
INSERT Operation on Trigger

PRODUCTS TABLE

CREATE TABLE products (

 product_id INT NOT NULL AUTO_INCREMENT,

 product_name VARCHAR(50),

 price DECIMAL(10, 2),

 created_date TIMESTAMP,

 PRIMARY KEY (product_id)

);

PRODUCTS_LOG TABLE

CREATE TABLE products_log (

 log_id INT NOT NULL AUTO_INCREMENT,

 product_id INT,

 log_date TIMESTAMP,

 PRIMARY KEY (log_id)

);

BEFORE INSERT Trigger (before_insert_product)

DELIMITER //

CREATE TRIGGER before_insert_product

BEFORE INSERT ON products

FOR EACH ROW

BEGIN

 SET NEW.created_date = CURRENT_TIMESTAMP;

END //

DELIMITER ;

AFTER INSERT Trigger (after_insert_product)

DELIMITER //

CREATE TRIGGER after_insert_product

AFTER INSERT ON products

FOR EACH ROW

BEGIN

 INSERT INTO products_log (product_id, log_date)

 VALUES (NEW.product_id, CURRENT_TIMESTAMP);

END //

DELIMITER ;

Inserting Data to Test the Triggers
Sample Insert into products

INSERT INTO products (product_name, price)

VALUES ('Laptop', 1200.00);

1. BEFORE INSERT Trigger: The before_insert_product trigger sets the created_date

field in the products table to the current timestamp automatically.

2. AFTER INSERT Trigger: The after_insert_product trigger creates a new entry in the

products_log table, recording the product_id and log_date.

Delete Operation on Trigger
PRODUCTS TABLE

CREATE TABLE products (

 product_id INT NOT NULL AUTO_INCREMENT,

 product_name VARCHAR(50),

 price DECIMAL(10, 2),

 created_date TIMESTAMP,

 PRIMARY KEY (product_id)

);

PRODUCTS_LOG TABLE

CREATE TABLE products_log (

 log_id INT NOT NULL AUTO_INCREMENT,

 product_id INT,

 log_date TIMESTAMP,

 PRIMARY KEY (log_id)

);

BEFORE DELETE Trigger

DELIMITER //

CREATE TRIGGER before_product_delete

BEFORE DELETE ON products

FOR EACH ROW

BEGIN

 INSERT INTO products_log (product_id, log_date)

 VALUES (OLD.product_id, NOW());

END;

//

DELIMITER ;

AFTER DELETE Trigger

DELIMITER //

CREATE TRIGGER after_product_delete

AFTER DELETE ON products

FOR EACH ROW

BEGIN

 INSERT INTO products_log (product_id, log_date)

 VALUES (OLD.product_id, NOW());

END;

//

DELIMITER ;

Explanation

 BEFORE DELETE Trigger: This trigger records an entry in products_log before the product is
actually removed from products.

 AFTER DELETE Trigger: This trigger logs the deletion after the product has been removed

INSERT INTO products (product_name, price, created_date)

VALUES

 ('Product A', 10.99, NOW()),

 ('Product B', 20.99, NOW()),

 ('Product C', 30.99, NOW());

DELETE FROM products WHERE product_id = 1;

SELECT * FROM products_log;

BEFORE UPDATE Trigger
DELIMITER //

CREATE TRIGGER before_product_update

BEFORE UPDATE ON products

FOR EACH ROW

BEGIN

 INSERT INTO products_log (product_id, log_date)

 VALUES (OLD.product_id, NOW());

END;

//

DELIMITER ;

AFTER UPDATE Trigger
DELIMITER //

CREATE TRIGGER after_product_update

AFTER UPDATE ON products

FOR EACH ROW

BEGIN

 INSERT INTO products_log (product_id, log_date)

 VALUES (NEW.product_id, NOW());

END;

//

DELIMITER ;

Explanation

 BEFORE UPDATE Trigger: Logs the product_id and timestamp before the row is updated,
capturing the state of the record prior to the change.

 AFTER UPDATE Trigger: Logs the product_id and timestamp after the row is updated,
capturing the state of the record post-change.

These triggers will create log entries in the products_log table for each update on the products
table, allowing you to track updates both before and after they occur.

INSERT INTO products (product_name, price, created_date)

VALUES

 ('Product A', 10.99, NOW()),

 ('Product B', 20.99, NOW()),

 ('Product C', 30.99, NOW());

UPDATE products

SET price = 15.99

WHERE product_id = 1;

SELECT * FROM products_log;

Drop Existing Triggers

DROP TRIGGER IF EXISTS before_product_update;

DROP TRIGGER IF EXISTS after_product_update;

Using DECLARE variable in a Trigger
DELIMITER //

CREATE TRIGGER before_product_update

BEFORE UPDATE ON products

FOR EACH ROW

BEGIN

 -- Declare a variable to store the price difference

 DECLARE price_difference DECIMAL(10, 2);

 -- Calculate the price difference

 SET price_difference = NEW.price - OLD.price;

 -- Log the update in the products_log table

 INSERT INTO products_log (product_id, log_date)

 VALUES (OLD.product_id, NOW());

 -- Optionally, insert the price difference into the log or use it in conditional logic

 IF price_difference <> 0 THEN

 INSERT INTO products_log (product_id, log_date)

 VALUES (OLD.product_id, NOW());

 END IF;

END;

//

DELIMITER ;

