

Course Profile

I. Course Code:	EEE 461				
II. Course Title:	Optical Fiber Communication				
III. Credit:	3	IV. Pre-Requisite:	EEE 315		
V. Contact Hours:	s: Lecture- 3 hours/week				
VI. Course Objectiv	es:				
The objectives of this	course are				
a. To learn the	basic elements of optical fiber t	ransmission link. fil	per modes		

- a. To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures.
- b. To understand the different kind of losses, signal distortion, SM fibers.
- c. To learn the various optical sources, materials and fiber splicing
- d. To learn the fiber optical receivers and noise performance in photo detector.
- e. Explain the different types of optical amplifier

	COs	Co rr es po nd	ta	Bloom xonor ain/le	ny	Delivery	Accoment
Sl. No.	(Upon successful completion of this course, students should be able to)	in g P O s	С	A	Р	Methods & activities	Assessment tools
CO 461-1	Illustrates the basic knowledge of Ray optics theory and Explain the Transmission Characteristics of fiber		2	1,2	-	Lectures, Tutorials	CT, Exam

©Daffodil International University

CO 461-2	Compare Step Index, Graded index fibers and compute mode volume.	PO1	4	1,2	3	Lectures, Tutorials	CT, Exam, Assignments
CO 461-3	I-3 Classify the various types of fiber loss, linear and non linear effects and compute the losses		4	1,2	3	Lectures, Tutorials	CT, Exam, Assignments
CO 461-4	Outline the construction and characteristics of optical sources and detectors and Compare the different types		4	_	_	Lectures, Tutorials	CT, Exam, Assignments

* C: Cognitive, P: Psychomotor; A: Affective

VIII. Course Plan with Detail Description:

Session	Contents	COs
Week 1	 Introduction to the course. Historical development, general system, advantages, disadvantages, and applications of optical fiber communication, Ray transmission theory 	1
Week 2	 Types of optical fiber and their application Comparison between different types of optical fiber Refractive index profile of different fibers 	2
Week 3	 Introduction to different types of fiber loss Attenuation, absorption, scattering losses, bending loss 	3
Week 4	 Modal dispersion, chromatic dispersion and polarization mode dispersion 	3
Week 5	 Math on coupling loss 	3
Week 6	 Self phase modulation, cross phase modulation, four wave mixing Scattering effect, stimulated Brillouin scattering, stimulated Raman scattering 	3
Week 7	 Principle of LED Math on optical source 	4
Week 8	 Principle of laser Math on laser 	4
Week 9	 Principle of optical detector Math on optical detector 	4

©Daffodil International University

Week 10	 Basics of optical amplifier 	4
Week 11	 Comparison of booster, inline amplifier, pre amplifier Principle of SOA, RA and EDFA Comparison and application different types of optical amplifier 	4
Week 12	 Receiver analysis: Direct detection and coherent detection, noise and limitations. Multi-channel optical system: Frequency division multiplexing, wavelength division multiplexing and co-channel interference. 	4

IX. Evaluation Policy:

Marks Distribution:				
		Attendance	10%	
		Quiz	20%	
		Assignment	10%	
		Presentation	10%	
		Final Exam	50%	
		Total	100%	
Grading System:	As per DIU	J rule		
	_			

X. Resources:

Textbook(s):

[1] Optical Fiber Communications principle and practice, John M. Senior Reference(s):

[1] Fiber Optic Communiation System, G.V Agrawal

XI. Course Link in Moodle/Google Class Room:

https://classroom.google.com/c/MTcxOTQyNjg1MTVa

XII. Course Instructor(s):

• Name: Fahmida Hossain Tithi Designation: Assistant Professor Email: tithi@daffodilvarsity.edu.bd Cell: 01911497881

©Daffodil International University

Department of EEE Faculty of Engineering

Signature of the Instructors