Probability Distribution

Munmun Akter

Lecturer

NFE, DIU

Probability distribution

It describes the **likelihood** of different **outcomes or values** in a random **experiment**, random **process**, or statistical **data** set. It specifies the **probabilities** associated with each **possible** outcome, event, or value of a random variable.

	Discrete Distributions	Continuous Distribution
Range of possible values	only take on a specific set of values	any value within a given range
Probability of specific values	probability of a specific value occurring in a discrete probability distribution is non-zero	probability of a specific value occurring in a continuous probability distribution is always zero.
Probability function	probability mass function	probability density function
Sum of probabilities	sum of the probabilities of all possible outcomes must equal to 1	sum of the probabilities cannot be calculated

Two key characteristics of a probability distribution are:

1. Probability Mass Function (PMF) or Probability Density Function (PDF): It specifies the probability associated with each possible outcome or value of the random variable.

2. Cumulative Distribution Function (CDF): It provides the probability that the random variable is less than or equal to a particular value. It is a cumulative measure of the probabilities as you move along the values of the random variable.

Binomial distribution

It models the number of successful outcomes (usually denoted as "x") in a fixed number of independent and identical Bernoulli trials. Each Bernoulli trial has two possible outcomes: "success" and "failure."

Binomial Distribution Formula

$$P(x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{(n-x)! x!} p^{x} q^{n-x}$$

where

n = the number of trials (or the number being sampled)

x = the number of successes desired

p = probability of getting a success in one trial

q = 1 - p = the probability of getting a failure in one trial

Poisson distribution

is a probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space. It is characterized by λ (lambda), which represents the average rate of occurrence of the events in the given

interval.

The mean (μ) and variance (σ 2) of the distribution are both equal to λ .

μ=σ2=λ

Poisson Distribution Formula

$$P(\mathbf{X}=x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

where

$$x = 0, 1, 2, 3, ...$$

 $\lambda =$ mean number of occurrences in the interval
 $e =$ Euler's constant ≈ 2.71828

also known as the Gaussian distribution or bell curve, is a continuous probability distribution that is symmetric around its mean, which represents the central tendency of the distribution. The shape of the normal distribution is characterized by a bell-shaped curve, and it is completely defined by its mean (μ) and standard deviation (σ).

Properties of the normal distribution include:

Approximately 68% of the data falls within one standard deviation of the mean.
 Approximately 95% falls within two standard deviations.

3. Approximately 99.7% falls within three standard deviations.

At a Major League Baseball park, five customers arrive at a concession stand on average in a ten-minute period.

A) What is the probability that in a ten-minute period <u>exactly three</u> people will arrive at the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

Solution

A)
$$\lambda = 5$$
, $t = 1$ $\mu = \lambda t = 5$ $x = 3$ $P(X = x) = P(x) = \frac{e^{-\mu}(\mu)^x}{x!}$
 $P(X = 3) = P(3) = \frac{e^{-5}(5)^3}{3!} = 0.1404$

At a Major League Baseball park, five customers arrive at a concession stand on average in a ten-minute period.

A) What is the probability that in a ten-minute period <u>exactly three</u> people will arrive at the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?D) Find the probability of more than 3 customers arriving in 20 minutes?

Solution

B)
$$\lambda = 5$$
, $t = 2$ $\mu = \lambda t = 10$ $x = 3$ $P(X = x) = P(x) = \frac{e^{-\mu}(\mu)^x}{x!}$
 $P(X = 3) = P(3) = \frac{e^{-10}(10)^3}{3!} = 0.0076$

At a Major League Baseball park, five customers arrive at a concession stand on average in a ten-minute period.

A) What is the probability that in a ten-minute period <u>exactly three</u> people will arrive at the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?D) Find the probability of more than 3 customers arriving in 20 minutes?

Solution

$$P(X = x) = P(x) = \frac{e^{-\mu}(\mu)^x}{x!}$$

C)
$$\lambda = 5$$
, $t = 2$ $\mu = \lambda t = 10$
 $P(X \le 3) = P(0) + P(1) + P(2) + P(3) = \frac{e^{-10}(10)^0}{0!} + \frac{e^{-10}(10)^1}{1!} + \frac{e^{-10}(10)^2}{2!} + \frac{e^{-10}(10)^3}{3!}$
 $= e^{-10} \left(\frac{1}{0!} + \frac{10}{1!} + \frac{10^2}{2!} + \frac{10^3}{3!} \right) = 0.0103$

At a Major League Baseball park, five customers arrive at a concession stand on average in a ten-minute period.

A) What is the probability that in a ten-minute period <u>exactly three</u> people will arrive at the concession stand?

B) Find the probability of exactly 3 customers arriving in 20 minutes?

C) Find the probability of 3 or fewer customers arriving in 20 minutes?

D) Find the probability of more than 3 customers arriving in 20 minutes?

Solution

$$P(X = x) = P(x) = \frac{e^{-\mu}(\mu)^x}{x!}$$

D) $\lambda = 5$, t = 2 $\mu = \lambda t = 10$

 $P(X > 3) = P(4) + P(5) + P(6) + \dots = 1 - P(X \le 3) = 1 - 0.0103 = 0.9897$

P(Z < -1.5)

	40					104
	1.5	0668	.0655	.0643	.0630	.0618
Your local pizza shop claims their large	1.4	0808	.0793	.0778	.0764	.0749
pizza is normally distributed with $\mu = -$	1.3	0968	.0951	.0934	.0918	.0901
prob. of getting free pizza? What's the $-$	1.2	1151	.1131	.1112	.1093	.1075
over 16.5 in.? What's prob. of getting -	1.1	1357	.1335	.1314	.1292	.1271
	1.0	1587	.1562	.1539	.1515	.1492
$P(Y < 16)^{-1}$	0.9	1841	.1814	.1788	.1762	.1736
	0.8	2119	.2090	.2061	.2033	.2005

$$z = \frac{x - \mu}{\sigma} = \frac{16 - 16.3}{0.2} = \frac{-0.3}{0.2} = -1.5$$

Your local pizza shop claims their large is at least 16 in. or its free. Their pizza is normally distributed with $\mu = 16.3$ in. and $\sigma = 0.2$ in. What's the prob. of getting free pizza? What's the prob. of getting lucky with pizza over 16.5 in.? What's prob. of getting pizza between 15.95 and 16.63 in.?

 $P(X < 16) \Rightarrow P(Z < -1.5) = 0.0668$

P(X > 16.5)

$$z = \frac{x - \mu}{\sigma} = \frac{16.5 - 16.3}{0.2} = \frac{0.2}{0.2} = 1$$

	Normal Dist	.00	.01	.02	.03	.04
		.5000	.5040	.5080	.5120	.5160
(F)	0.1	.5398	.5438	.5478	.5517	.5557
Ex	Your local pizza shop claims their large is 0.2	.5793	.5832	.5871	.5910	.5948
-	pizza is normally distributed with $\mu = 16^{0.3}$.6179	.6217	.6255	.6293	.6331
	pizza is normany distributed with $\mu = 10$.	.6554	.6591	.6628	.6664	.6700
	prob. of getting free pizza? What's the $p_{0.5}$.6915	.6950	.6985	.7019	.7054
	over 16.5 in.? What's prob. of getting piz 0.6	.7257	.7291	.7324	.7357	.7389
	0.7	.7580	.7611	.7642	.7673	.7704
	D(V < 16) 0.8	.7881	.7910	.7939	.7967	.7995
	$\Gamma(\Lambda < 10) 0.9$.8159	.8186	.8212	.8238	.8264
	1.0	.8413	.8438	.8461	.8485	.8508
	D(V 105) 1.1	.8643	.8665	.8686	.8708	.8729
/	P(X > 16.5) 1.2	.8849	.8869	.8888	.8907	.8925
	$ \begin{array}{c} \downarrow \\ 0 & 1 \end{array} \qquad \qquad$.841	3			
$z = \frac{1}{2}$	$\frac{x-\mu}{\sigma} = \frac{16.5 - 16.3}{0.2} = \frac{0.2}{0.2} = 1$				Q	RESUBSCRE

 $P(X < 16) \Rightarrow P(Z < -1.5) = 0.0668$ $P(X > 16.5) \Rightarrow P(Z > 1) = 0.1587$

$$z = \frac{x - \mu}{\sigma} = \frac{16.5 - 16.3}{0.2} = \frac{0.2}{0.2} = 1$$

		.00	.01	.02	.03	.04	.05	.06
	Normal lacoo	.5000	.5040	.5080	.5120	.5160	.5199	.5239
		.5398	.5438	.5478	.5517	.5557	.5596	.5636
		.5793	.5832	.5871	.5910	.5948	.5987	.6026
0	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406
(Ex)	Vour local piggo shop alaims their lorg 0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772
\bigcirc	Tour local pizza shop claims their larg _{0.5}	.6915	.6950	.6985	.7019	.7054	.7088	.7123
	pizza is normally distributed with $\mu = 0.6$.7257	.7291	.7324	.7357	.7389	.7422	.7454
	prob of gotting free pigge? What's the 0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764
	prob. of getting free pizza: what's $th_{0.8}$.7881	.7910	.7939	.7967	.7995	.8023	.8051
	over 16.5 in.? What's prob. of getting 0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554
	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770
	$P(X < 16)^{1.2}$.8849	.8869	.8888	.8907	.8925	.8944	.8962
	1 (11 10)1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131
	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279
	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406
/	$P(X > 16.5^{1.6})$.9452	.9463	.9474	.9484	.9495	.9505	.9515
	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608
	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686
-1.7	75 0 1.65 $P(15.95 < X < 16.5)$	63)						
	$x - \mu \qquad \qquad$						-	2
z = -	D(175 < 7 < 1)	65) -	- 0 0	505			11	$\langle \rangle$
~	σ $\Gamma(-1.10 < 2 < 1.10)$	(00) =	- 0.9	000			17	
							\vee 1	

	.00	.01	.02	.03	.04	.05	.06
	.0359	.0351	.0344	.0336	.0329	.0322	.0314
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392
	.0548	.0537	.0526	.0516	.0505	.0495	.0485
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594
(E_X) $X_{-1.4}$.0808	.0793	.0778	.0764	.0749	.0735	.0721
Your local pizza shop claims their $larg_{-1.3}$.0968	.0951	.0934	.0918	.0901	.0885	.0869
pizza is normally distributed with $\mu = -1.2$.1151	.1131	.1112	.1093	.1075	.1056	.1038
pizza is normany distributed with $\mu = -1.1$.1357	.1335	.1314	.1292	.1271	.1251	.1230
prob. of getting free pizza? What's the -1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446
over 165 in ? What's prob of getting -0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685
over 10.5 m.: what's prob. of getting _0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236
$D(V < 16)^{-0.6}$.2743	.2709	.2676	.2643	.2611	.2578	.2546
$\Gamma(\Lambda < 10)_{-0.5}$.3085	.3050	.3015	.2981	.2946	.2912	.2877
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594
$P(Y > 165^{-0.2})$.4207	.4168	.4129	.4090	.4052	.4013	.3974
$I(\Lambda > 10.0_{-0.1})$.4602	.4562	.4522	.4483	.4443	.4404	.4364
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761
$-1.75 0 1.65 P(15.95 < X < 16.0)$ $= \frac{x - \mu}{\sigma} \qquad \qquad$	63) 65) =	= 0.9	505 -	-0.04	401	A	SUBSTRIBE

Uniform distribution:

also known as a rectangular distribution, is a probability distribution where every possible outcome has an equal probability of occurring. In other words, all values in the distribution have the same likelihood of being observed

