## **Regression Analysis**

Munmun Akter

Lecturer

NFE, DIU

## What is Regression analysis?

- A statistical technique used to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome).
- It is commonly used for various purposes, including:
- **1.Prediction**: For example, you might want to predict a person's salary based on their education, years of experience, and other factors.
- **2.Causation**: Doesn't prove causation, can provide the **strength and direction** of relationships between variables.
- **3.Modeling**: Used to create mathematical models for **simulations and scenario analysis.**

## Types of regression analysis

- It is classified into many types according to the type of relationship between the two variables such as
- Linear
- Exponential
- Logarithmic
- Power regression analysis

## Types of regression analysis

• Based on different methodologies:

| Type of Regression     | Conditions                                                                       |
|------------------------|----------------------------------------------------------------------------------|
|                        |                                                                                  |
| Univariate             | Only one quantitative response variable                                          |
| Multivariate           | Two or more quantitative response variables                                      |
| Simple                 | Only one explanatory variable                                                    |
| Multiple               | Two or more explanatory variables                                                |
| Linear                 | All parameters enter the equation linearly, possibly after transformation of the |
|                        | data                                                                             |
| Nonlinear              | The relationship between the response and some of the explanatory variables is   |
|                        | nonlinear or some of the parameters appear nonlinearly, but no transformation    |
|                        | is possible to make the parameters appear linearly                               |
| Analysis of variance   | All explanatory variables are qualitative variables                              |
| Analysis of Covariance | Some explanatory variables are quantitative variables and others are qualitative |
|                        | variables                                                                        |
| Logistic               | The response variable is qualitative                                             |

#### **Simple Liner Regression**

used to model the **relationship between two variables**: a **dependent** variable (often denoted as "Y") and an **independent** variable (often denoted as "X"). It is called "**simple**" because it deals with the relationship between **just two variables**, as opposed to **multiple variables** in multiple linear regression. The linear equation

Y = a + bX

Y represents the **dependent variable** (the one you want to predict or explain). X represents the **independent variable** (the one you **use to make predictions**). a is the **intercept** 

b is the **slope**, which represents the change in Y for a one-unit change in X.

- The primary objective of simple linear regression is to estimate the values of a and b that best fit the observed data points.
- The values of a and b are usually estimated using techniques like the Method of least squares.
- Slope = b =  $(X-X)(y-y)/\Sigma (X-X)^2$

Or, b=(N  $\Sigma Xy$ )-( $\Sigma X$ )( $\Sigma y$ )/(N  $\Sigma X^2$ -( $\Sigma X$ )<sup>2</sup>)

Intercept = a = mean y-b\* mean X
 Or, a= Σy/N

Straight-line plot.



#### **Calculation of Simple Linear Regression**

We'll use the following dataset:

X (Hours Studied) Y (Test Scores)

| 2 | 65 |
|---|----|
| 3 | 75 |
| 4 | 82 |
| 5 | 88 |
| 6 | 92 |

1. Calculate the **means of X and Y:** Mean of X ( $\bar{X}$ ) = (2 + 3 + 4 + 5 + 6) / 5 = 4 Mean of Y ( $\bar{Y}$ ) = (65 + 75 + 82 + 88 + 92) / 5 = 80.4 2. Calculate the **differences** between each **data** point and the **means** of X and Y:

| X (Hours Studied) | Y (Test Scores) | X - X | Y - Ÿ (X - X) | )(Y - <u></u> Y) |
|-------------------|-----------------|-------|---------------|------------------|
| 2                 | 65              | -2    | -15.4         | 30.8             |
| 3                 | 75              | -1    | -5.4          | 5.4              |
| 4                 | 82              | 0     | 1.6           | 0                |
| 5                 | 88              | 1     | 7.6           | 7.6              |
| 6                 | 92              | 2     | 11.6          | 23.2             |

3. Calculate the **sum of the products** of the differences  $(\Sigma[(X - \overline{X})(Y - \overline{Y})])$ :  $\Sigma[(X - \overline{X})(Y - \overline{Y})] = 30.8 + 5.4 + 0 + 7.6 + 23.2 = 67$ 

4. Calculate the sum of the squared differences between X and X ( $\Sigma[(X - X)^2]$ ):

$$\Sigma[(X - X)^2] = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 10$$

5. Calculate the slope (b) using the formula:

$$D = \Sigma[(X - \overline{X})(Y - \overline{Y})] / \Sigma[(X - \overline{X})^2]$$

= 67 / 10 = 6.7

- 6. Calculate the **intercept (a)** using the formula:
  - a = Mean Y- b\* Mean X

= 80.4 - 6.7 \* 4 = 80.4 - 26.8 = 53.6

So, the **linear regression** equation for this dataset is:

#### Test Score (Y) = 53.6 + 6.7 \* Hours Studied (X)

In this case, the **slope (b)** tells that, on average, for each additional hour studied, the test score is expected to increase by approximately 6.7 points, and the **intercept (a)** is the predicted test score when a student studies for **0 hours.** 

With this equation, you can make **predictions** about a student's test score based on the number of hours they study.

For example, if a student studies for **7 hours**, you can predict their test score as:

Test Score = 53.6 + 6.7\* 7 = 100.5

**Interpretation**: according to the regression model, a student who studies for 7 hours is predicted to score around 100.5 on the test.

Thus Simple linear regression helps quantify the relationship between variables and make predictions or understand how one variable influences the other.

## A simple example of a regression equation to the glucose level given the age.

**Step 1:** Make a chart of your data, filling in the columns in the same way as yo the chart if you were finding the <u>Pearson's Correlation Coefficient</u>

| SUBJECT | AGE X | GLUCOSE LEVEL Y | XY    | X2    |
|---------|-------|-----------------|-------|-------|
| 1       | 43    | 99              | 4257  | 1849  |
| 2       | 21    | 65              | 1365  | 441   |
| 3       | 25    | 79              | 1975  | 625   |
| 4       | 42    | 75              | 3150  | 1764  |
| 5       | 57    | 87              | 4959  | 3249  |
| 6       | 59    | 81              | 4779  | 3481  |
| Σ       | 247   | 486             | 20485 | 11409 |
|         |       | 100             | 20100 |       |

Find  $b_1$ :

$$b_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b_1 = \frac{6(20485) - (247)(486)}{6(11409) - (247)^2}$$

$$b_1 = \frac{2868}{7445} = 0.385335$$

# A simple example of a regression equation to predict the glucose level given the age.

• **Step 3:** Insert the values into the equation.

$$y' = b_0 + b_1 x$$

$$y' = 65.14 + 0.385225x$$

• **Step 4:** *Prediction – the value of y for the given value of x = 55* 

$$y' = 65.14 + (0.385225 * 55)$$
  
 $y' = 86.327$ 

Hence, the glucose level for the given age 55 is 86.327

## What does the value a and b mean?

- Suppose if Y= -1+ 3(X), This equation tells us that
- Since a is negative, the line crosses the Y-axi: below the origin. It also describe the value when X=0
- Since the slope (b) is positive, the line extends from the lower left-hand corner to the upper right hand corner of the graph.
- It also states that, for each unit increase in X, Y increases by an amount equal to 3.



#### Practices

- Interpret the following data:
  - 1. Y= -3+ 2x
  - 2. Y= 3+0.5 x
  - 3. Y= 10-0.75X
  - 4. Y= -10-0.75X
- The following score represent a nurse assessment (X) and a physicians assessment (Y) of the condition of 10 patients at a time of admission to a trauma cancer:

X: 18 13 18 15 10 12 8 4 7 3

Y: 23 20 18 16 14 11 10 7 6 4

Question: Indicate which one you think best fit the data

(a) y=8+0.5x; (b) y=-10+2x; (c) y=1+1x

## PRACTICE PROBLEMS

Q1: Calculate the regression equation of X on Y using method of least squares: X = 0.5 + 0.5Y



Q2: Given the following data: N = 8,  $\Sigma X = 21$ ,  $\Sigma X^2 = 99$ ,  $\Sigma Y = 4$ ,  $\Sigma Y^2 = 68$ ,  $\Sigma XY = 36$ Using the values, find:

- Regression Equation of Y on X
- Regression Equation of X on Y
- Value of Y when X = 10
- Value of X when Y = 2.5

Y = -1.025 + 0.581X

X = 2.432 + 0.386Y

Y = 4.785

X = 3.397

REGRESSION EQUATIONS USING REGRESSION COEFFICIENTS (USING ACTUAL VALUES)

Regression Equation of Y on X

Q3: Calculate the regression equation of Y on X & X on Y Y = 1.3X + 1.1, X = 0.5 + 0.5Y



#### REGRESSION EQUATIONS USING REGRESSION COEFFICIENTS (USING DEVIATIONS FROM ACTUAL VALUES)

o Regression Equation of Y on X

• 
$$Y - \overline{Y} = b_{yx} (X - \overline{X})$$
 where  $b_{yx} = \frac{\Sigma x y}{\Sigma x^2}$ 

o Regression Equation of X on Y

• 
$$X - \overline{X} = b_{xy} (Y - \overline{Y})$$
 where  $b_{xy} = \frac{\Sigma xy}{\Sigma y^2}$ 

Q4: Calculate the regression equation of Y on X & X on Y using method of least squares: Y = 0.26X + 3.2, X = 4.75 + 0.45Y



## Standard Error of Estimate or Regression

- The standard error of the regression (S), also known as the standard error of the estimate, represents the average distance that the observed values fall from the regression line.
- A small SE is an indication that the sample mean is a more accurate reflection of the actual population mean. A larger sample size will normally result in a smaller SE (while SD is not directly affected by sample size).
- For two regression lines, there are two standard error of estimates

1. SE of estimates of Y on X ( $S_{yx}$ )

2. SE of estimates of X on Y ( $S_{xy}$ )

• Formula: **S**<sub>yx</sub> = **ν((ΣΥ<sup>2</sup>-aΣΥ-bΣΧΥ)/N**);

- here a and b are to be obtained from normal equation.
- Solve this: Q11: Given:  $\Sigma X = 15$ ,  $\Sigma Y = 110$ ,  $\Sigma XY = 400$ ,  $\Sigma X^2 = 250$ ,  $\Sigma Y^2 = 3200$ , N = 10. Calculate S<sub>yx</sub> Ans: 13.21

Q12: Compute regression equation Y on X. Hence, find  $S_{yx}$ Ans: Y = 11.9 – 0.65X, 0.79



## **Multiple Linear Regression Analysis**

- Here the study variable(outcome) depends on more than one explanatory or independent variables, called a multiple linear regression model.
- Let Y denotes the dependent (or study) variable that is linearly related to K independent (or explanatory) variables  $X_1, X_2, ..., X_k$  through the parameters  $\beta_1, \beta_2, ..., \beta_k$  and we write

$$\mathbf{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \dots + \mathbf{X}_k \boldsymbol{\beta}_k + \boldsymbol{\varepsilon}$$

 The parameters β<sub>1</sub>, β<sub>2</sub>, ,..., β<sub>k</sub> are the regression coefficients associated with X<sub>1</sub>, X<sub>2</sub>, ,..., X<sub>k</sub> respectively and ε is the random error component reflecting the difference between the observed and fitted linear relationship.

| SUBJECT | Y    | X1 | X <sub>2</sub> | <b>X</b> 1 <b>X</b> 1 | X <sub>2</sub> X <sub>2</sub> | <b>X</b> 1 <b>X</b> 2 | X1Y   | X <sub>2</sub> Y |
|---------|------|----|----------------|-----------------------|-------------------------------|-----------------------|-------|------------------|
| 1       | -3.7 | 3  | 8              | 9                     | 64                            | 24                    | -11.1 | -29.6            |
| 2       | 3.5  | 4  | 5              | 16                    | 25                            | 20                    | 14    | 17.5             |
| 3       | 2.5  | 5  | 7              | 25                    | 49                            | 35                    | 12.5  | 17.5             |
| 4       | 11.5 | 6  | 3              | 36                    | 9                             | 18                    | 69    | 34.5             |
| 5       | 5.7  | 2  | 1              | 4                     | 1                             | 2                     | 11.4  | 5.7              |
| Σ       | 19.5 | 20 | 24             | 90                    | 148                           | 99                    | 95.8  | 45.6             |

$$\sum x_{1}^{2} = \sum X_{1}X_{1} - \frac{(\sum X_{1})(\sum X_{1})}{N}$$

$$\sum x_{2}^{2} = \sum X_{2}X_{2} - \frac{(\sum X_{2})(\sum X_{2})}{N}$$

$$\sum x_{1}y = \sum X_{1}Y - \frac{(\sum X_{1})(\sum Y)}{N}$$

$$\sum x_{2}y = \sum X_{2}Y - \frac{(\sum X_{2})(\sum Y)}{N}$$

$$\sum x_{1}x_{2} = \sum X_{1}X_{2} - \frac{(\sum X_{1})(\sum X_{2})}{N}$$

$$b_{1} = \frac{(\sum x_{1}^{2})(\sum x_{1}y) - (\sum x_{1}x_{2})(\sum x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$b_{2} = \frac{(\sum x_{1}^{2})(\sum x_{2}y) - (\sum x_{1}x_{2})(\sum x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})(\sum x_{2})}$$

y

v

$$b_{1} = \frac{(\sum x_{2}^{2})(\sum x_{1}y) - (\sum x_{1}x_{2})(\sum x_{2}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}} = \frac{32.8 * 17.8 - 3 * (-48)}{10 * 32.8 - 3 * 3} = 2.28$$

$$b_2 = \frac{(\sum x_1^2)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} = \frac{10 * (-48) - 3 * 17.8}{10 * 32.8 - 3 * 3} = -1.67$$

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 = \frac{19.5}{5} - \frac{2.28 * 20}{5} - \frac{-1.67 * 24}{5} = 2.796$$

### Final Regression equation or Model is:

$$Y = 2.796 + 2.28 x_1 - 1.67 x_2$$

Now given 
$$x_1 = 3$$
 and  $x_2 = 2$   $Y = ?$ 

$$Y = 2.796 + 2.28 * 3 - 1.67 * 2 = 6.296$$

#### Example2: Step 1: Calculate Regression Sums.

make the following regression sum calculations: • $\Sigma x_1^2 = \Sigma X_1^2 - (\Sigma X_1)^2 / n = 38,767 - (555)^2 / 8 = 263.875$ 

•
$$\Sigma x_2^2 = \Sigma X_2^2 - (\Sigma X_2)^2 / n = 2,823 - (145)^2 / 8 = 194.875$$

•
$$\Sigma x_2 y = \Sigma X_2 y - (\Sigma X_2 \Sigma y) / n = 25,364 - (145*1,452) / 8 = -953.5$$

• $\Sigma x_1 x_2 = \Sigma X_1 X_2 - (\Sigma X_1 \Sigma X_2) / n = 9,859 - (555*145) / 8 = -200.375$ 

|      | У     | <b>X</b> 1 | X <sub>2</sub> |
|------|-------|------------|----------------|
|      | 140   | 60         | 22             |
|      | 155   | 62         | 25             |
|      | 159   | 67         | 24             |
|      | 179   | 70         | 20             |
|      | 192   | 71         | 15             |
|      | 200   | 72         | 14             |
|      | 212   | 75         | 14             |
|      | 215   | 78         | 11             |
| Mean | 181.5 | 69.375     | 18.125         |
| Sum  | 1452  | 555        | 145            |

| X <sub>1</sub> <sup>2</sup> | X <sub>2</sub> <sup>2</sup> | X <sub>1</sub> y | X <sub>2</sub> y | X <sub>1</sub> X <sub>2</sub> |
|-----------------------------|-----------------------------|------------------|------------------|-------------------------------|
| 3600                        | 484                         | 8400             | 3080             | 1320                          |
| 3844                        | 625                         | 9610             | 3875             | 1550                          |
| 4489                        | 576                         | 10653            | 3816             | 1608                          |
| 4900                        | 400                         | 12530            | 3580             | 1400                          |
| 5041                        | 225                         | 13632            | 2880             | 1065                          |
| 5184                        | 196                         | 14400            | 2800             | 1008                          |
| 5625                        | 196                         | 15900            | 2968             | 1050                          |
| 6084                        | 121                         | 16770            | 2365             | 858                           |
| 38767                       | 2823                        | 101895           | 25364            | 9859                          |

263.875 **Reg Sums** 194.875 1162.5 -953.5 -200.375

Sum

#### Step 2: Calculate b<sub>0</sub>, b<sub>1</sub>, and b<sub>2</sub>.

The formula to calculate  $b_1$  is:  $[(\Sigma x_2^2)(\Sigma x_1 y) - (\Sigma x_1 x_2)(\Sigma x_2 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$ 

Thus,  $\mathbf{b_1} = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875)(194.875) - (-200.375)^2] =$ **3.148** 

The formula to calculate  $b_2$  is:  $[(\Sigma x_1^2)(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$ 

Thus,  $\mathbf{b_2} = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875) (194.875) - (-200.375)^2] = -1.656$ 

The formula to calculate  $b_0$  is:  $y - b_1X_1 - b_2X_2$ Thus,  $b_0 = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867$ Step 3: Place  $b_0$ ,  $b_1$ , and  $b_2$  in the estimated linear regression equation. The estimated linear regression equation is:  $\hat{y} = b_0 + b_1^*x_1 + b_2^*x_2$ In our example, it is  $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$ 

#### How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation:

$$\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$$

 $b_0 = -6.867$ . When both predictor variables are equal to zero, the mean value for y is -6.867.

**b**<sub>1</sub> = **3.148**. A one unit increase in  $x_1$  is associated with a 3.148 unit increase in y, on average, assuming  $x_2$  is held constant.

 $b_2 = -1.656$ . A one unit increase in  $x_2$  is associated with a 1.656 unit decrease in y, on average, assuming  $x_1$  is held constant.

## What Is R-Squared or Coefficient of regression?

- R-squared (R<sup>2</sup>) is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable in a regression model.
- Whereas correlation explains the strength of the relationship between an independent and a dependent variable, R-squared explains the extent to which the variance of one variable explains the variance of the second variable. So, if the R<sup>2</sup> of a model is 0.50, then approximately half of the observed variation can be explained by the model's inputs.
- R-squared values range from 0 to 1 and are commonly stated as percentages from 0% to 100%. An R-squared of 100% means that all of the movements of a security (or another dependent variable) are completely explained by movements in the index (or whatever independent variable you are interested in).

## Adjusted **R-Squared**

- R-squared only works as **intended** in a **simple linear** regression model with one explanatory variable. With a **multiple** regression made up of several independent variables, the **R-squared must be adjusted**.
- The adjusted R-squared **compares** the **descriptive power** of regression models that include diverse numbers of predictors.
- Every predictor added to a model increases R-squared and never decreases it. Thus, a model with more terms may seem to have a better fit just for the fact that it has more terms.
- It only increases if the new term enhances the model above what would be obtained by probability and decreases when a predictor enhances the model less than what is predicted by chance.

#### Differences between correlation and regression

| Characteristic                          | Correlation                                                                        | Regression                                                                                                                                                        |
|-----------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degree and<br>nature of<br>relationship | Correlation is a measure of<br>degree of relationship<br>between X and Y           | Regression studies the nature of relationship<br>between the variables so that one may be able to<br>predict the value of one variable on the basis of<br>another |
| Cause and<br>effect<br>relationship     | Doesn't always assume<br>cause and effect<br>relationship between two<br>variables | Express the cause and effect relationship<br>between two variables. The independent is the<br>cause and dependent is the effect                                   |
| Prediction                              | Doesn't help in making prediction                                                  | Enable us to make prediction using regression line                                                                                                                |
| Symmetric                               | Correlation coefficient are symmetrical                                            | Regression coefficient are not symmetrical                                                                                                                        |
| Origin and scale                        | It is independent of the change of origin and scale                                | RC is independent of change of origin but not of scale.                                                                                                           |

## Class Work

- What is the differences between simple linear regression and multiple linear regression?
- Try to find the relation between the GPA of a class of students, the number of hours of study, and the student's height.

| GPA (Y) | Hr of Study (X1) | Height (inch) (X2) |
|---------|------------------|--------------------|
| 3.02    | 2                | 57                 |
| 3.72    | 7                | 53                 |
| 3.55    | 5                | 60                 |
| 3.45    | 6                | 55                 |