Operating System
Chapter 4/Lec-04: Threads

sHe
o

Dr. Shapla Khanam

Assistant Professor
Daffodil International University

B Chapter 4: Threads

e Overview

e Multicore Programming

e Multithreading Models

e Thread Libraries

e Implicit Threading

e Threading Issues

e Operating System Examples

© ==\ =
A

Operating System Concepts — 9t Edition 4.2 Silberschatz, Galvin and Gagne ©201

e [0 introduce the notion of a thread —a fundamental unit of CPU

utilization that forms the basis of multithreaded computer systems

e TJo discuss the APIs for the Pthreads, Windows, and Java thread

libraries
e To explore several strategies that provide implicit threading
e [0 examine issues related to multithreaded programming

e To cover operating system support for threads in Windows and Linux

S ——

N
SN

. 2 i\

a ‘5\ N
;ﬂ’}sﬁ\,\\\‘
g

%
'l 5

el A%

Operating System Concepts — 9t Edition 4.3 Silberschatz, Galvin and Gagne ©2013

=

-

w"”"”‘j
> o Concept of Thread

e Athread is also known as a lightweight process. The idea is to achieve
parallelism by dividing a process into multiple threads. For example, in a
browser, multiple tabs can be different threads. MS Word uses multiple
threads: one thread to format the text, another thread to process inputs, etc.

e Multithreading is a technique used in operating systems to improve the
performance and responsiveness of computer systems. Multithreading allows
multiple threads (i.e., lightweight processes) to share the same resources of a
single process, such as the CPU, memory, and I/O devices.

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread — ; ; ; §<—— thread
single-threaded process multithreaded process

Operating System Concepts — 9t Edition 4.4 Silberschatz, Galvin and Gagne ©2013

‘q&-"—“ﬁ Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client > server > thread

(3) resume listening
for additional
client requests

A

Operating System Concepts — 9t Edition 4.5 Silberschatz, Galvin and Gagne ©2013

G5 Benefits

e Responsiveness — may allow continued execution if part of process

is blocked, especially important for user interfaces

e Resource Sharing — threads share resources of process, easier

than shared memory or message passing

e Economy - cheaper than process creation, thread switching lower

overhead than context switching

e Scalability — process can take advantage of multiprocessor

architectures

s

/‘»\t \\!

Operating System Concepts — 9t Edition 4.6 Silberschatz, Galvin and Gagne ©2013

§F Multicore Programming

e Multicore or multiprocessor systems putting pressure on programmers,

challenges include:

» Dividing activities

- Balance

» Data splitting

» Data dependency

» Testing and debugging

e Parallelism implies a system can perform more than one task

simultaneously

e Concurrency supports more than one task making progress

o Single processor / core, scheduler providing concurrency

S ——

N
SN

. 2 i\

a ‘5\ N
;ﬂ’}sﬁ\,\\\‘
g

%
'l 5

el A%

Operating System Concepts — 9t Edition 4.7 Silberschatz, Galvin and Gagne ©2013

=

-

“g%7 Multicore Programming (Cont.)

e Types of parallelism

o Data parallelism — distributes subsets of the same data across

multiple cores, same operation on each

o Task parallelism — distributing threads across cores, each

thread performing unique operation
e As # of threads grows, so does architectural support for threading
o CPUs have cores as well as hardware threads

o Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

ey .

. \ A\\ \
> D A
e
y _— \,\\3)
WS
el A9%

Operating System Concepts — 9t Edition 4.8 Silberschatz, Galvin and Gagne ©2013

b |
2 Concurrency vs. Parallelism

e Concurrent execution on single-core system:

single core

T1TE‘T3‘T4‘T1‘T2‘T3‘T4‘T1‘...

time

[

e Parallelism on a multi-core system:

corel | Ty T3 T4 T3 T4

core2 | T Ty T T4 Ty

w £ o

Operating System Concepts — 9t Edition 4.9 Silberschatz, Galvin and Gagne ©201

,,
Y

J]

5§ Amdahl’s Law

e |dentifies performance gains from adding additional cores to an application
that has both serial and parallel components

e S is serial portion
e N processing cores

speedup <

e Thatis, if application is 75% parallel / 25% serial, moving from 1 to 2 cores
results in speedup of 1.6 times

e As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

e But does the law take into account contemporary multicore systems?

X
SN

- . WY
7 /‘\V"(

5

AU WX

Operating System Concepts — 9t Edition 4.10 Silberschatz, Galvin and Gagne ©2013

~$»7 User Threads and Kernel Threads

e Userthreads - management done by user-level threads library
e Three primary thread libraries:

o POSIX Pthreads

o Windows threads

o Java threads

Kernel threads - Supported by the Kernel

e Examples — virtually all general purpose operating systems, including:
o Windows

o Solaris

o Linux

o Trued UNIX

o Mac OS X

Operating System Concepts — 9t Edition 4.11 Silberschatz, Galvin and Gagne ©2013

g Multithreading Models

e Many-to-One
e One-to-One

e Many-to-Many

e Two-level Model

OO
-

Ve

Operating System Concepts — 9t Edition 4.12 Silberschatz, Galvin and Gagne ©2013

¥
7,

g T Many-to-One

e Many user-level threads mapped to single

kernel thread

e Multiple threads may not run in parallel on

<« user threac

e One thread blocking causes all to block ; ;

muticore system because only one may

be in kernel at a time
e [ew systems currently use this model
e Examples:
o Solaris Green Threads k) <—kerel thread

e GNU Portable Threads

w E
=

Operating System Concepts — 9th Edition 413 Silberschatz, Galvin and Gagne ©201

‘v"%,w/ One-to-One

e Each user-level thread maps to kernel thread
e Creating a user-level thread creates a kernel thread
e More concurrency than many-to-one

e Number of threads per process sometimes restricted

due to overhead
e Examples
<«— user thread

o Windows
e Linux
e Solaris 9 and later k k k @ <«—kernel threac

Operating System Concepts — 9th Edition 4.14 Silberschatz, Galvin and Gagne ©201

w £

¥
7,

ot Many-to-Many Model

e Allows many user level threads to be

mapped to many kernel threads

e Allows the operating system to create

a sufficient number of kernel threads ; ;
\ . . «——— user threac
e Solaris prior to version 9 ;
e Windows with the ThreadFiber
package
k k k | «—kernel thread

Operating System Concepts — 9t Edition 4.15 Silberschatz, Galvin and Gagne ©2013

™
T Two-level Model

e Similar to M:M, except that it allows a user thread to be

bound to kernel thread
e Examples ; ;
; ; ; <«— user thread
o IRIX
o HP-UX
o Trucd UNIX

e Solaris 8 and earlier

© ==\ =
A

Silberschatz, Galvin and Gagne ©201

Operating System Concepts — 9t Edition 4,16

«¢%’ Windows Multithreaded C Program

il

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1;
return 0;
}
int main(int argc, char *argvl[])
{

DWORD ThreadId;
HANDLE ThreadHandle;
int Param;

if (argec !'= 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv([1]);

if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

A 295
Operating System Concepts — 9t Edition 4.17 Silberschatz, Galvin and Gagne ©2013

=

—

“§»/ Windows Multithreaded C Program (Cont.)

/* create the thread */
ThreadHandle = CreateThread(

NULL, /* default security attributes */

0, /* default stack size */

Summation, /* thread function */

&Param, /* parameter to thread function */

0, /* default creation flags */

&ThreadId); /* returns the thread identifier */

if (ThreadHandle !'= NULL) {

Operating System Concepts — 9t Edition

/* now wait for the thread to finish */
WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf("sum = %d\n",Sum);

AN
N
£

2\
_ V‘;ﬁ«}&\
= =
WS

A

ey

4.18 Silberschatz, Galvin and Gagne ©2013

Lt Java Threads

e Java threads are managed by the JVM

e Typically implemented using the threads model provided by
underlying OS

e Java threads may be created by:

public interface Runnable

{
}

public abstract void runf();

o Extending Thread class

o |Implementing the Runnable interface

w £ ¢

Operating System Concepts — 9th Edition 4.19 Silberschatz, Galvin and Gagne ©201

«:‘fﬂd
y
L r\; i

Java Multithreaded Program

Operating System Concepts — 9t Edition

class Sum

{

}

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}

class Summation implements Runnable

{

}

private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += 1i;
sumValue.setSum(sum) ;

}

A

4.20 Silberschatz, Galvin and Gagne ©2013

=

-

g% Java Multithreaded Program (Cont.)

.
S

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
Sum sumObject = new Sum() ;

int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation (upper, sumObject)) ;
thrd.start () ;
try {
thrd.join() ;

System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>"); }

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 4.21

-|

-

iy

o

e Create a number of threads in a pool where they await work
e Advantages:

o Usually slightly faster to service a request with an existing
thread than create a new thread

o Allows the number of threads in the application(s) to be
bound to the size of the pool

o Separating task to be performed from mechanics of creating
task allows different strategies for running task

4 I.e.Tasks could be scheduled to run periodically
e Windows API supports thread pools:

DWORD WINAPI PoolFunction (AVOID Param)
/*
* this function runs as a separate thread.

*/

s

SN
g sﬂ;} 3 ‘\\!
- ,,\.{
A }: 2

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 4,22

Thread Cancellation

Thread cancellation is the task of terminating a thread before it has completed.

If multiple threads are When a user presses a

concurrently searching button on a web browser

through a database and that stops a web page
one thread returns the from loading any
result, the remaining v further, all threads

threads might be loading the page are

canceled. canceled.

N
AT
P o . 1

-]
-

Operating System Concepts — 9t Edition . Silberschatz, Galvin and Gagne ©2013

4

«

e Thread Cancellation

y

e Terminating a thread before it has finished
e Thread to be canceled is target thread
e Two general approaches:

» Asynchronous cancellation terminates the target thread
immediately

» Deferred cancellation allows the target thread to periodically
check if it should be cancelled

e Pthread code to create and cancel a thread:
pthread. t tid;

/% create the thread x/
pthread create(&tid, 0, worker, NULL) ;

/* cancel the thread */
pthread-cancel (tid) ;

Operating System Concepts — 9t Edition 4.24 Silberschatz, Galvin and Gagne ©2013

y

ﬂ,‘ml
=

7 Thread Cancellation (Cont.)

e Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

Mode State Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

e [f thread has cancellation disabled, cancellation remains pending
until thread enables it

e Default type is deferred

o Cancellation only occurs when thread reaches cancellation
point

4 |l.e. pthread testcancel ()
4 Then cleanup handler is invoked
e On Linux systems, thread cancellation is handled through signals

Operating System Concepts — 9th Edition 4,25 Silberschatz, Galvin and Gagne ©2013

¥
¥

> : 1

Thread-Local Storage

e Thread-local storage (TLS) allows each thread to have its own
copy of data

e Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

e Different from local variables
o Local variables visible only during single function invocation
o TLS visible across function invocations

e Similar to static data
o TLS is unique to each thread

s

> .\“\‘ o\
P —
> =N
o, Z e N
2957

A

Operating System Concepts — 9th Edition 4,26 Silberschatz, Galvin and Gagne ©2013

«§% Operating System Examples

e \Windows Threads
e Linux Threads

O\
’ [}
A AN

Operating System Concepts — 9th Edition 4,27 Silberschatz, Galvin and Gagne ©2013

7 Windows Threads

e Windows implements the Windows API — primary API for Win 98,
Win NT, Win 2000, Win XP, and Win 7

e Implements the one-to-one mapping, kernel-level

e Each thread contains
o Athreadid
» Register set representing state of processor

o Separate user and kernel stacks for when thread runs in user
mode or kernel mode

» Private data storage area used by run-time libraries and
dynamic link libraries (DLLS)

e The register set, stacks, and private storage area are known as
the context of the thread

A

7 \\v"
el ‘Q..:)

Operating System Concepts — 9th Edition 4,28 Silberschatz, Galvin and Gagne ©2013

s

<55 Windows Threads (Cont.)

& 7

e The primary data structures of a thread include:

» ETHREAD (executive thread block) — includes pointer to
process to which thread belongs and to KTHREAD, in
kernel space

« KTHREAD (kernel thread block) — scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

o TEB (thread environment block) — thread id, user-mode
stack, thread-local storage, in user space

P ‘.\!
=)

b ./W/

el A9%

Operating System Concepts — 9th Edition 4,29 Silberschatz, Galvin and Gagne ©2013

S ——

| _
«¢%7 Windows Threads Data Structures

ETHREAD
thread start
address
pointer to
barent process KTHREAD
- scheduling
- and
synchronization
. information
kemel TEB
stack
> thread identifier
. user
N stack
thread-local
storage
kernel space user space

7

Operating System Concepts — 9th Edition 4,30 Silberschatz, Galvin and Gagne ©2013

A
y
(4

/,

57 Linux Threads

"

e Linux refers to them as tasks rather than threads
e Thread creation is done through clone () system call

e clone () allows a child task to share the address space of the
parent task (process)

o Flags control behavior

flag meaning

CLONE_FS File-system information is shared.

CLONE VM The same memory space is shared.

CLONE SIGHAND Signal handlers are shared.

CLONE_FILES The set of open files is shared.

e struct task_struct points to process data structures (shared
or unique)

A

7 \\v"
el ‘Q..:)

Silberschatz, Galvin and Gagne ©2013

s

Operating System Concepts — 9t Edition 4.31

L

4

»Difference Between Thread & Process

Comparison
Basis

Definition

Context

switching time

Memory Sharing

Communication

Blocked

Operating System Concepts — 9t Edition

Process

A process Is a program under

execution L.e. an active program.

Processes require more time for
context switching as they are

heawvier.

Processes are totally
independent and don't share
memory.

Communication between

processes requires more time
than between threads.

If a process gets blocked,
remaining processes can
continue execution.

4.32

Thread

A thread is a lightweight process
that can be managed
independently by a scheduler

Threads require less time for
context switching as they are

lighter than processes.

A thread may share some memory

with its peer threads.

Communication between threads
requires less time than between
processes.

If a user level thread gets blocked,
all of its peer threads also get
blocked.

/ .\x“,
AU A%

Silberschatz, Galvin and Gagne ©2013

=

“%7/ Symmetric Multiprocessing(SMP)

The systems have multiple processors working in parallel that share the
computer clock, memory, bus, peripheral devices etc. There are mainly
two types of multiprocessor systems. These are —

«Symmetric Multiprocessor System
oAsymmetric Multiprocessor System

v A% 2
Operating System Concepts — 9th Edition 4,33 Silberschatz, Galvin and Gagne ©2013

1,
N

,-F,'-'?—l
r @ Symmetric Multiprocessing (SMP)

In symmetric multiprocessing, multiple processors share a common
memory and operating system. All of these processors work in tandem
to execute processes. The operating system treats all the processors
equally, and no processor is reserved for special purposes.

Features of Multiprocessing:

eSymmetric multiprocessing is also known as tightly coupled
multiprocessing as all the CPU’s are connected at the bus level and have
access to a shared memory.

oAll the parallel processors in symmetric multiprocessing have their
private cache memory to decrease system bus traffic and also reduce
the data access time.

\\

N N |
: /'):k S
y /‘\V"(J
,
AU WX

Operating System Concepts — 9t Edition 4.34 Silberschatz, Galvin and Gagne ©2013

SMP

Symmetric Vs Asymmetric
Multiprocessing Multiprocessing
CPU 1 - . P1 ‘ Slave 1--—-‘:%\ Pl
. t l
| CPU 2 .i. P2 ’ Master —— | P2
CPU 3 | B3 ‘ —_— [—>|_P3

(Sshared Memory) (No Shared Memory)

Main Memory

Bus
Arbiter

H ':J ﬂ [

Cache Cache Cache 110

J [|

Processor 1

Processor 2 Processor n

Main memory and data bus or I/O bus being shared among multiple processors in SMP
Operating System Goncepts — Y Edition

4.63 IIJTI DUl IAdLL, \Jaiviii aliiu \aagne ©201 3

I 4l SMP

e Symmetric multiprocessing systems allow a processor to execute any process
Nno matter where its data is located in memory. The only stipulation is that a
process should not be executing on two or more processors at the same
time.

e In general, the symmetric multiprocessing system does not exceed 16
processors as this amount can be comfortably handled by the operating
system.

Advantages of Symmetric Multiprocessing
Some advantages of symmetric multiprocessing are —

e The throughput of the system is increased in symmetric multiprocessing. As
there are multiple processors, more processes are executed.

e Symmetric multiprocessing systems are much more reliable than single
processor systems. Even if a processor fails, the system still endures. Only its
efficiency is decreased a little.

,A;‘__,,.//' G :;. ,\\l

Operating System Concepts — 9th Edition 4,36 Silberschatz, Galvin and Gagne ©2013

=

7

(g

-5 SMP

Disadvantages of Symmetric Multiprocessing

Some disadvantages of symmetric multiprocessing are —

e [he operating system handles all the processors in symmetric multiprocessing
system. This leads to a complicated operating system that is difficult to design
and manage.

o All the processors in symmetric multiprocessing system are connected to the
same main memory. So a large main memory is required to accommodate all
these processors.

\\

S N |
-
P /‘\V"(J
,
AU WX

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 4.37

End of Chapter 4

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

	Slide 1: Operating System Chapter 4/Lec-04: Threads
	Slide 2: Chapter 4: Threads
	Slide 3: Objectives
	Slide 4: Concept of Thread
	Slide 5: Multithreaded Server Architecture
	Slide 6: Benefits
	Slide 7: Multicore Programming
	Slide 8: Multicore Programming (Cont.)
	Slide 9: Concurrency vs. Parallelism
	Slide 10: Amdahl’s Law
	Slide 11: User Threads and Kernel Threads
	Slide 12: Multithreading Models
	Slide 13: Many-to-One
	Slide 14: One-to-One
	Slide 15: Many-to-Many Model
	Slide 16: Two-level Model
	Slide 17: Windows Multithreaded C Program
	Slide 18: Windows Multithreaded C Program (Cont.)
	Slide 19: Java Threads
	Slide 20: Java Multithreaded Program
	Slide 21: Java Multithreaded Program (Cont.)
	Slide 22: Thread Pools
	Slide 23
	Slide 24: Thread Cancellation
	Slide 25: Thread Cancellation (Cont.)
	Slide 26: Thread-Local Storage
	Slide 27: Operating System Examples
	Slide 28: Windows Threads
	Slide 29: Windows Threads (Cont.)
	Slide 30: Windows Threads Data Structures
	Slide 31: Linux Threads
	Slide 32: Difference Between Thread & Process
	Slide 33: Symmetric Multiprocessing(SMP)
	Slide 34
	Slide 35: SMP
	Slide 36: SMP
	Slide 37: SMP
	Slide 38: End of Chapter 4

