Newton Forward and Backward Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called **extrapolation**.

Forward Differences: The differences $y_1 - y_0$, $y_2 - y_1$, $y_3 - y_2$,, $y_n - y(n-1)$ when denoted by dy0, dy1, dy2,, dy(n-1) are respectively, called the first forward differences. Thus the first forward differences are:

x	у	Ду	$\Delta^2 y$	$\Delta^3 y$	$\Delta^{I}y$	$\Delta^5 y$
<i>x</i> ₀	\mathcal{Y}_0	A.,				
~		Δy_0	A 2.,			
x_1	<i>y</i> ₁		Δy_0	43		
$(=x_0 + h)$		Δy_1	.0	$\Delta^{o}y_{0}$		
x_2	y_2	13	$\Delta^2 y_1$		$\Delta^4 y_0$	-
$(=x_0 + 2h)$		Δy_2	100,000	$\Delta^3 y_1$		$\Delta^{\mathrm{D}} y_0$
x_3	y_3		$\Delta^2 y_2$		$\Delta^4 y_1$	
$=(x_{0}+3h)$		Δy_3		$\Delta^3 y_2$		
x_4	<i>y</i> ₄		$\Delta^2 y_3$			
$=(x_{0}+4h)$		Δy_4				
x_5	y_5					
$=(x_{0}+5h)$						

Forward difference table

NEWTON'S GREGORY FORWARD INTERPOLATION FORMULA:

 $f(a+hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^2 f(a) + \ldots + \frac{u(u-1)(u-2)\dots(u-n+1)}{n!}\Delta^n f(a)$

This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the interval of difference and u = (x - a) / h, Here a is first term.

Example :

Input : Value of Si	n 52
---------------------	------

θ°	45°	50°	55°	60°
sin θ	0.7071	0.7660	0.8192	0.8660

Output :

	Differences					
x°	10 ⁴ y	10 ⁴ Ду	$10^4 \Delta^2 y$	$I \theta^T \Delta^3 y$		
45°	7071	590				
50°	7660	532	- 57	-7		
55°	8192	468	- 64			
60°	8660					

Value at Sin 52 is 0.788003

Below is the implementation of newton forward interpolation method.