
Operating System
Chapter 4/Lec-04: Threads

Dr. Shapla Khanam

Assistant Professor

Daffodil International University

4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

● Overview

● Multicore Programming

● Multithreading Models

● Thread Libraries

● Implicit Threading

● Threading Issues

● Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

● To introduce the notion of a thread—a fundamental unit of CPU

utilization that forms the basis of multithreaded computer systems

● To discuss the APIs for the Pthreads, Windows, and Java thread

libraries

● To explore several strategies that provide implicit threading

● To examine issues related to multithreaded programming

● To cover operating system support for threads in Windows and Linux

4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concept of Thread

● A thread is also known as a lightweight process. The idea is to achieve
parallelism by dividing a process into multiple threads. For example, in a
browser, multiple tabs can be different threads. MS Word uses multiple
threads: one thread to format the text, another thread to process inputs, etc.

● Multithreading is a technique used in operating systems to improve the
performance and responsiveness of computer systems. Multithreading allows
multiple threads (i.e., lightweight processes) to share the same resources of a
single process, such as the CPU, memory, and I/O devices.

4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

● Responsiveness – may allow continued execution if part of process

is blocked, especially important for user interfaces

● Resource Sharing – threads share resources of process, easier

than shared memory or message passing

● Economy – cheaper than process creation, thread switching lower

overhead than context switching

● Scalability – process can take advantage of multiprocessor

architectures

4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

● Multicore or multiprocessor systems putting pressure on programmers,

challenges include:

● Dividing activities

● Balance

● Data splitting

● Data dependency

● Testing and debugging

● Parallelism implies a system can perform more than one task

simultaneously

● Concurrency supports more than one task making progress

● Single processor / core, scheduler providing concurrency

4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

● Types of parallelism

● Data parallelism – distributes subsets of the same data across

multiple cores, same operation on each

● Task parallelism – distributing threads across cores, each

thread performing unique operation

● As # of threads grows, so does architectural support for threading

● CPUs have cores as well as hardware threads

● Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

● Concurrent execution on single-core system:

● Parallelism on a multi-core system:

4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

● Identifies performance gains from adding additional cores to an application
that has both serial and parallel components

● S is serial portion

● N processing cores

● That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores
results in speedup of 1.6 times

● As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

● But does the law take into account contemporary multicore systems?

4.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Threads and Kernel Threads

● User threads - management done by user-level threads library

● Three primary thread libraries:

● POSIX Pthreads

● Windows threads

● Java threads

● Kernel threads - Supported by the Kernel

● Examples – virtually all general purpose operating systems, including:

● Windows

● Solaris

● Linux

● Tru64 UNIX

● Mac OS X

4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

● Many-to-One

● One-to-One

● Many-to-Many

● Two-level Model

4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

● Many user-level threads mapped to single

kernel thread

● One thread blocking causes all to block

● Multiple threads may not run in parallel on

muticore system because only one may

be in kernel at a time

● Few systems currently use this model

● Examples:

● Solaris Green Threads

● GNU Portable Threads

4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

● Each user-level thread maps to kernel thread

● Creating a user-level thread creates a kernel thread

● More concurrency than many-to-one

● Number of threads per process sometimes restricted

due to overhead

● Examples

● Windows

● Linux

● Solaris 9 and later

4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

● Allows many user level threads to be

mapped to many kernel threads

● Allows the operating system to create

a sufficient number of kernel threads

● Solaris prior to version 9

● Windows with the ThreadFiber

package

4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-level Model

● Similar to M:M, except that it allows a user thread to be

bound to kernel thread

● Examples

● IRIX

● HP-UX

● Tru64 UNIX

● Solaris 8 and earlier

4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Multithreaded C Program

4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Multithreaded C Program (Cont.)

4.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Java Threads

● Java threads are managed by the JVM

● Typically implemented using the threads model provided by

underlying OS

● Java threads may be created by:

● Extending Thread class

● Implementing the Runnable interface

4.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Java Multithreaded Program

4.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Java Multithreaded Program (Cont.)

4.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Pools

● Create a number of threads in a pool where they await work

● Advantages:

● Usually slightly faster to service a request with an existing
thread than create a new thread

● Allows the number of threads in the application(s) to be
bound to the size of the pool

● Separating task to be performed from mechanics of creating
task allows different strategies for running task

4 i.e.Tasks could be scheduled to run periodically

● Windows API supports thread pools:

4.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Cancellation

4.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Cancellation

● Terminating a thread before it has finished

● Thread to be canceled is target thread

● Two general approaches:

● Asynchronous cancellation terminates the target thread
immediately

● Deferred cancellation allows the target thread to periodically
check if it should be cancelled

● Pthread code to create and cancel a thread:

4.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Cancellation (Cont.)

● Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

● If thread has cancellation disabled, cancellation remains pending
until thread enables it

● Default type is deferred

● Cancellation only occurs when thread reaches cancellation
point

4 I.e. pthread_testcancel()

4 Then cleanup handler is invoked

● On Linux systems, thread cancellation is handled through signals

4.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread-Local Storage

● Thread-local storage (TLS) allows each thread to have its own
copy of data

● Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

● Different from local variables

● Local variables visible only during single function invocation

● TLS visible across function invocations

● Similar to static data

● TLS is unique to each thread

4.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Examples

● Windows Threads

● Linux Threads

4.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Threads

● Windows implements the Windows API – primary API for Win 98,
Win NT, Win 2000, Win XP, and Win 7

● Implements the one-to-one mapping, kernel-level

● Each thread contains

● A thread id

● Register set representing state of processor

● Separate user and kernel stacks for when thread runs in user
mode or kernel mode

● Private data storage area used by run-time libraries and
dynamic link libraries (DLLs)

● The register set, stacks, and private storage area are known as
the context of the thread

4.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Threads (Cont.)

● The primary data structures of a thread include:

● ETHREAD (executive thread block) – includes pointer to
process to which thread belongs and to KTHREAD, in
kernel space

● KTHREAD (kernel thread block) – scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

● TEB (thread environment block) – thread id, user-mode
stack, thread-local storage, in user space

4.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Threads Data Structures

4.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Threads

● Linux refers to them as tasks rather than threads

● Thread creation is done through clone() system call

● clone() allows a child task to share the address space of the
parent task (process)

● Flags control behavior

● struct task_struct points to process data structures (shared
or unique)

4.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Difference Between Thread & Process

4.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Symmetric Multiprocessing(SMP)

The systems have multiple processors working in parallel that share the
computer clock, memory, bus, peripheral devices etc. There are mainly
two types of multiprocessor systems. These are −

●Symmetric Multiprocessor System

●Asymmetric Multiprocessor System

4.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

In symmetric multiprocessing, multiple processors share a common
memory and operating system. All of these processors work in tandem
to execute processes. The operating system treats all the processors
equally, and no processor is reserved for special purposes.

Features of Multiprocessing:

●Symmetric multiprocessing is also known as tightly coupled
multiprocessing as all the CPU’s are connected at the bus level and have
access to a shared memory.

●All the parallel processors in symmetric multiprocessing have their
private cache memory to decrease system bus traffic and also reduce
the data access time.

Symmetric Multiprocessing (SMP)

4.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SMP

4.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SMP

● Symmetric multiprocessing systems allow a processor to execute any process
no matter where its data is located in memory. The only stipulation is that a
process should not be executing on two or more processors at the same
time.

● In general, the symmetric multiprocessing system does not exceed 16
processors as this amount can be comfortably handled by the operating
system.

Advantages of Symmetric Multiprocessing

Some advantages of symmetric multiprocessing are −

● The throughput of the system is increased in symmetric multiprocessing. As
there are multiple processors, more processes are executed.

● Symmetric multiprocessing systems are much more reliable than single
processor systems. Even if a processor fails, the system still endures. Only its
efficiency is decreased a little.

4.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SMP

Disadvantages of Symmetric Multiprocessing

Some disadvantages of symmetric multiprocessing are −

●The operating system handles all the processors in symmetric multiprocessing
system. This leads to a complicated operating system that is difficult to design
and manage.

●All the processors in symmetric multiprocessing system are connected to the
same main memory. So a large main memory is required to accommodate all
these processors.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 4

	Slide 1: Operating System Chapter 4/Lec-04: Threads
	Slide 2: Chapter 4: Threads
	Slide 3: Objectives
	Slide 4: Concept of Thread
	Slide 5: Multithreaded Server Architecture
	Slide 6: Benefits
	Slide 7: Multicore Programming
	Slide 8: Multicore Programming (Cont.)
	Slide 9: Concurrency vs. Parallelism
	Slide 10: Amdahl’s Law
	Slide 11: User Threads and Kernel Threads
	Slide 12: Multithreading Models
	Slide 13: Many-to-One
	Slide 14: One-to-One
	Slide 15: Many-to-Many Model
	Slide 16: Two-level Model
	Slide 17: Windows Multithreaded C Program
	Slide 18: Windows Multithreaded C Program (Cont.)
	Slide 19: Java Threads
	Slide 20: Java Multithreaded Program
	Slide 21: Java Multithreaded Program (Cont.)
	Slide 22: Thread Pools
	Slide 23
	Slide 24: Thread Cancellation
	Slide 25: Thread Cancellation (Cont.)
	Slide 26: Thread-Local Storage
	Slide 27: Operating System Examples
	Slide 28: Windows Threads
	Slide 29: Windows Threads (Cont.)
	Slide 30: Windows Threads Data Structures
	Slide 31: Linux Threads
	Slide 32: Difference Between Thread & Process
	Slide 33: Symmetric Multiprocessing(SMP)
	Slide 34
	Slide 35: SMP
	Slide 36: SMP
	Slide 37: SMP
	Slide 38: End of Chapter 4

