Newton Backward Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called **extrapolation**.

Backward Differences : The differences $y_1 - y_0$, $y_2 - y_1$,, $y_n - y_{(n-1)}$ when denoted by dy1, dy2,, dy(n), respectively, are called first backward difference. Thus the first backward differences are : Backward differences are :

x	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
<i>x</i> ₀	<i>y</i> ₀	∇y_1				
$x_1 \\ (= x_0 + h)$	<i>y</i> ₁	∇y_2	$\nabla^2 y_2$	$ abla^3 y_3$		
$(=x_0^{-1}+2h)$	${\mathcal Y}_2$	∇y_3	$\nabla^2 y_3$	$\nabla^3 y_4$	$\nabla^4 y_4$	$ abla^5 {y}_5$
$\overset{x_3}{(=x_0+3h)}$	${\mathcal Y}_3$	∇y_4	$ abla^2 y_4$	$\nabla^3 y_5$	$\nabla^4 y_5$	Quinty Prom
$\overset{x_4}{(=x_0+4h)}$	<i>y</i> ₄	∇y_5	$\nabla^2 y_5$			
$(=x_0^{0}+5h)$	y_5					

Backward difference table

NEWTON'S GREGORY BACKWARD INTERPOLATION FORMULA:

 $f(a+nh+uh) = f(a+nh) + u\nabla f(a+nh) + \frac{u(u+1)}{2!}\nabla^2 f(a+nh) + \ldots + \frac{u(u+1)}{2!}\nabla^2 f(a+nh)$ $\frac{u(u+1)\dots(u+\overline{n-1})}{n!}\nabla^n f(a+nh)$

This formula is useful when the value of f(x) is required near the end of the table. h is called the interval of difference and u = (x - an) / h, Here is a last term.

Example :

Input	:	Population	in	1925
-------	---	------------	----	------

Year (x):	1891	1901	1911	1921	1931
Population (y): (in thousands)	46	66	81	93	101

Output :

x	у	Vy	$\nabla^2 y$	$\nabla^3 y$	$\nabla^{t}y$
1891	46				
1901	66	20	- 5	2000	
1911	81	15	- 3	2	- 3
1921	93	12	-4	-1	
1931	101	8			

Value in 1925 is 96.8368

Below is the implementation of newton backward interpolation method.