Lecture 2: Ray theory transmission in optical fibers

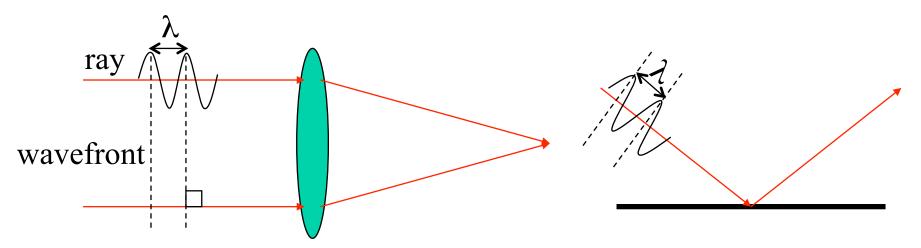
- Nature of light
- Ray optics
- Refractive indices
- Snell's Law
- Total internal reflection
- Acceptance angle
- Numerical Aperture
- Optical fiber structures

Reading: Senior 2.1 - 2.2Keiser 2.1 - 2.2

Part of the lecture materials were adopted from powerpoint slides of Gerd Keiser's book 2010, Copyright © The McGraw-Hill Companies, Inc.

1

The nature of light


- Modeling light:
 - <u>*Ray optics:*</u> propagation of light rays through simple optical components and systems.
 - *Wave optics:* propagations of **light waves** through optical components and systems.
 - *Electromagnetic optics*: description of light waves in terms of **electric and magnetic fields**.
 - <u>Quantum optics</u>: emission/absorption of photons, which are characteristically quantum mechanical in nature and cannot be explained by classical optics (e.g. lasers, light-emitting diodes, photodiode detectors, solar cells)

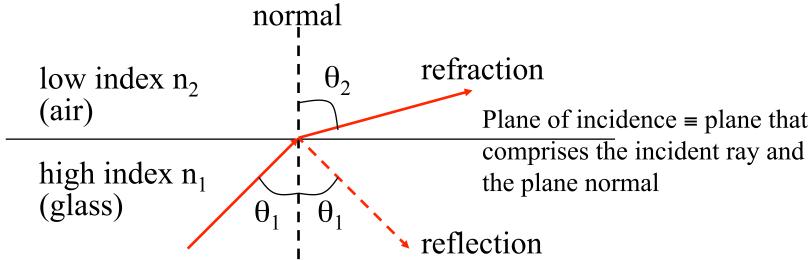
Light as waves, rays and photons

- Light is an *electromagnetic wave*.
- While light is a wave, it nevertheless travels along straight lines or *rays*, enabling us to analyze simple optical components (e.g. *lenses* and *mirrors*) and instruments in terms of geometrical optics.
- Light is also a stream of *photons*, discrete particles carrying packets of *energy* and *momentum*.

Ray Optics or Geometrical Optics

Wavelength $\lambda \ll$ size of the optical component

- In many applications of interest the *wavelength* λ of light is *short* compared with the relevant length scales of the optical components or system (e.g. mirrors, prisms, lenses).
- This branch of optics is referred to as **Ray optics** or **Geometrical Optics**, where energy of light is propagated along rays.
- The rays are perpendicular to the wavefronts.


Ray Optics: basic laws

- Ray optics is based on <u>three</u> laws which describe the propagation of rays:
 - 1. Light rays in homogeneous media are straight lines.
 - 2. Law of reflection: Reflection from a mirror or at the boundary between two media of different *refractive indices*: the reflected ray lies in the <u>plane of incidence</u>, the <u>angle of reflection</u> equals the <u>angle of incidence</u> (i.e. $\theta_r = \theta_i$)
 - 5. Snell's law of refraction: At the boundary between two media of different refractive index n, the refracted ray lies in the plane of incidence; the <u>angle of refraction</u> θ_t is related to the <u>angle of incidence</u> θ_i by

 $n_i \sin \theta_i = n_t \sin \theta_t$

Snell's Law

When a ray is incident on the interface between two dielectrics of different refractive indices (e.g. glass-air), reflection and refraction occur.

The angle of incidence θ_1 and the angle of refraction θ_2 are related to each other, and to the refractive indices of the dielectrics by Snell's law of refraction:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Refractive index

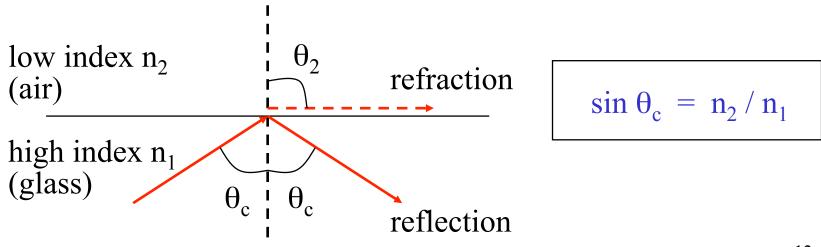
• In any dielectric medium, the speed of light becomes

v = c/n

The factor n is the *index of refraction* (or *refractive index*) of the medium.

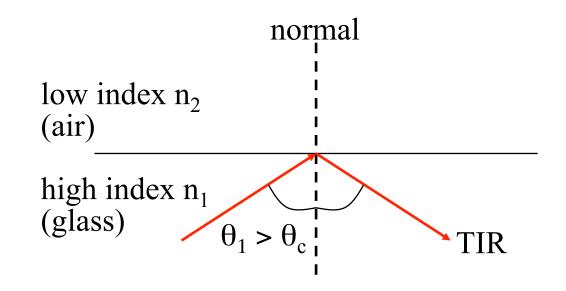
e.g. For air and gases, $v \sim c$, so that $n \sim 1$. At optic frequencies, the refractive index of water is 1.33.

e.g. Glass has many compositions, each with a slightly different n. An approximate refractive index of 1.5 is representative for the <u>silica</u> <u>glasses used in fibers</u>; more precise values for these glasses lie between \sim 1.45 and \sim 1.48.


Index of refraction for some materials

Air	1.0
Water	1.33
Magnesium fluoride	1.38
Fused silica (SiO_2)	1.46
Sapphire (Al_2O_3)	1.8
Lithium niobate (LiNbO ₃)	2.25
Indium phosphide (InP)	3.21
Gallium arsenide (GaAs)	3.35
Silicon (Si)	
3.48	
Indium gallium arsenide phosphide (InGaAsP)	3.51
Aluminum gallium arsenide (AlGaAs)	3.6
Germanium (Ge)	4.0
*The index varies with a number of parameters, such as <u>wavelength</u>	and temperature.

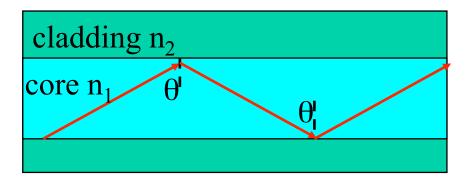
Critical angle


For $n_1 > n_2$, the angle of refraction θ_2 is always *greater* than the angle of incidence θ_1 .

• When the angle of refraction θ_2 is 90°, the refracted ray emerges *parallel* to the interface between the media. This is the *limiting* case of refraction and the angle of incidence is known as the <u>critical angle</u> θ_c .

Total internal reflection

• At angles of incidence $\theta > \theta_c$, the light is totally reflected back into the incidence higher refractive index medium. This is known as <u>total</u> internal reflection.


e.g. $n_1 = 1.44$, $n_2 = 1$, then $\theta_c = \sin^{-1}(1/1.44) = 44^{\circ}$

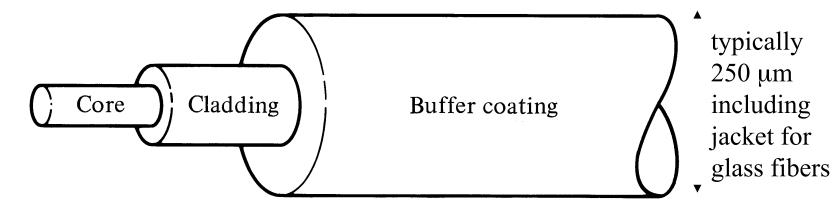
Total internal reflection: $\theta_1 > \theta_c$

13

Light ray guiding condition

• Light ray that satisfies *total internal reflection* at the interface of the higher refractive index <u>core</u> and the lower refractive index <u>cladding</u> can be guided along an optical fiber.

e.g. Under what condition will light be trapped inside the fiber core? $n_1 = 1.46; n_2 = 1.44$


$$\theta > \theta_{\rm c}$$

$$\theta_{\rm c} = \sin^{-1}(n_2/n_1) = \sin^{-1}(1.44/1.46) = 80.5^{\circ}$$

14

Optical fiber structures

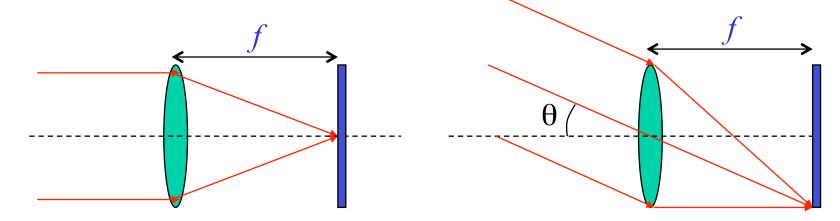
• A typical bare fiber consists of a <u>core</u>, a <u>cladding</u> and a <u>polymer</u> <u>jacket</u> (buffer coating).

- The polymer coating is the first line of <u>mechanical protection</u>.
- The coating also <u>reduces the internal reflection at the cladding, so</u> <u>light is only guided by the core</u>.

*In Lab1, we shall learn how to strip off the jacket to expose the cladding. This is necessary in order to "cleave" the fiber for a smooth end face for light coupling.

Silica optical fibers

• Both the core and the cladding are made from a type of glass known as silica (SiO₂) which is *almost transparent in the visible and near-IR*.


• In the case that the refractive index changes in a "step" between the core and the cladding. This fiber structure is known as <u>step-index fiber</u>.

• The higher core refractive index (~ 0.3% higher) is typically obtained by doping the silica core with germanium dioxide (GeO₂).

*In Lab 1, we should be able to see the step boundary between the core and the cladding, by end-illuminating the fiber and imaging the output-end cross-section using a microscope.

Numerical aperture

• An important characteristic of an optic system is its ability to collect light incident over a wide range of angles.

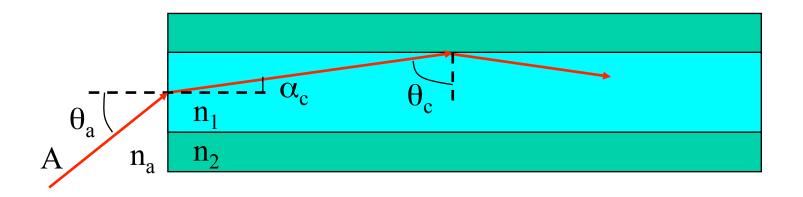
The numerical aperture (NA) is defined as:

 $NA = n_0 \sin \theta$

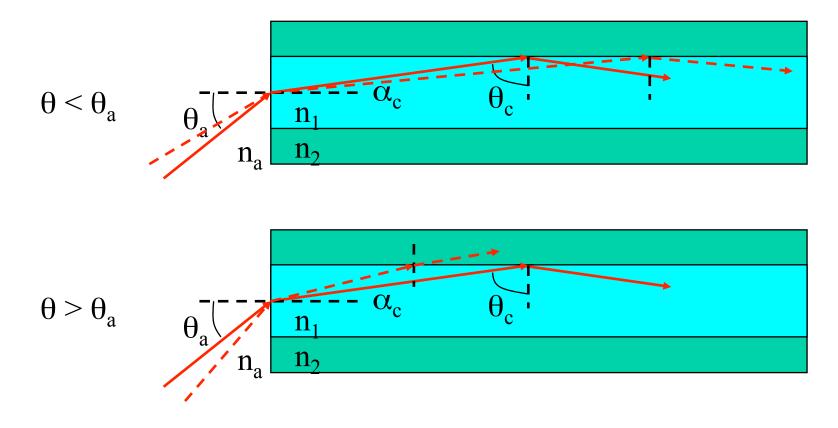
where n_0 is the refractive index of the medium between the lens and the image plane (e.g. a photodetector) and θ is the maximum acceptance angle. 17 • The definition of numerical aperture applies to *all light-collecting systems*, including optical fibers.

e.g. Light rays incident at angles *outside* the collection cone for a fiber will *not* propagate along the fiber (*instead will attenuate rapidly*).

• The numerical aperture is often measured in air, $n_0 = 1$


 $NA = \sin \theta$

• A *low* NA indicates a *small* acceptance angle.


 \Rightarrow Light coupling to a low-NA optical system (e.g. fiber) is more difficult (*alignment is more sensitive*) and less efficient (*some of the rays are outside the acceptance angle*) than is coupling to a high-NA optical system.

Acceptance angle

• Only rays with a sufficiently shallow grazing angle (i.e. with an angle to the normal greater than θ_c) at the core-cladding interface are transmitted by total internal reflection.

• Ray A incident at the critical angle θ_c at the core-cladding interface enters the fiber core at an angle θ_a to the fiber axis, and is refracted at the <u>air-core</u> interface.

• Any rays which are incident into the fiber core <u>at an angle > θ_a </u> have <u>an incident angle less than θ_c at the core-cladding interface</u>.

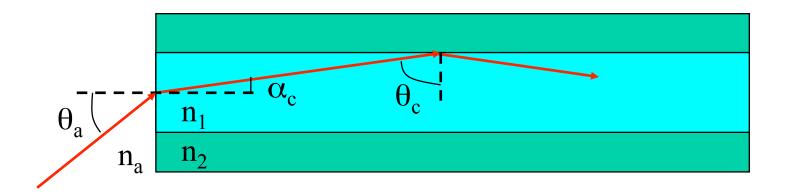
These rays will <u>NOT be totally internal reflected</u>, thus eventually loss to radiation (at the cladding-jacket interface).

• Light rays will be confined inside the fiber core if it is <u>input-coupled</u> at the fiber core end-face within the <u>acceptance angle</u> θ_a .

e.g. What is the fiber acceptance angle when $n_1 = 1.46$ and $n_2 = 1.44$?

$$\theta_{\rm c} = \sin^{-1} (n_2/n_1) = 80.5^{\circ} \implies \alpha_{\rm c} = 90^{\circ} - \theta_{\rm c} = 9.5^{\circ}$$

using $\sin \theta_a = n_1 \sin \alpha_c$ (taking $n_a = 1$)


$$\theta_a = \sin^{-1} (n_1 \sin \alpha_c) = \sin^{-1} (1.46 \sin 9.5^\circ) \sim 14^\circ$$

=> the acceptance angle $\theta_a \sim 14^{\circ}$

Fiber numerical aperture

In fiber optics, we describe the fiber acceptance angle using **Numerical Aperture (NA):**

NA =
$$n_a \sin \theta_a = \sin \theta_a = (n_1^2 - n_2^2)^{1/2}$$

• We can relate the <u>acceptance angle $\theta_{\underline{a}}$ and the <u>refractive indices of the</u> <u>core n₁, cladding n₂ and air n_a.</u> 22</u> • Assuming the end face at the fiber core is *flat* and *normal* to the fiber axis (when the fiber has a "nice" cleave), we consider the refraction at the air-core interface using Snell's law:

At
$$\theta_a$$
: $n_a \sin \theta_a = n_1 \sin \alpha_c$

launching the light from air: $\sin \theta_a = n_1 \sin \alpha_c$ $(n_a \sim 1)$ $= n_c \cos \theta$

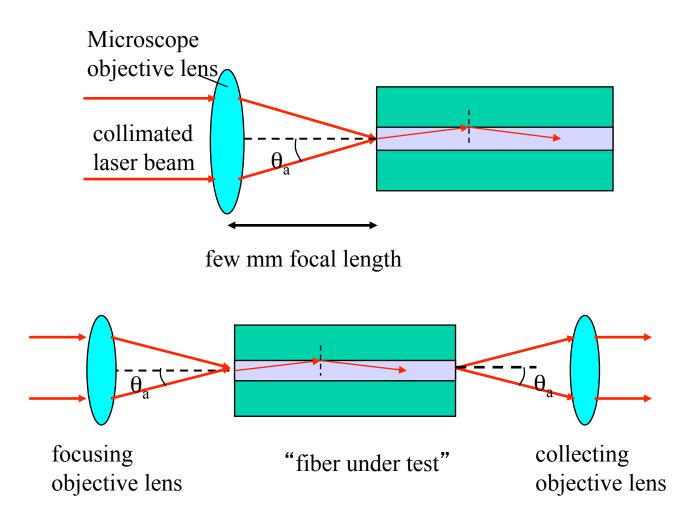
$$= n_1 \cos \theta_c$$

= $n_1 (1 - \sin^2 \theta_c)^{1/2}$
= $n_1 (1 - n_2^2/n_1^2)^{1/2}$
= $(n_1^2 - n_2^2)^{1/2}$

• Fiber NA therefore characterizes the fiber's ability to gather light from a source and guide the light.

e.g. What is the fiber numerical aperture when $n_1 = 1.46$ and $n_2 = 1.44$?

NA =
$$\sin \theta_a = (1.46^2 - 1.44^2)^{1/2} = 0.24$$


• It is a common practice to define a <u>relative refractive index</u> Δ as:

$$\Delta = (\mathbf{n}_1 - \mathbf{n}_2) / \mathbf{n}_1$$

$$(n_1 \sim n_2) \implies NA = n_1 (2\Delta)^{1/2}$$

i.e. Fiber NA only depends on n_1 and Δ .

Lens coupling to fiber end faces

• By measuring the output couple ray cone angle, we can measure the fiber acceptance angle. (This is like part of Lab 1 but without using lenses.) 25

Large-NA fibers?

• Developing ways for fiber to collect light efficiently was an important early step in developing practical fiber optic communications (particularly in the 1970s)

• It seems logical to have optical fibers with NA as large as possible ... with as large Δ as possible ... in order to couple maximum amount of light into the fiber.

• Soon, we will find out that such large-NA fibers tend to be "multimode" and are *unsuitable* for high-speed communications because of a limitation known as modal dispersion.

• Relatively small-NA fibers are therefore used for high-speed optical communication systems.

Typical fiber NA

• <u>Silica fibers for long-haul transmission</u> are designed to have numerical apertures from about 0.1 to 0.3.

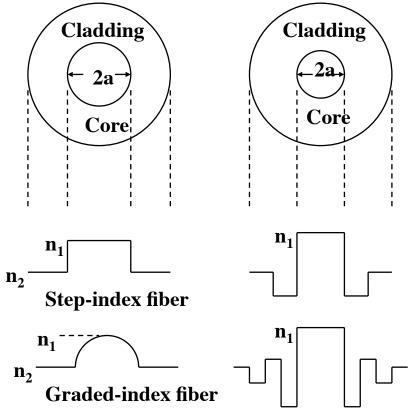
The low NA makes coupling efficiency tend to be poor, but <u>turns out to improve the fiber's bandwidth</u>! (details later)

• Plastic, rather than glass, fibers are available for short-haul communications (e.g. within an automobile). These fibers are restricted to short lengths because of the relatively high attenuation in plastic materials.

<u>Plastic optical fibers (POFs)</u> are designed to have high numerical apertures (typically, 0.4 - 0.5) to improve coupling efficiency, and so partially offset the high propagation losses and also enable alignment tolerance.

Limitation of ray optics

• For smaller fiber diameters that are <u>only few times of the wavelength</u>, *geometrical optics approach becomes inadequate*. This is because ray optics only describes the direction a plane wave component takes in the fiber, but does not take into account *interference* among such components.


- When <u>interference</u> phenomena are considered it is found that only rays with certain discrete characteristics propagate in the fiber core.
- Thus the fiber will only support <u>a discrete number of guided modes</u>.
- This becomes critical in small core diameter fibers which only support one (singlemode) or a few modes (multimode). Electromagnetic theory must be applied in this case.

Optical Fiber Type Comparisons

- The indices are uniform in a <u>step-index</u> fiber
- The index varies with the core radius in a <u>graded-</u> <u>index</u> fiber

Typical diameters

SM core: 8-10 μm SM cladding: 125 μm MM core: 50 or 62.5 μm MM cladding: 125 μm (SM = single mode) (MM = multimode)

(a) Basic fiber types (b) Sample tailored profiles

Numerical Aperture Example

Example 2.4 Consider a multimode silica fiber that has a core refractive index $n_1 = 1.480$ and a cladding index $n_2 = 1.460$. Find (a) the critical angle, (b) the numerical aperture, and (c) the acceptance angle.

<u>Solution</u>: (a) From Eq. (2.21), the critical angle is given by

$$\varphi_c = \sin^{-1} \frac{n_2}{n_1} = \sin^{-1} \frac{1.460}{1.480} = 80.5^\circ$$

(b) From Eq. (2.23) the numerical aperture is

$$NA = \left(n_1^2 - n_2^2\right)^{1/2} = 0.242$$

(c) From Eq. (2.22) the acceptance angle in air (n = 1.00) is

$$\theta_{\rm A} = \sin^{-1} {\rm NA} = \sin^{-1} 0.242 = 14^{\circ}$$

<u>Example 2.5</u> Consider a multimode fiber that has a core refractive index of 1.480 and a core-cladding index difference 2.0 percent ($\Delta = 0.020$). Find the (a) numerical aperture, (b) the acceptance angle, and (c) the critical angle.

<u>Solution</u>: From Eq. (2.20), the cladding index is $n_2 = n_1(1 - \Delta) = 1.480(0.980) = 1.450.$

(a) From Eq. (2.23) we find that the numerical aperture is

$$NA = n_1 \sqrt{2\Delta} = 1.480(0.04)^{1/2} = 0.296$$

(b) Using Eq. (2.22) the acceptance angle in air (n = 1.00) is

$$\theta_A = \sin^{-1} NA = \sin^{-1} 0.296 = 17.2^{\circ}$$

(c) From Eq. (2.21) the critical angle at the corecladding interface is

$$\varphi_c = \sin^{-1} \frac{n_2}{n_1} = \sin^{-1} 0.980 = 78.5^{\circ}$$