8.2.5 Maxima and Minima of a Tabulated Function:

Newton's forward interpolation formula for the function y = f(x) is given by

$$\begin{split} y \equiv y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!} \Delta^4 y_0 + \cdots, \\ p = \frac{x-x_0}{h} & \dots \end{split}$$

Differentiating ① with respect to p

$$\frac{dy}{dp} = \Delta y_0 + \frac{2p-1}{2!} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{3!} \Delta^3 y_0 + \frac{4p^3 - 18p^2 + 22p - 6}{4!} \Delta^4 y_0 + \cdots \qquad \dots \textcircled{2}$$

For finding maxima/minima of a function y = f(x), $\frac{dy}{dx} = \frac{dy}{dp} \frac{dp}{dx} = 0$

$$\frac{dp}{dx} = \frac{1}{h} \neq 0, \quad \therefore \frac{dy}{dp} = 0 \qquad \dots \quad 3$$

Neglecting 4th and higher order differences in equation ② and substituting in ③, we get a quadratic equation of the form $A + Bp + Cp^2 = 0$, where A, B, C are constants. Solving for p and substituting in $x = x_0 + ph$, we get points of

maxima/minima for the function y = f(x).

Newton's forward method is apt for finding extreme values of a tabulated data, wherever their location may be, by index p assuming values |p| ≥ 1, if the extreme value is not in vicinity of the point (x₀, y₀). Yet we may also use Newton's backward or Stirling's central differences formulae to locate extreme values, if desired.

Example 7 From the following data, find maximum and minimum values of y.

Solution: Constructing forward difference table for the function y = f(x)

x	у	Δ	Δ^2	Δ^3
0	2	_2	· · · · · · · · · · · · · · · · · · ·	
2	0		-48	*********
		-50		-48
4	-50		-96	
		-146		
6	-196			

Newton's forward interpolation formula for the function y = f(x) is given by

$$y \equiv y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \cdots, \quad p = \frac{x-x_0}{h} \qquad \dots \text{ }$$

Taking $x_0 = 0$, $y_0 = 2$, $\Delta y_0 = -2$, $\Delta^2 y_0 = -48$, $\Delta^3 y_0 = -48$

Substituting these values in (1), we get

$$y \equiv 2 + p(-2) + \frac{p(p-1)}{2}(-48) + \frac{p(p-1)(p-2)}{6}(-48)$$

$$\Rightarrow y \equiv 2 - 2p - 24(p^2 - p) - 8(p^3 - 3p^2 + 2p)$$
$$\Rightarrow y \equiv -8p^3 + 6p + 2 \qquad \dots ②$$

Differentiating ② with respect to p, we get

$$\frac{dy}{dp} = -24p^2 + 6$$

For y to be maximum, $\frac{dy}{dp} = 0$

$$\Rightarrow -24p^2 + 6 = 0$$

$$\Rightarrow p = 0.5, -0.5$$

Substituting in ②, maximum and minimum values of y are 4 and 0 respectively. **Example 8** From the following table, find x for which y is maximum.

Also find maximum value of y.

Solution: Constructing forward difference table for the function y = f(x), upto third differences

x	y = f(x)	Δ	Δ^2	Δ^3
3	0.205	******		
		0.035	*************	
4	0.240		-0.016	********
		0.019		0
5	0.259		-0.016	
		0.003		0.001
6	0.262		-0.015	
		-0.012		0.001
7	0.250		-0.014	
		-0.026		
8	0.224			

Newton's forward interpolation formula for the function y = f(x) is given by

$$y \equiv y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \cdots, \ p = \frac{x-x_0}{h}$$
 ... ①

Taking
$$x_0 = 3$$
, $y_0 = 0.205$, $\Delta y_0 = 0.035$, $\Delta^2 y_0 = -0.016$, $\Delta^3 y_0 = 0$

Substituting these values in ①, we get

$$y \equiv (0.205) + p(0.035) + \frac{p(p-1)}{2}(-0.016) + 0$$
 ... ②

Differentiating with respect to p, we get

$$\frac{dy}{dp} = 0.035 + \frac{2p-1}{2}(-0.016) = 0.035 - (0.008)(2p-1)$$

For y to be maximum,
$$\frac{dy}{dp} = 0$$

$$\Rightarrow 0.035 - (0.008)(2p - 1) = 0$$

⇒
$$p = 2.6875$$

Also $p = \frac{x - x_0}{h}$ or $x = x_0 + ph$
⇒ $x = 3 + 2.6875(1) = 5.6875$
∴ y is maximum when $x = 5.6875$ or $p = 2.6875$
Substituting in ②, maximum value of y is given by $y \equiv (0.205) + (2.6875)(0.035) + \frac{(2.6875)(2.6875 - 1)}{2}(-0.016) = 0.2628$