
Operating Systems
Lecture-1&2: OS Overview

DR. SHAPLA KHANAM

Assistant Professor

Department of Software Engineering

Daffodil International University

WhatsApp ONLY: +8801793122222 | +60166578070

E-mail: shapla.swe@diu.edu.bd

Website: www.daffodilvarsity.edu.bd

Profile: https://faculty.daffodilvarsity.edu.bd/profile/swe/shapla.html

mailto:shapla.swe@diu.edu.bd
http://www.daffodilvarsity.edu.bd/
https://faculty.daffodilvarsity.edu.bd/profile/swe/shapla.html

Short Bio

Assistant Professor

University of Asia
Pacific

Assistant Professor

Daffodil International

University

PhD

University of Malaya

(UM), Malaysia

Research Area:

Network Security, AI,

DL, ML, IoT

Research Fellow

UM, Malaysia

What is Operating System

• A program that acts as an intermediary
between a user application and the computer
hardware.

• Operating system Objectives/goals:
– Execute user programs and make solving user

problems easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient
manner

Computer System Structure(1)

• What are the components?

Computer System Structure(2)

User

Hardware

OS

Application
Software

Computer System Structure(3)

• Hardware

• Operating System

• Application Programs

• Users

Computer System Structure(4)

– Hardware – provides basic computing resources
• CPU, memory, I/O devices

– Operating system
• Controls and coordinates use of hardware among

various applications and users

Computer System Structure(5)

– Application programs – define the ways in which
the system resources are used to solve the
computing problems of the users
• Word processors, compilers, web browsers, database

systems, video games

– Users
• People, machines, other computers

Computer System Structure(6)

Computer System Organization

Computer-system operation
One or more CPUs, device controllers connect through common
bus providing access to shared memory
Concurrent execution of CPUs and devices competing for memory
cycles

Memory Layout for Multiprogrammed System

Some Useful Definitions(1)

Kernal

➢kernel is the most important program in the
operating system.

➢“The one program running at all times on the
computer”

➢Everything else is either a system program or
an application program.

Some Useful Definitions(2)

System Program:

➢A program that controls some aspect of the
operation of a computer.

➢used to program the operating system
software.

➢Example: operating system, networking
system, web site server, data backup server
etc

Some Useful Definitions(3)

System Call:

➢ A system call is the programmatic way in
which a computer program requests a service
from the kernel of the operating system on
which it is executed.

➢Example: Fork, exec eFork, exec tc.

Some Useful Definitions(4)

Shell:

• a shell is a user interface for access to
an operating system's services.

• In general, operating system shells use either
a command-line interface (CLI) or graphical
user interface (GUI)

Some Useful Definitions(4)

Program:

➢A computer program is a collection of
instructions that can be executed by a
computer to perform a specific task.

What Happens When We Run a
Program(1)

• A compiler translates high level programs into an
executable file

• The exe contains instructions that the CPU can
understand, and data of the program (all
numbered with addresses)

• Instructions run on CPU: hardware implements
an instruction set architecture (ISA)

• CPU also consists of a few registers, e.g.,
– Pointer to current instruction (program counter or PC)
– Operands of instructions, memory addresses

What Happens When We Run a
Program(2)

• To run an exe, CPU
– fetches instruction pointed at
by PC from memory
– loads data required by the
instructions into registers
– decodes and executes the
instruction
– stores results to memory

• Most recently used
instructions and data are in
CPU caches for faster access

Result

Code

Data

CPU

PC

Reg.

Reg.

Reg.

Exe in
Memory
(RAM)

Functionalities of OS

• OS manages program
memory
– Loads program executable
(code, data) from disk to
Memory

• OS manages CPU
– Initializes program
counter (PC) and other
registers to begin
Execution

• OS manages external devices
– Read/write files from disk.

Disk

Memory

OS manages CPU
• OS provides the process abstraction
– Process: a running program
– OS creates and manages processes

• Each process has the illusion of
having the complete CPU, i.e., OS
virtualizes CPU

• Timeshares CPU between processes

• Enables coordination between
processes

P
1

P
2

P
3

CPU

OS manages memory
• OS manages the memory
of the process: code, data,
stack, heap etc

• Each process thinks it has a
dedicated memory space
for itself, numbers code
and data starting from 0
(virtual addresses)

• OS abstracts out the details
of the actual placement in
memory, translates from
virtual addresses to actual
physical addresses

Code

Data

Memory
Of a Process

Stack

Heap

0
1
2
.
.
.

.

.
n

RAM

OS manages devices

• OS has code to manage disk, network card,
and other external devices: drivers device

• Device driver talks the language of the hardware
devices

– Issues instructions to devices (fetch data from a
file)
– Responds to interrupt events from devices (user
has pressed a key on keyboard)

• Persistent data organized as a filesystem on
disk

Operating-System Operations (Dual-mode)

Dual-mode operation allows OS to protect itself and other system components

User mode and kernel mode

Mode bit provided by hardware
❖ Provides ability to distinguish when system is running user code

or kernel code
❖ Some instructions designated as privileged, only executable in

kernel mode
❖ System call changes mode to kernel, return from call resets it to

user

Transition from User to Kernel Mode (Dual-mode)

❖ Timer to prevent infinite loop / process hogging resources
❖ Set interrupt after specific period
❖ Operating system decrements counter
❖ When counter zero generate an interrupt
❖ Set up before scheduling process to regain control or terminate

program that exceeds allotted time

Evolution of Operating System:
• First Generation:
- This phase is considered from 1945-1955. Earlier mechanical
systems were used which involved the use of large machines whose
parts were manually handled by workers.
-limited capacity

• Second Generation:
- The phase from 1955 to 1965 marked the second generation of
Operating Systems. The systems in this generation were regarded as
Batch Systems. These were known as batch operating systems as the
jobs to be done were supplied in a batch to the machine. A Batch
referred to a set of similar tasks or jobs.

• Third Generation:
- The phase from 1965-1980 is considered as the third generation of
OS. It saw the rise of multi-programmed batched systems. These
systems were very similar to the batched operating systems. These
systems had the ability of multitasking and multiprogramming where
the tasks of multiple users could be run simultaneously.

• Fourth Generation:
-1980 onwards, the generation of OS is known as the
fourth generation. With the development of computer
networking and various networking protocols, these
operating systems allowed the users to know the
existence of other users on the network.
-The operating systems in this generation saw the use
of a Graphical User Interface (GUI) which made it very
easy to interact with the operating system and in turn
with the hardware.
-The fourth generation of operating systems saw the
invention of time-shared operating systems and the
Macintosh operating systems.

Operating System Services

Operating System Services

• Operating systems provide an environment for execution of programs and services to
programs and users

• One set of operating-system services provides functions that are helpful to the user:

– User interface - Almost all operating systems have a user interface (UI).

• Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

– Program execution - The system must be able to load a program into memory and
to run that program, end execution, either normally or abnormally (indicating error)

– I/O operations - A running program may require I/O, which may involve a file or an
I/O device

– File-system manipulation - The file system is of particular interest. Programs need
to read and write files and directories, create and delete them, search them, list file
Information, permission management.

Operating System Services (Cont.)

– Communications – Processes may exchange information, on the same
computer or between computers over a network

• Communications may be via shared memory or through message
passing (packets moved by the OS)

– Error detection – OS needs to be constantly aware of possible errors

• May occur in the CPU and memory hardware, in I/O devices, in user
program

• For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

• Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

Operating System Services (Cont.)

• Another set of OS functions exists for ensuring the efficient operation of the system
itself via resource sharing

– Resource allocation - When multiple users or multiple jobs running concurrently,
resources must be allocated to each of them

• Many types of resources - Some (such as CPU cycles, main memory, and file
storage) may have special allocation code, others (such as I/O devices) may
have general request and release code

– Accounting - To keep track of which users use how much and what kinds of
computer resources

– Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

• Protection involves ensuring that all access to system resources is controlled

• Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

• If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

A View of Operating System Services

System Calls
• http://www.tuxradar.com/content/how-linux-kernel-works

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS
X), and Java API for the Java virtual machine (JVM)

• Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are generic)

System Call Implementation
• Typically, a number associated with each system call

– System-call interface maintains a table indexed according to these
numbers

• The system call interface invokes intended system call in OS kernel and
returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

– Just needs to obey API and understand what OS will do as a result call

– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into
libraries included with compiler)

API – System Call – OS Relationship

Examples of Windows and
Unix System Calls

Types of OS

• Batch Operating System

• Multi-Programming System

• Multi-Processing System

• Multi-Tasking Operating System

• Time-Sharing Operating System

• Distributed Operating System

• Network Operating System

• Real-Time Operating System

Example: MS-DOS
• Single-tasking

• Shell invoked when system
booted

• Simple method to run program

– No process created

• Single memory space

• Loads program into memory,
overwriting all but the kernel

• Program exit -> shell reloaded

(a) At system startup (b) running a program

Simple Structure
• I.e. MS-DOS – written to provide the

most functionality in the least space

– Not divided into modules

– Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

Traditional Unix System

-The rapid growth of Unix is due to many factors, i.e., its
portability to a wide range of machines, adaptability, simplicity,
wide range of tasks it can perform, its multi-user and
multitasking nature, and suitability for networking.

-The main features of Unix operating system are discussed
below
• Ability to support multi-user and multitasking.
• Excellent network environment.
• Adaptability and simplicity.
• It provides the better security.
• Flexible file system.

UNIX

• UNIX – limited by hardware functionality, the original UNIX operating system
had limited structuring. The UNIX OS consists of two separable parts

– Systems programs

– The kernel

• Consists of everything below the system-call interface and above the
physical hardware

• Provides the file system, CPU scheduling, memory management, and
other operating-system functions; a large number of functions for
one level

Traditional UNIX System Structure

Beyond simple but not fully layered

Layered Approach
• The operating system is

divided into a number of
layers (levels), each built on
top of lower layers. The
bottom layer (layer 0), is the
hardware; the highest (layer
N) is the user interface.

• With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

Characteristics of Modern Operating
System

• Object-Oriented Design.

• Multi-threading.

• Symmetric Multiprocessing.

• Distributed Operating System.

• Microkernel Architecture.

Types of OS

• Windows Operating System:

✓Provides an efficient speed.

✓Allows disk access as well as file systems.

✓Program execution is done in a smooth way.

✓Protected and supervisor mode is always there.

✓Memory Management is supported to allow
multiprogramming.

✓Provides regular updates to ease the usage.

Hybrid Systems

• Most modern operating systems actually not one pure model

– Hybrid combines multiple approaches to address performance, security,
usability needs

– Linux and Solaris kernels in kernel address space, so monolithic, plus modular
for dynamic loading of functionality

– Windows mostly monolithic, plus microkernel for different subsystem
personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment

– Below is kernel consisting of Mach microkernel and BSD Unix parts, plus I/O kit
and dynamically loadable modules (called kernel extensions)

Mac OS X Structure
graphical user interface

Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS
• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X, added functionality

– Does not run OS X applications natively

• Also runs on different CPU architecture
(ARM vs. Intel)

– Cocoa Touch Objective-C API for developing apps

– Media services layer for graphics, audio, video

– Core services provides cloud computing,
databases

– Core operating system, based on Mac OS X
kernel

Android
• Developed by Open Handset Alliance (mostly Google)

– Open Source

• Similar stack to IOS

• Based on Linux kernel but modified

– Provides process, memory, device-driver management

– Adds power management

• Runtime environment includes core set of libraries and Dalvik virtual
machine

– Apps developed in Java plus Android API

• Java class files compiled to Java bytecode then translated to
executable than runs in Dalvik VM

• Libraries include frameworks for web browser (webkit), database (SQLite),
multimedia, smaller libc

Interrupt

• An interrupt is a signal sent to the processor
that interrupts the current process.

• It may be generated by a hardware device or
a software program.

• A hardware interrupt is often created by
an input device such as a mouse or keyboard.

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines.

• Interrupt architecture must save the address of the
interrupted instruction.

• Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either
by an error or a user request.

• An operating system is interrupt driven.

Interrupt Handling

• The operating system preserves the state of the
CPU by storing registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what
action should be taken for each type of interrupt.

Design goals of an operating system

• Convenience, abstraction of hardware

resources for user programs

• Efficiency of usage of CPU, memory, etc.

• Isolation between multiple processes

Thank You

	Slide 1: Operating Systems Lecture-1&2: OS Overview
	Slide 2: Short Bio
	Slide 3: What is Operating System
	Slide 4: Computer System Structure(1)
	Slide 5: Computer System Structure(2)
	Slide 6: Computer System Structure(3)
	Slide 7: Computer System Structure(4)
	Slide 8: Computer System Structure(5)
	Slide 9: Computer System Structure(6)
	Slide 10
	Slide 11
	Slide 12: Some Useful Definitions(1)
	Slide 13: Some Useful Definitions(2)
	Slide 14: Some Useful Definitions(3)
	Slide 15: Some Useful Definitions(4)
	Slide 16: Some Useful Definitions(4)
	Slide 17: What Happens When We Run a Program(1)
	Slide 18: What Happens When We Run a Program(2)
	Slide 19: Functionalities of OS
	Slide 20: OS manages CPU
	Slide 21: OS manages memory
	Slide 22: OS manages devices
	Slide 23
	Slide 24
	Slide 25: Evolution of Operating System:
	Slide 26
	Slide 27: Operating System Services
	Slide 28: Operating System Services
	Slide 29: Operating System Services (Cont.)
	Slide 30: Operating System Services (Cont.)
	Slide 31: A View of Operating System Services
	Slide 32: System Calls
	Slide 33: System Call Implementation
	Slide 34: API – System Call – OS Relationship
	Slide 35: Examples of Windows and Unix System Calls
	Slide 36: Types of OS
	Slide 37: Example: MS-DOS
	Slide 38: Simple Structure
	Slide 39: Traditional Unix System
	Slide 40: UNIX
	Slide 41: Traditional UNIX System Structure
	Slide 42: Layered Approach
	Slide 43: Characteristics of Modern Operating System
	Slide 44: Types of OS
	Slide 45
	Slide 46: Hybrid Systems
	Slide 47: Mac OS X Structure
	Slide 48: iOS
	Slide 49: Android
	Slide 50: Interrupt
	Slide 51: Common Functions of Interrupts
	Slide 52: Interrupt Handling
	Slide 53: Design goals of an operating system
	Slide 54:

