  s = 100 ns

Using the above e.g., each pulse will spread up to  $\approx 100$  ns (i.e.  $\approx$  pulse duration!) every km

⇒The broadened pulses overlap! (Intersymbol interference (ISI))

\*Modal dispersion limits the bit rate of a fiber-optic link to ~ 10 Mb/s. (a coaxial cable supports this bit rate easily!)

30

### Bit-rate distance product

- We can relate the pulse broadening  $\Delta T$  to the *information-carrying* capacity of the fiber measured through the bit rate B.
- Although a precise relation between B and  $\Delta T$  depends on many details, such as the pulse shape, it is intuitively clear that  $\Delta T$  should be less than the allocated bit time slot given by 1/B.
- $\Rightarrow$ An *order-of-magnitude* estimate of the supported bit rate is obtained from the condition  $B\Delta T < 1$ .
- $\Rightarrow$ *Bit-rate distance product* (limited by modal dispersion)

$$BL < 2c n_{core} / NA^2$$

This condition provides a rough estimate of a fundamental limitation of step-index multimode fibers.

(the smaller is the NA, the larger is the bit-rate distance product)

3′

The capacity of optical communications systems is frequently measured in terms of the **bit rate-distance product**.

e.g. If a system is capable of transmitting 10 Mb/s over a distance of 1 km, it is said to have a *bit rate-distance* product of 10 (Mb/s)-km.

This may be suitable for some *local-area networks* (*LANs*).

**Note** that the same system can transmit 100 Mb/s along 100 m, or 1 Gb/s along 10 m, or 10 Gb/s along 1 m, or 100 Gb/s along 10 cm, 1 Tb/s along 1 cm

### Single-mode fiber eliminates modal dispersion



- The main advantage of *single*-mode fibers is to propagate *only one* mode so that modal dispersion is absent.
- However, pulse broadening does not disappear altogether. The group *velocity* associated with the fundamental mode is *frequency dependent* within the pulse *spectral linewidth* because of <u>chromatic dispersion</u>.

### 2. Chromatic dispersion

• Chromatic dispersion (CD) may occur in *all* types of optical fiber. The optical pulse broadening results from the *finite spectral linewidth* of the optical source and the modulated carrier.



\*In the case of the <u>semiconductor laser</u>  $\Delta\lambda$  corresponds to only a fraction of % of the centre wavelength  $\lambda_o$ . For <u>LEDs</u>,  $\Delta\lambda$  is likely to be a significant percentage of  $\lambda_o$ .

### Spectral linewidth

- Real sources emit over a range of wavelengths. This range is the *source linewidth* or *spectral width*.
- The smaller is the linewidth, the smaller is the spread in wavelengths or frequencies, the more *coherent* is the source.
- An *ideal* perfectly coherent source emits light at a *single* wavelength. It has *zero* linewidth and is *perfectly* monochromatic.

| Light sources              | Linewidth (nm) |
|----------------------------|----------------|
| Light-emitting diodes      | 20 nm – 100 nm |
| Semiconductor laser diodes | 1 nm – 5 nm    |
| Nd:YAG solid-state lasers  | 0.1 nm         |
| HeNe gas lasers            | 0.002 nm       |

• Pulse broadening occurs because there may be *propagation delay differences* among the *spectral components* of the transmitted signal.



**Chromatic dispersion (CD):** Different spectral components of a *pulse* travel at different *group velocities*. This is known as *group velocity dispersion* (GVD).

#### **Dispersion in Single-mode Fibres**

Single-mode fibres are far superior to multimode fibres in dispersion characteristics, because they avoid multipath effects, ie. energy of injected pulse is transported by a singlemode only.

However, some dispersion still exists.

Group velocity of fundamental mode is frequency dependent - hence different spectral components of the pulse travel at slightly different group velocities.

#### **Group Velocity Dispersion (GVD)**

Contribution: (i) material dispersion (ii) waveguide dispersion

Time delay for a specific spectral component at frequency ω arriving at output of fibre of length L is

$$T = \frac{L}{v_g}$$

where group velocity 
$$v_g = \left(\frac{d\beta}{d\omega}\right)^{-1}$$

Since 
$$\beta = \overline{n}k_0 = \overline{n}\frac{\omega}{c}$$

$$\Rightarrow v_g = \frac{c}{\overline{n}_g}$$

Group Index
$$\overline{n}_g = \overline{n} + \omega \left( \frac{d \overline{n}}{d\omega} \right)$$
Mode index

Frequency dependence of  $v_g$  causes pulse broadening because different spectral components of the pulse disperse

10 = 20 f =

during propagation and do not arrive simultaneously at the fibre output.

If  $\Delta\omega$  is spectral width of the pulse  $\Rightarrow$  pulse broadening for fibre length L is

$$\Delta T = \frac{dT}{d\omega} \Delta \omega = \frac{d}{d\omega} \left( \frac{L}{v_g} \right) \Delta \omega = L \frac{d^2 \beta}{d\omega^2} \Delta \omega$$

In optical fibre communications,  $\Delta\lambda$  is used instead of  $\Delta\omega$ .

If the frequency spread  $\Delta\omega$  is determined by range of wavelengths  $\Delta\lambda$  emitted by source, using  $\omega=\frac{2\pi c}{\lambda}$ 

$$\Delta \omega = -\frac{2\pi c}{\lambda^2} \Delta \lambda$$

$$\Rightarrow \Delta T = -\frac{2\pi c}{\lambda^2} \left( \frac{d^2 \beta}{d\omega^2} \right) L \Delta \lambda$$

$$\Rightarrow \Delta T = D L \Delta \lambda$$

where <u>Dispersion parameter</u>

$$D \equiv -\frac{2\pi c}{\lambda^2} \left( \frac{d^2 \beta}{d\omega^2} \right)$$

D is expressed in ps/km-nm

#### Effect of dispersion on bit rate

Using rough criterion that pulse broadening  $\Delta T$  must be less than time allocated to a bit ie.  $\frac{1}{B}$ 

Require 
$$\Delta T < \frac{1}{B}$$

$$\Rightarrow B |D| L \Delta \lambda < 1$$

- gives order of magnitude estimate of  $B \cdot L$  product offered by single-mode fibre.
- eg. For operation near  $\lambda = 1.3 \,\mu m$ ,  $D \sim 1 \,\text{ps/km} \cdot \text{nm}$

For semiconductor (multimode) laser of spectral width  $\Delta\lambda = 2 - 4 \, nm$   $\Rightarrow B \, L \sim 100 \, (\text{Gb/s}) \cdot \text{km}$ 

For semiconductor (single-mode) laser of spectral width  $\Delta \lambda < 1 \, nm$ 

$$\Rightarrow BL \sim 1 \text{ (Tb/s)} \cdot \text{km}$$
 for fibre.

#### Behaviour of dispersion parameter D

D varies with wavelength

$$D = -\frac{2\pi c}{\lambda^2} \left( \frac{d^2 \beta}{d\omega^2} \right)$$
 and 
$$\beta = -\frac{\overline{n} \omega}{c} \qquad \text{where } \overline{n} \text{ is the mode index}$$
 
$$\Rightarrow D = -\frac{2\pi}{\lambda^2} \left( 2\frac{d \overline{n}}{d\omega} + \omega \frac{d^2 \overline{n}}{d\omega^2} \right)$$

This can be decomposed into two additive terms.

 $D_{\!\scriptscriptstyle M}$  - material dispersion

 $D_{W}$  - waveguide dispersion

due to refractive index of silica changing with optical freq.  $\omega$  due to normalised propagation constant b changing with optical freq  $\omega$  (Proportion of field in core & cladding changes with  $\omega$  & V)

#### **Material Dispersion**

Occurs because refractive index of silica changes with optical frequency  $\boldsymbol{\omega}$ 



Wavelength dependence of n and group index  $n_g$  for fused silica

$$D_M \propto \frac{dn_g}{d\lambda}$$

It turns out that  $\frac{dn_g}{d\lambda} = 0$  at  $\lambda = 1.276 \,\mu m \equiv \lambda_{ZD}$ 

ie. zero material dispersion wavelength  $D_{M}=0$  at  $\lambda=\lambda_{MZD}$ 

Note  $D_M < 0$  below  $\lambda_{MZD}$  and  $D_M > 0$  above  $\lambda_{MZD}$ 

#### Waveguide Dispersion

Occurs because propagation constant b depends on optical frequency  $\omega$  and on the V parameter of the fibre.

It turns out that  $D_W < 0$  in the entire range 0-1.6  $\mu$ m.

Since  $D_M>0$  for  $\lambda>\lambda_{MZD}$ , it is possible to cancel the waveguide & material dispersion at a specific  $\lambda$  to get total dispersion  $D=D_M+D_W=0$ 



Total dispersion D = 0 at  $\lambda_{ZD} = 1.31 \,\mu m$ .

At the low-fibre-loss wavelength of  $\lambda = 1.55 \,\mu m$ ,  $D = 15 - 18 \,ps/(km \cdot nm)$ 

This is relatively high and limits the performance of 1.55  $\mu m$  systems.

#### **Dispersion-shifted Fibres**

The waveguide contribution  $D_W$  depends on fibre parameters such as core radius a, index difference  $\Delta$ .

Hence can design fibre index profile so that  $\lambda_{Z\!D}$  is shifted to 1.55  $\mu m$ .



It is also possible to tailor the waveguide contribution so that the total dispersion is reduced over a range 1.3-1.6  $\mu m \to$  dispersion flattened fibres.

The design of dispersion modified fibres uses multiple cladding layers & tailored refractive index profile.



#### Typical fibre characteristics

#### Single-mode fibre

Corning SMF-28

NA = 0.13

 $\Delta = 0.36\%$ 

Spot size diameter =  $9.3 \mu m$ 

 $\lambda_{ZD}$  = 1.312  $\mu$ m

#### Dispersion-shifted fibre

Corning SMF-DS

NA = 0.17

 $\Delta = 0.90\%$ 

Spot size diameter =  $8.1 \mu m$ 

 $\lambda_{ZD}$ = 1.550  $\mu$ m

### **Chromatic Dispersion Compensation**

• Chromatic dispersion is *time independent* in a *passive* optical link ⇒allow compensation along the entire fiber span (**Note** that recent developments focus on *reconfigurable* optical link, which makes chromatic dispersion *time dependent*!)

Two basic techniques: (1) dispersion-compensating fiber DCF

(2) dispersion-compensating **fiber grating** 

• The basic idea for DCF: the *positive dispersion* in a conventional fiber (say ~ 17 ps/(km-nm) in the 1550 nm window) can be compensated for by inserting a *fiber with negative dispersion* (i.e. with large -ve  $D_{wg}$ ).



• In a *dispersion-managed* system, positive dispersion transmission fiber *alternates with negative dispersion compensation elements*, such that the *total* dispersion is *zero* end-to-end.

### Dispersion-Compensating Fiber

The concept: using a span of fiber to *compress* an initially <u>chirped</u> pulse.



Dispersion compensated channel:  $D_2 L_2 = -D_1 L_1$ 



## e.g. What DCF is needed in order to compensate for dispersion in a conventional single-mode fiber link of 100 km?

Suppose we are using Corning SMF-28 fiber,

- => the dispersion parameter D(1550 nm) ~ 17 ps/(km-nm).
- $\Rightarrow$  Pulse broadening  $\Delta T_{chrom} = D(\lambda) \Delta \lambda L \sim 17 \times 1 \times 100 = 1700 \text{ ps.}$

assume the semiconductor (diode) laser linewidth  $\Delta\lambda \sim 1$  nm.

⇒The DCF needed to compensate for 1700 ps with a large negative-dispersion parameter

i.e. we need  $\Delta T_{chrom} + \Delta T_{DCF} = 0$ 

$$\Rightarrow \Delta T_{DCF} = D_{DCF}(\lambda) \Delta \lambda L_{DCF}$$

suppose typical ratio of  $L/L_{DCF} \sim 6 - 7$ , we assume  $L_{DCF} = 15$  km

$$=>D_{DCF}(\lambda) \sim -113 \text{ ps/(km-nm)}$$

\*Typically, only one wavelength can be compensated exactly.

Better CD compensation requires both dispersion and dispersion slope compensation.

### Disadvantages in using DCF

- Added loss associated with the increased fiber span
- Nonlinear effects may degrade the signal over the long length of the fiber if the signal is of sufficient intensity.
- Links that use DCF often require an *amplifier* stage to compensate the added loss.



### 3. Polarization Mode Dispersion (PMD)

• In a single-mode optical fiber, the optical signal is carried by the *linearly polarized* "fundamental mode" LP<sub>01</sub>, which has *two polarization components that are orthogonal*.



76

• In a *real* fiber (i.e.  $n_{gx} \neq n_{gy}$ ), the two orthogonal polarization modes propagate at *different group velocities*, resulting in pulse broadening – polarization mode dispersion.



Single-mode fiber L km

- \*1. *Pulse broadening* due to the orthogonal polarization modes (*The time delay between the two polarization components is characterized as the differential group delay (DGD)*.)
- 2. Polarization varies along the fiber length

• The refractive index difference is known as birefringence.

$$B = n_x - n_y \qquad (\sim 10^{-6} - 10^{-5} \, for \\ single-mode \, fibers)$$
 assuming  $n_x > n_v => y$  is the *fast axis*,  $x$  is the *slow axis*.

\*B varies *randomly* because of *thermal and mechanical stresses over time* (due to *randomly varying* environmental factors in submarine, terrestrial, aerial, and buried fiber cables).

=> PMD is a statistical process!

### Randomly varying birefringence along the fiber



• The polarization state of light propagating in fibers with *randomly varying birefringence* will generally be *elliptical and would quickly reach a state of arbitrary polarization*.

\*However, the final polarization state is *not* of concern for most lightwave systems as *photodetectors are insensitive to the state of polarization*.

(**Note**: recent technology developments in "*Coherent Optical Communications*" do require polarization state to be analyzed.)

• A <u>simple model</u> of PMD divides the fiber into a large number of segments. Both the *magnitude of birefringence B* and the *orientation of the principal axes* remain constant in each section but *changes randomly from section to section*.

### A simple model of PMD



Randomly changing differential group delay (DGD)

• Pulse broadening caused by a *random* change of fiber polarization properties is known as <u>polarization mode dispersion</u> (PMD).

PMD pulse broadening 
$$\Delta T_{PMD} = D_{PMD} \sqrt{L}$$

 $D_{PMD}$  is the PMD parameter (coefficient) measured in  $ps/\sqrt{km}$ .

√L models the "random" nature (like "random walk")

- \* D<sub>PMD</sub> does not depend on wavelength (first order);
- \*Today's fiber (since 90's) PMD parameter is 0.1 0.5 ps/ $\sqrt{km}$ . (Legacy fibers deployed in the 80's have  $D_{PMD} > 0.8 \text{ ps/}\sqrt{km}$ .)

**e.g.** Calculate the pulse broadening caused by PMD for a singlemode fiber with a PMD parameter  $D_{PMD} \sim 0.5 \text{ ps/}\sqrt{\text{km}}$  and a fiber length of 100 km. (i.e.  $\Delta T_{PMD} = 5 \text{ ps}$ )

Recall that pulse broadening due to <u>chromatic dispersion</u> for a 1 nm linewidth light source was ~ 15 ps/km, which resulted in <u>1500 ps</u> for 100 km of fiber length.

=> **PMD** pulse broadening is *orders of magnitude less* than chromatic dispersion!

\*PMD is relatively small compared with chromatic dispersion. But when one operates at zero-dispersion wavelength (or *dispersion compensated wavelengths*) with narrow spectral width, PMD can become a significant component of the total dispersion.

### So why do we care about PMD?

Recall that chromatic dispersion can be compensated to  $\sim 0$ , (at least for single wavelengths, namely, by designing proper -ve waveguide dispersion)

but there is no simple way to eliminate PMD completely.

=> It is PMD that limits the fiber bandwidth after chromatic dispersion is compensated!

• PMD is of lesser concern in lower data rate systems. At lower transmission speeds (*up to and including 10 Gb/s*), networks have higher tolerances to all types of dispersion, including PMD.

As data rate increases, the dispersion tolerance reduces significantly, creating a need to control PMD as much as possible at the current **40 Gb/s** system.

**e.g.** The pulse broadening caused by PMD for a singlemode fiber with a PMD parameter of  $0.5 \text{ ps/}\sqrt{\text{km}}$  and a fiber length of 100 km => 5 ps.

However, this is comparable to the 40G bit period = 25 ps!

### Polarizing effects of conventional / polarizationpreserving fibers



### Polarization-preserving fibers

- The fiber birefringence is enhanced in single-mode polarization-preserving (polarization-maintaining) fibers, which are designed to maintain the polarization of the launched wave.
- Polarization is preserved because the two possible waves have significantly different propagation characteristics. This keeps them from exchanging energy as they propagate through the fiber.
- Polarization-preserving fibers are constructed by designing asymmetries into the fiber. Examples include fibers with <u>elliptical cores</u> (which cause waves polarized along the *major* and *minor* axes of the ellipse to have different effective refractive indices) and fibers that contain nonsymmetrical stress-producing parts.

### Polarization-preserving fibers



• The shaded region in the bow-tie fiber is highly doped with a material such as boron. Because the thermal expansion of this doped region is so different from that of the pure silica cladding, a nonsymmetrical stress is exerted on the core. This produces a large stress-induced birefringence, which in turn decouples the two orthogonal modes of the singlemode fiber.

### **Multimode Fiber Transmission Distances**

 The possible transmission distances when using fibers with different core sizes and bandwidths for Ethernet, Fibre Channel, and SONET/SDH applications.

**Table 3.3** Transmission distances in meters in multimode fibers using an 850-nm VCSEL

| Application   | Data rate (Gb/s) | 50-μm core |             | 62.5-µm core |            |
|---------------|------------------|------------|-------------|--------------|------------|
|               |                  | 500 MHz.km | 2000 MHz.km | 160 MHz.km   | 200 MHz.km |
| Ethernet      | 1                | 550        | 860         | 220          | 275        |
|               | 10               | 82         | 300         | 26           | 33         |
| Fibre Channel | 1                | 500        | 860         | 250          | 300        |
|               | 2                | 300        | 500         | 120          | 150        |
|               | 10               | 82         | 300         | 26           | 33         |
| SONET/SDH     | 10               | 8.5        | 300         | 25           | 33         |