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Probability distribution

It describes the likelihood of different outcomes or values in a random

experiment, random process, or statistical data set.
It specifies the probabilities associated with each possible outcome,

event, or value of a random variable.

Probability Distributions

Discrete Probability Continuous Probability
Distribution Distribution

Binomial Poisson Normal Uniform
Distribution Distribution Distribution Distribution



Range of possible values

Probability of specific
values

Probability function

Sum of probabilities

Discrete Distributions

only take on a specific set
of values

probability of a specific
value occurring in a discrete
probability distribution is
non-zero

probability mass function

sum of the probabilities of
all possible outcomes must
equal to 1

Continuous Distribution

any value within a given
range

probability of a specific
value occurring in a
continuous probability
distribution is always zero.

probability density function

sum of the probabilities
cannot be calculated
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Probability Density Function

Count,Sum,Proportion

[ntegration

P(X=x) =1(x)

P(X=x)= [ f(x).dx

CME PMF = Sum, Difference

CDF,PDF = Integrate, Differentiate




Two key characteristics of a probability distribution are:

1. Probability Mass Function (PMF) or Probability Density Function
(PDF): It specifies the probability associated with each possible outcome

or value of the random variable.

2. Cumulative Distribution Function (CDF): It provides the probability
that the random variable is less than or equal to a particular value. It is a
cumulative measure of the probabilities as you move along the values of

the random variable.



Binomial distribution
It models the number of
successful outcomes (usually
denoted as "x") in a fixed
number of independent and
identical Bernoulli trials.
Each Bernoulli trial has two
possible outcomes: "success”
and "failure.”

Binomial Distribution Formula

r _n—X F! X _ =X

n - _
P(x)(xJp T (n—x)!x!p 1

where

n = the number of trials (or the number being sampled)
x = the number of successes desired

p = probability of getting a success in one trial

g =1 —p = the probability of getting a failure in one trial




Poisson distribution

is a probability distribution that

expresses the probability of a given

number of events occurring in a fixed

interval of time or space.

It is characterized by A (lambda), which

represents the average rate of

occurrence of the events in the given

interval.

The mean (u) and variance (02) of the

distribution are both equal to A.
u=02=A

Poisson Distribution Formula

e’

where

X=0123,..

A =mean number of occurrences in the interval
e = Euler’s constant & 2.71828




Normal distribution:

also known as the Gaussian distribution or
bell curve, is a continuous probability
distribution that is symmetric around its
mean, which represents the central tendency
of the distribution. The shape of the normal
distribution is characterized by a bell-shaped
curve, and it is completely defined by its
mean (1) and standard deviation (o).




Properties of the normal distribution include:
1.Approximately 68% of the data falls within one standard deviation of the mean.
2.Approximately 95% falls within two standard deviations.

3.Approximately 99.7% falls within three standard deviations.
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X = mean score 7=
x = individual score

Ifx<¥ IFx>%
then Z is negative then Z is positive
Z - —3 Z — -|-3

T-3s T-25%-5 X X+S T+29%+3s
Negative Z score (Z) Positive Z score (Z)



Poisson Distribution - Example

At a Major League Baseball park, five customers arrive at a concession stand on average
in a ten-minute period.

A) What is the probability that in a ten-minute period exactly three people will arrive at
the concession stand’

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

A)).=5, t=1 “=M =5 =23 P(X:x): P(X) =e_“x('}l)x

-5 3
P(X =3)=P(3) = —9—3-;@ = 0.1404



Poisson Distribution - Example

At a Major League Baseball park, five customers arrive at a concession stand on average
in a ten-minute period.

A) What is the probability that in a ten-minute period exactly three people will arrive at

the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

B)/l':S, =2 ‘l:lt:lo x=3 P(X=X)=P(X) =e-“(”)x
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P(X=3)= P(3) = = 0.0076




Poisson Distribution - Example

At a Major League Baseball park, five customers arrive at a concession stand on average
in a ten-minute period.

A) What is the probability that in a ten-minute period exactly three people will arrive at

the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

P(X =x)= P(x) = e-“x(!“)x

C)ya=5 t=2 u=23=10

e o -10 2 -10 3
P(X < 3) = P(0) +P(1)+P(2) +P(3) =~ “}S D s l01(.10)l +2 2('1 2 e ;.1 0)

o1 .10 102 103
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Poisson Distribution - Example

At a Major League Baseball park, five customers arrive at a concession stand on average
in a ten-minute period.

A) What is the probability that in a ten-minute period exactly three people will arrive at

the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

PX=x)= P(x) = e’“x(!u)x

RPPl= 5 t=2r—=23r=10
P(X >3) = P(4)+P(5)+P(6) +-+ =1—P(X <3) =1-0.0103 = 0.9897




Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with g = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?
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Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with 4 = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(Z < —1.5) = 0.0668




Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = [P(Z < —1.5) = 0.0668
P(X > 16.5)
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Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with y = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = |P(Z < —1.5) =0.0668

P(X >165) =  P(Z>1) =0.1587

z—p 165-163 0.2

s o 0.2 07=1 @




Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with 4 = 16.3 in. and ¢ = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = [P(Z < -1.5) = 0.0668]

P(X >16.5) = P(Z > 1) = 0.1587|

-175 0 165 P(15.95 < X < 16.63)
_z—p  1663—163  0.33

A 0.2 02 1% @




Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with p = 16.3 in. and o = 0.2 in. What'’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = |P(Z < —1.5) =0.0668|

P(X >165) = [P(Z>1) =0.1587]
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Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with 4 = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = |P(Z < -1.5) = 0.0668]

P(X >16.5) = P(Z > 1) = 0.1587|

175 0 165 P(15.95 < X < 16.63)
T — v

2= — P(~1.75 < Z < 1.65) @
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Normal Distribution

@ Your local pizza shop claims their large is at least 16 in. or its free. Their
pizza is normally distributed with p = 16.3 in. and o = 0.2 in. What’s the
prob. of getting free pizza? What’s the prob. of getting lucky with pizza
over 16.5 in.? What’s prob. of getting pizza between 15.95 and 16.63 in.?

P(X <16) = |P(Z < —1.5) =0.0668

P(X > 165) = P(Z>1) =0.1687

T — Y

= P(-1.75 < Z < 1.65) = 0.9104 @




Uniform distribution:

also known as a rectangular
distribution, is a probability
distribution where every
possible outcome has an equal
probability of occurring. In
other words, all values in the
distribution have the same
likelihood of being observed
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