
SECTION 1.1 Functions
In many practical situations, the value of one quantity may depend on the value of a
second. For example, the consumer demand for beef may depend on the current mar-
ket price; the amount of air pollution in a metropolitan area may depend on the
number of cars on the road; or the value of a rare coin may depend on its age. Such
relationships can often be represented mathematically as functions.

Loosely speaking, a function consists of two sets and a rule that associates ele-
ments in one set with elements in the other. For instance, suppose you want to deter-
mine the effect of price on the number of units of a particular commodity that will
be sold at that price. To study this relationship, you need to know the set of admis-
sible prices, the set of possible sales levels, and a rule for associating each price with
a particular sales level. Here is the definition of function we shall use.

For most functions in this book, the domain and range will be collections of real
numbers and the function itself will be denoted by a letter such as f. The value that
the function f assigns to the number x in the domain is then denoted by f (x) (read as
“f of x”), which is often given by a formula, such as f (x) � x2 � 4.

Function ■ A function is a rule that assigns to each object in a set A exactly
one object in a set B. The set A is called the domain of the function, and the set
of assigned objects in B is called the range.
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Just-In-Time REVIEW

Appendices A1 and A2
contain a brief review of
algebraic properties needed 
in calculus.
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(a) A function as a mapping (b) A function as a machine

FIGURE 1.1 Interpretations of the function f(x).

It may help to think of such a function as a “mapping” from numbers in A to num-
bers in B (Figure 1.1a), or as a “machine” that takes a given number from A and con-
verts it into a number in B through a process indicated by the functional rule (Figure 1.1b).
For instance, the function f(x) � x2 � 4 can be thought of as an “f machine” that accepts
an input x, then squares it and adds 4 to produce an output y � x2 � 4. 

No matter how you choose to think of a functional relationship, it is important
to remember that a function assigns one and only one number in the range (output)
to each number in the domain (input). Here is an example.

EXAMPLE 1.1.1

Find f (3) if f(x) � x2 � 4.

Solution
f (3) � 32 � 4 � 13

EXPLORE!

Store f(x) � x2 � 4 into your
graphing utility. Evaluate at
x � �3, �1, 0, 1, and 3. Make
a table of values. Repeat
using g(x) � x2 � 1. Explain
how the values of f(x) and g(x)
differ for each x value.
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Observe the convenience and simplicity of the functional notation. In Example 1.1.1,
the compact formula f(x) � x2 � 4 completely defines the function, and you can indicate
that 13 is the number the function assigns to 3 by simply writing f(3) � 13.

It is often convenient to represent a functional relationship by an equation y �
f(x), and in this context, x and y are called variables. In particular, since the numer-
ical value of y is determined by that of x, we refer to y as the dependent variable
and to x as the independent variable. Note that there is nothing sacred about the
symbols x and y. For example, the function y � x2 � 4 can just as easily be repre-
sented by s � t2 � 4 or by w � u2 � 4.

Functional notation can also be used to describe tabular data. For instance,
Table 1.1 lists the average tuition and fees for private 4-year colleges at 5-year inter-
vals from 1973 to 2003.
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We can describe this data as a function f defined by the rule

Thus, f (1) � 1,898, f (2) � 2,700, . . . , f (7) � 18,273. Note that the domain of f is the
set of integers A � {1, 2, . . . , 7}.

The use of functional notation is illustrated further in Examples 1.1.2 and 1.1.3.
In Example 1.1.2, notice that letters other than f and x are used to denote the func-
tion and its independent variable.

EXAMPLE 1.1.2

If g(t) � (t � 2)1/2, find (if possible) g(27), g(5), g(2), and g(1).

Solution
Rewrite the function as (If you need to brush up on fractional pow-
ers, consult the discussion of exponential notation in Appendix A1. Then

and  g(2) � �2 � 2 � �0 � 0

 g(5) � �5 � 2 � �3 � 1.7321

g(27) � �27 � 2 � �25 � 5 

g(t) � �t � 2.

f (n) � �average tuition and fees at the

beginning of the nth 5-year period�

TABLE 1.1 Average Tuition and Fees for
4-Year Private Colleges

1973 1 $1,898

1978 2 $2,700

1983 3 $4,639

1988 4 $7,048

1993 5 $10,448

1998 6 $13,785

2003 7 $18,273

SOURCE: Annual Survey of Colleges, The College Board, New York.

Academic
Year Tuition and
Ending in Period n Fees

Just-In-Time REVIEW

Recall that 
whenever a and b are positive
integers. Example 1.1.2 uses
the case when a � 1 and
b � 2; x1/2 is another way of
expressing .�x

xa/b � �
b

xa
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However, g(1) is undefined since

and negative numbers do not have real square roots.

Functions are often defined using more than one formula, where each individual for-
mula describes the function on a subset of the domain. A function defined in this way is
sometimes called a piecewise-defined function. Here is an example of such a function.

EXAMPLE 1.1.3

Find , f (1), and f (2) if

Solution

Since satisfies x � 1, use the top part of the formula to find

However, x � 1 and x � 2 satisfy x � 1, so f(1) and f (2) are both found by using the
bottom part of the formula:

Determining the natural domain of a function often amounts to excluding all num-
bers x that result in dividing by 0 or in taking the square root of a negative number.
This procedure is illustrated in Example 1.1.4.

EXAMPLE 1.1.4

Find the domain and range of each of these functions.

a. b.

Solution
a. Since division by any number other than 0 is possible, the domain of f is the set

of all numbers x such that x � 3 � 0; that is, x � 3. The range of f is the set of 

all numbers y except 0, since for any y � 0, there is an x such that 

in particular, x � 3 �
1

y
.

y �
1

x � 3
;

g(t) � �t � 2f(x) �
1

x � 3

Domain Convention ■ Unless otherwise specified, if a formula (or several
formulas, as in Example 1.1.3) is used to define a function f, then we assume the
domain of f to be the set of all numbers for which f(x) is defined (as a real num-
ber). We refer to this as the natural domain of f.

f (1) � 3(1)2 � 1 � 4    and    f (2) � 3(2)2 � 1 � 13

f ��
1

2� �
1

�1/2 � 1
�

1

�3/2
� �

2

3

x � �
1

2

f(x) � �
1

x � 1
  

3x2 � 1

  if x � 1

  if x � 1

f ��
1

2�

g(1) � �1 � 2 � ��1
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EXPLORE!

Create a simple piecewise-
defined function using the
boolean algebra features of
your graphing utility. Write
Y1 � 2(X , 1) � (�1)(X $ 1) in
the function editor. Examine
the graph of this function,
using the ZOOM Decimal
Window. What values does
Y1 assume at X � �2, 0, 1,
and 3?

EXPLORE!

Store f(x) � 1/(x � 3) in your
graphing utility as Y1, and
display its graph using a
ZOOM Decimal Window.
TRACE values of the function
from X � 2.5 to 3.5. What do
you notice at X � 3? Next
store into Y1,
and graph using a ZOOM

Decimal Window. TRACE

values from X � 0 to 3, in 0.1
increments. When do the Y
values start to appear, and
what does this tell you about
the domain of g(x)?

g(x) � �(x � 2)

EXPLORE!

Store in the
function editor of your
graphing utility as

Now on your
HOME SCREEN create
Y1(27), Y1(5), and Y1(2), or,
alternatively, Y1({27, 5, 2}),
where the braces are used to
enclose a list of values. What
happens when you construct
Y1(1)?

Y1 � �(x � 2).

g(x) � �x � 2
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b. Since negative numbers do not have real square roots, g(t) can be evaluated only
when t � 2 � 0, so the domain of g is the set of all numbers t such that t � 2.
The range of g is the set of all nonnegative numbers, for if y � 0 is any such
number, there is a t such that ; namely, t � y2 � 2.

There are several functions associated with the marketing of a particular commodity: 

The demand function D(x) for the commodity is the price p � D(x) that must be
charged for each unit of the commodity if x units are to be sold (demanded).

The supply function S(x) for the commodity is the unit price p � S(x) at which pro-
ducers are willing to supply x units to the market.

The revenue R(x) obtained from selling x units of the commodity is given by the
product

R(x) � (number of items sold)(price per item)

� xp (x)

The cost function C(x) is the cost of producing x units of the commodity.

The profit function P(x) is the profit obtained from selling x units of the commodity
and is given by the difference

P(x) � revenue � cost

� R(x) � C(x) � xp(x) � C(x)

Generally speaking, the higher the unit price, the fewer the number of units
demanded, and vice versa. Conversely, an increase in unit price leads to an increase in
the number of units supplied. Thus, demand functions are typically decreasing (“falling”
from left to right), while supply functions are increasing (“rising”), as illustrated in the
margin. Here is an example that uses several of these special economic functions.

EXAMPLE 1.1.5

Market research indicates that consumers will buy x thousand units of a particular
kind of coffee maker when the unit price is

p(x) � �0.27x � 51

dollars. The cost of producing the x thousand units is

C(x) � 2.23x2 � 3.5x � 85

thousand dollars.

a. What are the revenue and profit functions, R(x) and P(x), for this production process?

b. For what values of x is production of the coffee makers profitable?

Solution
a. The revenue is

R(x) � xp(x) � �0.27x2 � 51x

thousand dollars, and the profit is

thousand dollars.

 � �2.5x2 � 47.5x � 85

 � �0.27x2 � 51x � (2.23x2 � 3.5x � 85)

 P(x) � R(x) � C(x)

Functions Used
in Economics

y � �t � 2
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Just-In-Time REVIEW

Recall that is defined to
be the positive number whose
square is a.

�a

p

x

Supply

Demand

Just-In-Time REVIEW

The product of two numbers
is positive if they have the
same sign and is negative if
they have different signs. That
is, ab . 0 if a . 0 and b . 0
and also if a , 0 and b , 0.
On the other hand, ab , 0 if
a , 0 and b . 0 or if a . 0
and b , 0.
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b. Production is profitable when P(x) � 0. We find that

Since the coefficient �2.5 is negative, it follows that P(x) � 0 only if the terms
(x � 2) and (x � 17) have different signs; that is, when x � 2 � 0 and
x � 17 � 0. Thus, production is profitable for 2 � x � 17.

Example 1.1.6 illustrates how functional notation is used in a practical situation.
Notice that to make the algebraic formula easier to interpret, letters suggesting the
relevant practical quantities are used for the function and its independent variable. (In
this example, the letter C stands for “cost” and q stands for “quantity” manufactured.)

EXAMPLE 1.1.6

Suppose the total cost in dollars of manufacturing q units of a certain commodity is
given by the function C(q) � q3 � 30q2 � 500q � 200.

a. Compute the cost of manufacturing 10 units of the commodity. 

b. Compute the cost of manufacturing the 10th unit of the commodity.

Solution
a. The cost of manufacturing 10 units is the value of the total cost function when

q � 10. That is,

b. The cost of manufacturing the 10th unit is the difference between the cost of
manufacturing 10 units and the cost of manufacturing 9 units. That is,

Cost of 10th unit � C(10) � C(9) � 3,200 � 2,999 � $201

There are many situations in which a quantity is given as a function of one variable
that, in turn, can be written as a function of a second variable. By combining the
functions in an appropriate way, you can express the original quantity as a function
of the second variable. This process is called composition of functions or functional
composition.

For instance, suppose environmentalists estimate that when p thousand people
live in a certain city, the average daily level of carbon monoxide in the air will be
c(p) parts per million, and that separate demographic studies indicate the population
in t years will be p(t) thousand. What level of pollution should be expected in t years?
You would answer this question by substituting p(t) into the pollution formula c(p)
to express c as a composite function of t.

We shall return to the pollution problem in Example 1.1.11 with specific formulas
for c(p) and p(t), but first you need to see a few examples of how composite func-
tions are formed and evaluated. Here is a definition of functional composition.

Composition
of Functions

 � $3,200

 � (10)3 � 30(10)2 � 500(10) � 200

 Cost of 10 units � C(10)

 � �2.5(x � 2)(x � 17)

 � �2.5(x2 � 19x � 34)

 P(x) � �2.5x2 � 47.5x � 85
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EXPLORE!

Refer to Example 1.1.6, and
store the cost function C(q)
into Y1 as 

X3 � 30X2 � 500X � 200
Construct a TABLE of values
for C(q) using your calculator,
setting TblStart at X � 5 with
an increment ΔTbl � 1 unit.
On the table of values observe
the cost of manufacturing the
10th unit.
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Note that the composite function f (g(x)) “makes sense” only if the domain of f
contains the range of g. In Figure 1.2, the definition of composite function is illus-
trated as an “assembly line” in which “raw” input x is first converted into a transi-
tional product g(x) that acts as input the f machine uses to produce f(g(x)).

Composition of Functions ■ Given functions f (u) and g(x), the composi-
tion f (g(x)) is the function of x formed by substituting u � g(x) for u in the for-
mula for f(u).

1-7 SECTION 1.1 FUNCTIONS 7

g
Machine

f
Machine

g
Input

x  x  x

f
Input

g(x)  g(x)

f
Output

f (g(x))

g
Output

g(x)  g(x)

. . .

FIGURE 1.2 The composition f (g(x)) as an assembly line.

EXAMPLE 1.1.7

Find the composite function f (g(x)), where f(u) � u2 � 3u � 1 and g(x) � x � 1.

Solution
Replace u by x � 1 in the formula for f (u) to get

f (g(x)) � (x � 1)2 � 3(x � 1) � 1

� (x2 � 2x � 1) � (3x � 3) � 1

� x2 � 5x � 5

NOTE By reversing the roles of f and g in the definition of composite func-
tion, you can define the composition g( f(x)). In general, f (g(x)) and g( f (x)) will
not be the same. For instance, with the functions in Example 1.1.7, you first
write

g(w) � w � 1 and f (x) � x2 � 3x � 1

and then replace w by x2 � 3x � 1 to get

g( f (x)) � (x2 � 3x � 1) � 1

� x2 � 3x � 2

which is equal to f (g(x)) � x2 � 5x � 5 only when (you should verify 
this). ■

Example 1.1.7 could have been worded more compactly as follows: Find the com-
posite function f(x � 1) where f(x) � x2 � 3x � 1. The use of this compact notation
is illustrated further in Example 1.1.8.

x � �
3

2

EXPLORE!

Store the functions f(x) � x2

and g(x) � x � 3 into Y1 and
Y2, respectively, of the
function editor. Deselect (turn
off) Y1 and Y2. Set Y3 �

Y1(Y2) and Y4 � Y2(Y1). Show
graphically (using ZOOM

Standard) and analytically (by
table values) that f(g(x))
represented by Y3 and g(f(x))
represented by Y4 are not the
same functions. What are the
explicit equations for both of
these composites?
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EXAMPLE 1.1.8

Find f (x � 1) if 

Solution
At first glance, this problem may look confusing because the letter x appears both
as the independent variable in the formula defining f and as part of the expression
x � 1. Because of this, you may find it helpful to begin by writing the formula for
f in more neutral terms, say as

To find f(x � 1), you simply insert the expression x � 1 inside each box, getting

Occasionally, you will have to “take apart” a given composite function g(h(x))
and identify the “outer function” g(u) and “inner function” h(x) from which it was
formed. The procedure is demonstrated in Example 1.1.9.

EXAMPLE 1.1.9

If find functions g(u) and h(x) such that f (x) � g(h(x)).

Solution
The form of the given function is

where each box contains the expression x � 2. Thus, f (x) � g(h(x)), where

Actually, in Example 1.1.9, there are infinitely many pairs of functions g(u)

and h(x) that combine to give g(h(x)) � f (x). [For example, 

and h(x) � x � 3.] The particular pair selected in the solution to this example is the
most natural one and reflects most clearly the structure of the original function f (x).

EXAMPLE 1.1.10

A difference quotient is an expression of the general form

f (x � h) � f (x)

h

g(u) �
5

u � 1
� 4(u � 1)3

g(u) �
5

u
� 4u3    and    h(x) � x � 2

f (x) �
5

□
� 4( □ )3

f (x) �
5

x � 2
� 4(x � 2)3,

f (x � 1) � 3(x � 1)2 �
1

x � 1
� 5

f ( □ ) � 3( □ )2 �
1

□
� 5

f(x) � 3x2 �
1

x
� 5.
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EXPLORE!

Refer to Example 1.1.8. Store
f(x) � 3x2 � 1/x � 5 into Y1.
Write Y2 � Y1(X � 1). Construct
a table of values for Y1 and Y2
for 0, 1, . . . , 6. What do you
notice about the values for
Y1 and Y2?

inner functionouter function

⎞⎪⎪⎬⎪⎪⎠⎞⎪⎪⎬⎪⎪⎠
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where f is a given function of x and h is a number. Difference quotients will be used
in Chapter 2 to define the derivative, one of the fundamental concepts of calculus.
Find the difference quotient for f (x) � x2 � 3x.

Solution
You find that

expand the numerator

divide by h

Example 1.1.11 illustrates how a composite function may arise in an applied
problem.

EXAMPLE 1.1.11

An environmental study of a certain community suggests that the average daily level
of carbon monoxide in the air will be c( p) � 0.5p � 1 parts per million when the
population is p thousand. It is estimated that t years from now the population of the
community will be p(t) � 10 � 0.1t2 thousand.

a. Express the level of carbon monoxide in the air as a function of time.

b. When will the carbon monoxide level reach 6.8 parts per million?

Solution
a. Since the level of carbon monoxide is related to the variable p by the equation

c(p) � 0.5p � 1

and the variable p is related to the variable t by the equation

p(t) � 10 � 0.1t2

it follows that the composite function

c(p(t)) � c(10 � 0.1t2) � 0.5(10 � 0.1t2) � 1 � 6 � 0.05t2

expresses the level of carbon monoxide in the air as a function of the variable t.

b. Set c(p(t)) equal to 6.8 and solve for t to get

That is, 4 years from now the level of carbon monoxide will be 6.8 parts per
million.

 t � �16 � 4

 t2 �
0.8

0.05
� 16

 0.05t2 � 0.8

 6 � 0.05t2 � 6.8

 � 2x � h � 3 

combine terms
in the numerator �

2xh � h2 � 3h
h

 

 �
[x2 � 2xh � h2 � 3x � 3h] � [x2 � 3x]

h

f (x � h) � f (x)

h
�

[(x � h)2 � 3(x � h)] � [x2 � 3x]

h
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discard t � �4
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10 CHAPTER 1 Functions, Graphs, and Limits 1-10

In Exercises 1 through 14, compute the indicated
values of the given function.

1. f (x) � 3x � 5; f (0), f (�1), f (2)

2. f (x) � �7x � 1; f (0), f (1), f (�2)

3. f (x) � 3x2 � 5x � 2; f (0), f (�2), f (1)

4. h(t) � (2t � 1)3; h(�1), h(0), h(1)

5.

6.

7.

8. g(u) � (u � 1)3/2; g(0), g(�1), g(8)

9. f (t) � (2t � 1)�3/2; f (1), f (5), f (13)

10.

11. f (x) � x � |x � 2|; f (1), f (2), f (3)

12. g(x) � 4 � |x |; g(�2), g(0), g(2)

13.

14.

In Exercises 15 through 18, determine whether or not
the given function has the set of all real numbers as its
domain.

15.

16.

17.

18.

In Exercises 19 through 24, determine the domain of
the given function.

19.

20. f (x) � x3 � 3x2 � 2x � 5

g(x) �
x2 � 5

x � 2

h(t) � �t2 � 1

f (t) � �1 � t

f (x) �
x � 1

x2 � 1

g(x) �
x

1 � x2

f (t) � �
3

t � 1

�t

if t � �5

if �5 � t � 5;

if t � 5

 f (�6), f (�5), f (16)

h(x) � ��2x � 4

x2 � 1

if x � 1

if x � 1
; h(3), h(1), h(0), h(�3)

f (t) �
1

�3 � 2t
; f (1), f(�3), f(0)

h(t) � �t2 � 2t � 4; h(2), h(0), h(�4)

f (x) �
x

x2 � 1
; f (2), f(0), f(�1)

g(x) � x �
1

x
; g(�1), g(1), g(2)

21.

22.

23.

24.

In Exercises 25 through 32, find the composite function
f(g(x)).

25. f (u) � 3u2 � 2u � 6, g(x) � x � 2

26. f (u) � u2 � 4, g(x) � x � 1

27. f (u) � (u � 1)3 � 2u2, g(x) � x � 1

28. f (u) � (2u � 10)2, g(x) � x � 5

29.

30.

31.

32.

In Exercises 33 through 38, find the difference quotient 

of f; namely, 

33. f(x) � 4 � 5x

34. f(x) � 2x � 3

35. f(x) � 4x � x2

36. f (x) � x2

37.

38.

In Exercises 39 through 42, first obtain the composite
functions f(g(x)) and g(f(x)), and then find all numbers
x (if any) such that f(g(x)) � g(f(x)).

39.

40. f (x) � x2 � 1, g(x) � 1 � x

f(x) � �x, g(x) � 1 � 3x

f (x) �
1

x

f(x) �
x

x � 1

f(x � h) � f(x)
h

.

f (u) � u2, g(x) �
1

x � 1

f (u) � �u � 1, g(x) � x2 � 1

f (u) �
1

u
, g(x) � x2 � x � 2

f (u) �
1

u2, g(x) � x � 1

h(s) � �s2 � 4

f (t) �
t � 2

�9 � t2

f(t) �
t � 1

t2 � t � 2

f(x) � �2x � 6

EXERCISES ■ 1.1
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41.

42.

In Exercises 43 through 50, find the indicated
composite function.

43. f (x � 2) where f (x) � 2x2 � 3x � 1

44. f (x � 1) where f (x) � x2 � 5

45. f (x � 1) where f (x) � (x � 1)5 � 3x2

46. f (x � 3) where f (x) � (2x � 6)2

47.

48.

49.

50. f (x2 � 2x � 9) where f (x) � 2x � 20

In Exercises 51 through 56, find functions h(x) and g(u)
such that f(x) � g(h(x)).

51. f(x) � (x � 1)2 � 2(x � 1) � 3

52. f(x) � (x5 � 3x2 � 12)3

53.

54.

55.

56.

CONSUMER DEMAND In Exercises 57
through 60, the demand function p � D(x) and
the total cost function C(x) for a particular
commodity are given in terms of the level
of production x. In each case, find:

(a) The revenue R(x) and profit P(x).

(b) All values of x for which production of the
commodity is profitable.

57. D(x) � �0.02x � 29
C(x) � 1.43x2 � 18.3x � 15.6

58. D(x) � �0.37x � 47
C(x) � 1.38x2 � 15.15x � 115.5

f(x) � �x � 4 �
1

(x � 4)3

f(x) � �3
2 � x �

4

2 � x

f(x) � �3x � 5

f(x) �
1

x2 � 1

f (x � 1) where f (x) �
x � 1

x

f �1

x� where f(x) � 3x �
2

x

f (x2 � 3x � 1) where f(x) � �x

f (x) �
1

x
, g(x) �

4 � x
2 � x

f (x) �
2x � 3

x � 1
, g(x) �

x � 3

x � 2
59. D(x) � �0.5x � 39

C(x) � 1.5x2 � 9.2x � 67

60. D(x) � �0.09x � 51
C(x) � 1.32x2 � 11.7x � 101.4

61. MANUFACTURING COST Suppose the total
cost of manufacturing q units of a certain
commodity is C(q) thousand dollars, where

C(q) � 0.01q2 � 0.9q � 2

a. Compute the cost of manufacturing 10 units.
b. Compute the cost of manufacturing the 10th unit.

62. MANUFACTURING COST Suppose the total
cost in dollars of manufacturing q units of a
certain commodity is given by the function 

C(q) � q3 � 30q2 � 400q � 500

a. Compute the cost of manufacturing 20 units.
b. Compute the cost of manufacturing the 20th unit.

63. DISTRIBUTION COST Suppose that the num-
ber of worker-hours required to distribute new
telephone books to x% of the households in a
certain rural community is given by the function 

a. What is the domain of the function W?
b. For what values of x does W(x) have a practical

interpretation in this context?
c. How many worker-hours were required to dis-

tribute new telephone books to the first 50% of
the households?

d. How many worker-hours were required to dis-
tribute new telephone books to the entire
community?

e. What percentage of the households in the com-
munity had received new telephone books by
the time 150 worker-hours had been expended?

64. WORKER EFFICIENCY An efficiency study
of the morning shift at a certain factory indicates
that an average worker who arrives on the job
at 8:00 A.M. will have assembled

f (x) � �x3 � 6x2 � 15x

television sets x hours later.
a. How many sets will such a worker have assem-

bled by 10:00 A.M.? [Hint: At 10:00 A.M., x � 2.]
b. How many sets will such a worker assemble be-

tween 9:00 and 10:00 A.M.?

W (x) �
600x

300 � x

1-11 SECTION 1.1 FUNCTIONS 11
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1-15 SECTION 1.2 THE GRAPH OF A FUNCTION 15

SECTION 1.2 The Graph of a Function
Graphs have visual impact. They also reveal information that may not be evident from
verbal or algebraic descriptions. Two graphs depicting practical relationships are
shown in Figure 1.3.

The graph in Figure 1.3a describes the variation in total industrial production in
a certain country over a 4-year period of time. Notice that the highest point on the
graph occurs near the end of the third year, indicating that production was greatest at
that time.

The graph in Figure 1.3b represents population growth when environmental fac-
tors impose an upper bound on the possible size of the population. It indicates that
the rate of population growth increases at first and then decreases as the size of the
population gets closer and closer to the upper bound.

To represent graphs in the plane, we shall use a rectangular (Cartesian) coordinate
system, which is an extension of the representation introduced for number lines in
Section 1.1. To construct such a system, we begin by choosing two perpendicular
number lines that intersect at the origin of each line. For convenience, one line is
taken to be horizontal and is called the x axis, with positive direction to the right.
The other line, called the y axis, is vertical with positive direction upward. Scaling
on the two coordinate axes is often the same, but this is not necessary. The coordi-
nate axes separate the plane into four parts called quadrants, which are numbered
counterclockwise I through IV, as shown in Figure 1.4.

Rectangular
Coordinate System

Production

Highest point

0 021 43
Time (years)

Moment of maximum production

Population

Time

Moment of most rapid growth

(a) (b)

Upper
bound

FIGURE 1.3 (a) A production function. (b) Bounded population growth.

hof32339_ch01_001-100.qxd  11/17/08  3:02 PM  Page 15 User-S198 201:MHDQ082:mhhof10%0:hof10ch01:



16 CHAPTER 1 Functions, Graphs, and Limits 1-16

The Distance Formula ■ The distance between the points P(x1, y1) and
Q(x2, y2) is given by

D � �(x2 � x1)2 � (y2 � y1)2

NOTE The distance formula is valid for all points in the plane even though we
have considered only the case in which Q is above and to the right of P. ■

y2 – y1

x

Q

D

P
x2 – x1

(x2, y2)

(x1, y1)

y

FIGURE 1.5 The distance
formula.

x

y

b

d

Q(c, d)

P(a, b)

c
a

(–3, 5)

(4, –7)(–5, –6)

(2, 8)
Quadrant II

(–, +)
Quadrant I

(+, +)

Quadrant III
(–, –)

Quadrant IV
(+, –)

Origin
(0, 0)

FIGURE 1.4 A rectangular coordinate system.

Any point P in the plane can be associated with a unique ordered pair of numbers
(a, b) called the coordinates of P. Specifically, a is called the x coordinate (or abscissa)
and b is called the y coordinate (or ordinate). To find a and b, draw the vertical and
horizontal lines through P. The vertical line intersects the x axis at a, and the horizontal
line intersects the y axis at b. Conversely, if c and d are given, the vertical line through
c and horizontal line through d intersect at the unique point Q with coordinates (c, d).

Several points are plotted in Figure 1.4. In particular, note that the point (2, 8)
is 2 units to the right of the vertical axis and 8 units above the horizontal axis, while
(�3, 5) is 3 units to the left of the vertical axis and 5 units above the horizontal axis.
Each point P has unique coordinates (a, b), and conversely each ordered pair of num-
bers (c, d) uniquely determines a point in the plane.

There is a simple formula for finding the distance D between two points in a coordi-
nate plane. Figure 1.5 shows the points P(x1, y1) and Q(x2, y2). Note that the difference
x2 � x1 of the x coordinates and the difference y2 � y1 of the y coordinates represent
the lengths of the sides of a right triangle, and the length of the hypotenuse is the
required distance D between P and Q. Thus, the Pythagorean theorem gives us the
distance formula To summarize:D � �(x2 � x1)2 � (y2 � y1)2.

The Distance 
Formula

hof32339_ch01_001-100.qxd  11/17/08  3:02 PM  Page 16 User-S198 201:MHDQ082:mhhof10%0:hof10ch01:



EXAMPLE 1.2.1

Find the distance between the points and 

Solution
In the distance formula, we have and so the dis-
tance between P and Q may be found as follows:

To represent a function geometrically as a graph, we plot values of the inde-
pendent variable x on the (horizontal) x axis and values of the dependent variable y
on the (vertical) y axis. The graph of the function is defined as follows.

In Chapter 3, you will study efficient techniques involving calculus that can be
used to draw accurate graphs of functions. For many functions, however, you can
make a fairly good sketch by plotting a few points, as illustrated in Example 1.2.2.

EXAMPLE 1.2.2

Graph the function f (x) � x2.

Solution
Begin by constructing the table

x �3 �2 �1 0 1 2 3

y � x2 9 4 1 0 1 4 9

Then plot the points (x, y) and connect them with the smooth curve shown in
Figure 1.6.

NOTE Many different curves pass through the points in Example 1.2.2. Sev-
eral of these curves are shown in Figure 1.7. There is no way to guarantee that
the curve we pass through the plotted points is the actual graph of f. However,
in general, the more points that are plotted, the more likely the graph is to be
reasonably accurate. ■

1

4

1

4

1

2
�

1

2

The Graph of a Function ■ The graph of a function f consists of all points
(x, y) where x is in the domain of f and y � f (x); that is, all points of the form
(x, f (x)).

y � f (x)The Graph of 
a Function

D � �(4 � (�2))2 � (�1 � 5)2 � �72 � 6�2

y2 � �1,x1 � �2, y1 � 5, x2 � 4,

Q(4, �1).P(�2, 5)

1-17 SECTION 1.2 THE GRAPH OF A FUNCTION 17

x

y

FIGURE 1.6 The graph of
y � x2.
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Example 1.2.3 illustrates how to sketch the graph of a function defined by more
than one formula.

EXAMPLE 1.2.3

Graph the function

Solution
When making a table of values for this function, remember to use the formula that
is appropriate for each particular value of x. Using the formula f(x) � 2x when 

0 � x � 1, the formula when 1 � x � 4, and the formula f(x) � 3 when 

x � 4, you can compile this table:

Now plot the corresponding points (x, f (x)) and draw the graph as in Figure 1.8.
Notice that the pieces for 0 � x � 1 and 1 � x � 4 are connected to one another at
(1, 2) but that the piece for x � 4 is separated from the rest of the graph. [The “open 

dot” at indicates that the graph approaches this point but that the point is not 

actually on the graph.] 

�4, 
1

2�

f(x) �
2

x

f(x) � �
2x
2

x
3

  if 0 � x � 1

  if 1 � x � 4

  if x � 4

18 CHAPTER 1 Functions, Graphs, and Limits 1-18

x

y

x

y

x

y

FIGURE 1.7 Other graphs through the points in Example 1.2.2.

x 0 1 2 3 4 5 6

f (x) 0 1 2 1 3 3 3
2

3

1

2

EXPLORE!

Store f(x) � x2 into Y1 of the
equation editor, using a bold
graphing style. Represent
g(x) � x2 � 2 by Y2 � Y1 � 2
and h(x) � x2 � 3 by Y3 �

Y1 � 3. Use ZOOM decimal
graphing to show how the
graphs of g(x) and h(x) relate
to that of f(x). Now deselect
Y2 and Y3 and write Y4 �

Y1(X � 2) and Y5 � Y1(X � 3).
Explain how the graphs of Y1,
Y4, and Y5 relate.

EXPLORE!

Certain functions that are
defined piecewise can be
entered into a graphing
calculator using indicator
functions in sections. For
example, the absolute value
function,

can be represented by
Y1 � X(X $ 0) � (�X)(X , 0).
Now represent the function in
Example 1.2.3, using indicator
functions and graph it with an
appropriate viewing window.
[Hint: You will need to
represent the interval, 
0 , X , 1, by the boolean
expression, (0 , X)(X , 1).]

f(x) � 	x	 � �x
�x

  if x � 0
  if x � 0
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FIGURE 1.8 The graph of 

The points (if any) where a graph crosses the x axis are called x intercepts, and similarly,
a y intercept is a point where the graph crosses the y axis. Intercepts are key features
of a graph and can be determined using algebra or technology in conjunction with
these criteria.

EXAMPLE 1.2.4

Graph the function f (x) � �x2 � x � 2. Include all x and y intercepts.

Solution
The y intercept is f (0) � 2. To find the x intercepts, solve the equation f (x) � 0. Fac-
toring, we find that

�x2 � x � 2 � 0

�(x � 1)(x � 2) � 0

x � �1, x � 2

Thus, the x intercepts are (�1, 0) and (2, 0).
Next, make a table of values and plot the corresponding points (x, f(x)).

x �3 �2 �1 0 1 2 3 4

f (x) �10 �4 0 2 2 0 �4 �10

The graph of f is shown in Figure 1.9.

How to Find the x and y Intercepts ■ To find any x intercept of a
graph, set y � 0 and solve for x. To find any y intercept, set x � 0 and solve 
for y. For a function f, the only y intercept is y0 � f (0), but finding x intercepts
may be difficult.

Intercepts

f(x) � �
2x
2

x
3

  0 � x � 1

  1 � x � 4

  x � 4

x

y

3

1

0 1 2 3 4 5 6

2

1-19 SECTION 1.2 THE GRAPH OF A FUNCTION 19

factor

uv � 0 if and only if u � 0 or
v � 0

x

y

(0, 2) (1, 2)

(–1, 0) (2, 0)

(–2, –4) (3, –4)

(–3, –10) (4, –10)

FIGURE 1.9 The graph of
f (x) � �x2 � x � 2.

EXPLORE!

Using your graphing utility,
locate the x intercepts of
f(x) � �x2 � x � 2. These
intercepts can be located by
first using the ZOOM button
and then confirmed by using
the root finding feature of the
graphing utility. Do the same
for g(x) � x2 � x � 4. What
radical form do these roots
have?
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20 CHAPTER 1 Functions, Graphs, and Limits 1-20

NOTE The factoring in Example 1.2.4 is fairly straightforward, but in other
problems, you may need to review the factoring procedure provided in Appen-
dix A2. ■

The graphs in Figures 1.6 and 1.9 are called parabolas. In general, the graph of 
y � Ax2 � Bx � C is a parabola as long as A � 0. All parabolas have a “U shape,”
and the parabola y � Ax2 � Bx � C opens up if A � 0 and down if A � 0. The “peak” 

or “valley” of the parabola is called its vertex and occurs where 

(Figure 1.10; also see Exercise 72). These features of the parabola are easily
obtained by the methods of calculus developed in Chapter 3. Note that to get a rea-
sonable sketch of the parabola y � Ax2 � Bx � C, you need only determine three
key features:

1. The location of the vertex 

2. Whether the parabola opens up (A � 0) or down (A � 0)
3. Any intercepts

For instance, in Figure 1.9, the parabola y � �x2 � x � 2 opens downward (since

A � �1 is negative) and has its vertex (high point) where .x �
�B
2A

�
�1

2(�1)
�

1

2

�where x �
�B
2A �

x �
�B
2A

Graphing Parabolas

(a) If A � 0, the parabola opens up. (b) If A � 0, the parabola opens down.

x =
2A
–B

Vertex

x

y

x

y

x =
2A
–B

Vertex

FIGURE 1.10 The graph of the parabola y � Ax2 � Bx � C.

In Chapter 3, we will develop a procedure in which the graph of a function of
practical interest is first obtained by calculus and then interpreted to obtain useful
information about the function, such as its largest and smallest values. In Example 1.2.5
we preview this procedure by using what we know about the graph of a parabola to
determine the maximum revenue obtained in a production process.

EXAMPLE 1.2.5

A manufacturer determines that when x hundred units of a particular commodity are
produced, they can all be sold for a unit price given by the demand function
p � 60 � x dollars. At what level of production is revenue maximized? What is the
maximum revenue?
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Solution
The revenue derived from producing x hundred units and selling them all at 60 � x
dollars is R(x) � x(60 � x) hundred dollars. Note that R(x) � 0 only for 0 � x � 60.
The graph of the revenue function 

R(x) � x(60 � x) � �x2 � 60x

is a parabola that opens downward (since A � �1 � 0) and has its high point 
(vertex) where

as shown in Figure 1.11. Thus, revenue is maximized when x � 30 hundred units
are produced, and the corresponding maximum revenue is

R(30) � 30(60 � 30) � 900

hundred dollars. The manufacturer should produce 3,000 units and at that level of
production should expect maximum revenue of $90,000.

x �
�B
2A

�
�60

2(�1)
� 30

1-21 SECTION 1.2 THE GRAPH OF A FUNCTION 21

x(100 units)

R(100 dollars)

30

500

900

0 60

 R � x (60 � x)

FIGURE 1.11 A revenue function.

Just-In-Time REVIEW

Completing the square is
reviewed in Appendix A2 and
illustrated in Examples A.2.12
and A.2.13.

factor out �1, the coefficient of x
complete the square inside 
parentheses by adding 
(�60/2)2 � 900

since �(c � 30)2 � 0

Note that we can also find the largest value of R(x) � �x2 � 60x by complet-
ing the square:

R(x) � �x2 � 60x � �(x2 � 60x)

� �(x2 � 60x � 900) � 900

�900 � 900

� �(x � 30)2 � 900

Thus, R(30) � 0 � 900 � 900 and if c is any number other than 30, then

R(c) � �(c � 30)2 � 900 � 900

so the maximum revenue is $90,000 when x � 30 (3,000 units).

Sometimes it is necessary to determine when two functions are equal. For instance,
an economist may wish to compute the market price at which the consumer demand
for a commodity will be equal to supply. Or a political analyst may wish to predict
how long it will take for the popularity of a certain challenger to reach that of the
incumbent. We shall examine some of these applications in Section 1.4.

Intersections
of Graphs
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22 CHAPTER 1 Functions, Graphs, and Limits 1-22

In geometric terms, the values of x for which two functions f (x) and g(x) are
equal are the x coordinates of the points where their graphs intersect. In Figure 1.12,
the graph of y � f (x) intersects that of y � g(x) at two points, labeled P and Q. To
find the points of intersection algebraically, set f (x) equal to g(x) and solve for x. This
procedure is illustrated in Example 1.2.6.

x

y

P

Q

y = f(x)

y = g(x)

0

FIGURE 1.12 The graphs of y � f (x) and y � g(x) intersect at P and Q.

EXAMPLE 1.2.6

Find all points of intersection of the graphs of f (x) � 3x � 2 and g(x) � x2.

Solution
You must solve the equation x2 � 3x � 2. Rewrite the equation as x2 � 3x � 2 � 0
and apply the quadratic formula to obtain

The solutions are

and

(The computations were done on a calculator, with results rounded off to two deci-
mal places.)

Computing the corresponding y coordinates from the equation y � x2, you find
that the points of intersection are approximately (3.56, 12.67) and (�0.56, 0.31). [As
a result of round-off errors, you will get slightly different values for the y coordinates
if you substitute into the equation y � 3x � 2.] The graphs and the intersection points
are shown in Figure 1.13.

x �
3 � �17

2
� �0.56x �

3 � �17

2
� 3.56

x �
�(�3) 
 �(�3)2 � 4(1)(�2)

2(1)
�

3 
 �17

2

Just-In-Time REVIEW

The quadratic formula is
used in Example 1.2.6. Recall
that this result says that the
equation Ax2 � Bx � C � 0
has real solutions if and only if
B2 � 4AC � 0, in which case,
the solutions are

and

A review of the quadratic
formula may be found in
Appendix A2.

r2 �
�B � �B2 � 4AC

2A

r1 �
�B � �B2 � 4AC

2A

EXPLORE!

Refer to Example 1.2.6. Use
your graphing utility to find all
points of intersection of the
graphs of f(x) � 3x � 2 and
g(x) � x2. Also find the roots of
g(x) � f(x) � x2 � 3x � 2.
What can you conclude?
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1-23 SECTION 1.2 THE GRAPH OF A FUNCTION 23

A power function is a function of the form f(x) � xn, where n is a real number. For
example, f(x) � x2, f(x) � x�3, and f(x) � x1/2 are all power functions. So are 

f(x) � and f(x) � since they can be rewritten as f(x) � x�2 and f(x) � x1/3, 

respectively.

A polynomial is a function of the form

p(x) � anxn � an�1xn�1 � . . . � a1x � a0

where n is a nonnegative integer and a0, a1, . . . , an are constants. If an � 0, the
integer n is called the degree of the polynomial. For example, f(x) � 3x5 � 6x2 � 7
is a polynomial of degree 5. It can be shown that the graph of a polynomial of
degree n is an unbroken curve that crosses the x axis no more than n times. To illus-
trate some of the possibilities, the graphs of three polynomials of degree 3 are
shown in Figure 1.14.

�3 x
1

x2

Power Functions,
Polynomials, and

Rational Functions

y = x3 y = x3 – 2x2

y = x3 – 4x

y y y

x x x

FIGURE 1.14 Three polynomials of degree 3.

EXPLORE!

Use your calculator to graph
the third-degree polynomial
f(x) � x3 � x2 � 6x � 3.
Conjecture the values of the x
intercepts and confirm them
using the root finding feature
of your calculator.

x

y

(–0.56, 0.31)

(3.56, 12.67)

0

FIGURE 1.13 The intersection of the graphs of f (x) � 3x � 2 and g(x) � x2.

A quotient of two polynomials p(x) and q(x) is called a rational function.

Such functions appear throughout this text in examples and exercises. Graphs of three
rational functions are shown in Figure 1.15. You will learn how to sketch such graphs
in Section 3.3 of Chapter 3.

p(x)

q(x)
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It is important to realize that not every curve is the graph of a function (Figure 1.16).
For instance, suppose the circle x2 � y2 � 5 were the graph of some function y � f (x).
Then, since the points (1, 2) and (1, �2) both lie on the circle, we would have
f (1) � 2 and f(1) � �2, contrary to the requirement that a function assigns one and
only one value to each number in its domain. The vertical line test is a geometric
rule for determining whether a curve is the graph of a function.

The Vertical Line Test ■ A curve is the graph of a function if and only if
no vertical line intersects the curve more than once.

The Vertical 
Line Test

24 CHAPTER 1 Functions, Graphs, and Limits 1-24

y

x

y

x

y

x

y = x
x – 1

y = x
x2 + 1

y = 1
x2

FIGURE 1.15 Graphs of three rational functions.

y

x

(a) The graph of a function

y

x

(b) Not the graph of a function

FIGURE 1.16 The vertical line test.

EXERCISES ■ 1.2

In Exercises 1 through 6, plot the given points in a
rectangular coordinate plane.

1. (4, 3)

2. (�2, 7)

3. (5, �1)

4. (�1, �8)

5. (0, �2)

6. (3, 0)
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In Exercises 7 through 10, find the distance between
the given points P and Q.

7. P(3, �1) and Q(7, 1)

8. P(4, 5) and Q(�2, �1)

9. P(7, �3) and Q(5, 3)

10.

In Exercises 11 and 12, classify each function as a
polynomial, a power function, or a rational function.
If the function is not one of these types, classify it as
“different.”

11. a. f(x) � x1.4

b. f(x) � �2x3 � 3x2 � 8
c. f(x) � (3x � 5)(4 � x)2

d.

12. a. f(x) � �2 � 3x2 � 5x4

b.

c.

d.

In Exercises 13 through 28, sketch the graph of the
given function. Include all x and y intercepts.

13. f (x) � x
14. f (x) � x2

15. f (x) �

16. f (x) �

17. f (x) � 2x � 1

18. f (x) � 2 � 3x

19. f (x) � x(2x � 5)

20. f (x) � (x � 1)(x � 2)

21. f (x) � �x2 � 2x � 15

22. f (x) � x2 � 2x � 8

23.

24. f (x) � �x3 � 1

25.

26. f (x) � �2x � 1

3

  if x � 2

  if x � 2

f (x) � �x � 1

x � 1

  if x � 0

  if x � 0

f (x) � x3

�1 � x

�x

f(x) � �2x � 9

x2 � 3�
3

f (x) �
(x � 3)(x � 7)

�5x3 � 2x2 � 3

f(x) � �x � 3x

f(x) �
3x2 � x � 1

4x � 7

P�0, 
1

2� and Q��1

5
, 

3

8�

27.

28.

In Exercises 29 through 34, find the points of
intersection (if any) of the given pair of curves and
draw the graphs.

29. y � 3x � 5 and y � �x � 3

30. y � 3x � 8 and y � 3x � 2

31. y � x2 and y � 3x � 2

32. y � x2 � x and y � x � 1

33. 3y � 2x � 5 and y � 3x � 9

34. 2x � 3y � �8 and 3x � 5y � �13

In Exercises 35 through 38, the graph of a function
f(x) is given. In each case find:

(a) The y intercept.
(b) All x intercepts.
(c) The largest value of f (x) and the value(s) of x
for which it occurs.
(d) The smallest value of f (x) and the value(s) of x
for which it occurs.

35.

36.
y

x
�4

2

4�2
�2

2

4

�4

0

y

x
�4 2 4�2

�2

2

4

�4

0

f (x) � �9 � x
x2 � x � 2

  if x � 2

  if x � 2

f (x) � �x2 � x � 3

1 � 2x
  if x � 1

  if x � 1

1-25 SECTION 1.2 THE GRAPH OF A FUNCTION 25
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1-29 SECTION 1.3 LINEAR FUNCTIONS 29

Vertex
(low point)

Vertex
(high point)

2A
–B

2A
–B

x

y

x

y

EXERCISE 72

72. Show that the vertex of the parabola y � Ax2 � Bx � C (A � 0) occurs at the

point where [Hint: First verify that 

Then note that the largest or 

smallest value of f (x) � Ax2 � Bx � C must occur where x �
�B
2A

.]

Ax2 � Bx � C � A��x �
B

2A�
2

� �C
A

�
B2

4A2��.

x �
�B
2A

.

SECTION 1.3 Linear Functions
In many practical situations, the rate at which one quantity changes with respect to
another is constant. Here is a simple example from economics.

EXAMPLE 1.3.1

A manufacturer’s total cost consists of a fixed overhead of $200 plus production costs
of $50 per unit. Express the total cost as a function of the number of units produced
and draw the graph.

Solution
Let x denote the number of units produced and C(x) the corresponding total cost. Then,

Total cost � (cost per unit)(number of units) � overhead

where Cost per unit � 50

Number of units � x
Overhead � 200

Hence,

C(x) � 50x � 200

The graph of this cost function is sketched in Figure 1.17.

EXPLORE!

Input the cost function 
Y1 � 50x � {200, 300, 400}
into the equation editor, using
braces to list various overhead
costs. Set the WINDOW
dimensions to [0, 5]1 by
[�100, 700]100 to view the
effect of varying the overhead
values.
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30 CHAPTER 1 Functions, Graphs, and Limits 1-30

The total cost in Example 1.3.1 increases at a constant rate of $50 per unit. As
a result, its graph in Figure 1.17 is a straight line that increases in height by 50 units
for each 1-unit increase in x.

In general, a function whose value changes at a constant rate with respect to its
independent variable is said to be a linear function. Such a function has the form

f (x) � mx � b

where m and b are constants, and its graph is a straight line. For example, 

and f(x) � 12 are all linear functions. To summarize:

A surveyor might say that a hill with a “rise” of 2 feet for every foot of “run” has a
slope of

m �
rise

run
�

2

1
� 2

The Slope of a Line

Linear Functions ■ A linear function is a function that changes at a con-
stant rate with respect to its independent variable.

The graph of a linear function is a straight line.

The equation of a linear function can be written in the form

y � mx � b

where m and b are constants.

f(x) �
3

2
� 2x, f(x) � �5x,

700

600

500

400

300

200

100

(2, 300)

(0, 200)

(3, 350)

1 2 3 4 5

C(x)

x

C � 50x � 200

FIGURE 1.17 The cost function, C(x) � 50x � 200.
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1-31 SECTION 1.3 LINEAR FUNCTIONS 31

The steepness of a line can be measured by slope in much the same way. In particu-
lar, suppose (x1, y1) and (x2, y2) lie on a line as indicated in Figure 1.18. Between
these points, x changes by the amount x2 � x1 and y by the amount y2 � y1. The slope
is the ratio

It is sometimes convenient to use the symbol �y instead of y2 � y1 to denote the
change in y. The symbol �y is read “delta y.” Similarly, the symbol Δx is used to
denote the change x2 � x1.

Slope �
change in y
change in x

�
y2 � y1

x2 � x1

The Slope of a Line ■ The slope of the nonvertical line passing through
the points (x1, y1) and (x2, y2) is given by the formula

Slope �
Δy
Δx

�
y2 � y1

x2 � x1

The use of this formula is illustrated in Example 1.3.2.

EXAMPLE 1.3.2

Find the slope of the line joining the points (�2, 5) and (3, �1).

Solution

The line is shown in Figure 1.19.

Slope �
Δy
Δx

�
�1 � 5

3 � (�2)
�

�6

5

y2 – y1 = Δy

x

y

x2 – x1 = Δ x

(x2, y2)

(x1, y1)

(Run)

(Rise)

FIGURE 1.18 Slope �
y2 � y1

x2 � x1
�

Δy
Δx

.
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32 CHAPTER 1 Functions, Graphs, and Limits 1-32

The sign and magnitude of the slope of a line indicate the line’s direction and
steepness, respectively. The slope is positive if the height of the line increases as x
increases and is negative if the height decreases as x increases. The absolute value of
the slope is large if the slant of the line is severe and small if the slant of the line is
gradual. The situation is illustrated in Figure 1.20.

Δy = –1 – 5 = –6

Δ x = 3 – (–2) = 5

(–2, 5)

(3, –1)

x

y

FIGURE 1.19 The line joining (�2, 5) and (3, �1).

m = 2

m = 1

m =
1
2

m = –2

m = –1

m = –
1
2

x

y

FIGURE 1.20 The direction and steepness of a line.

Horizontal and vertical lines (Figures 1.21a and 1.21b) have particularly simple
equations. The y coordinates of all points on a horizontal line are the same. Hence,
a horizontal line is the graph of a linear function of the form y � b, where b is a
constant. The slope of a horizontal line is zero, since changes in x produce no
changes in y.

The x coordinates of all points on a vertical line are equal. Hence, vertical lines are
characterized by equations of the form x � c, where c is a constant. The slope of a

Horizontal and
Vertical Lines

EXPLORE!

Store the varying slope values
{2, 1, 0.5, �0.5, �1, �2} into
List 1, using the STAT menu
and the EDIT option. Display
a family of straight lines
through the origin, similar
to Figure 1.20, by placing
Y1 � L1 * X into your calcu-
lator’s equation editor. Graph
using a ZOOM Decimal
Window and TRACE the
values for the different lines
at X � 1.
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1-33 SECTION 1.3 LINEAR FUNCTIONS 33

vertical line is undefined because only the y coordinates of points on the line can change,

so the denominator of the quotient is zero.
change in y
change in x

y = b
(0, b)

x = c

(c, 0)

(a) (b)

x

y

x

y

FIGURE 1.21 Horizontal and vertical lines.

The constants m and b in the equation y � mx � b of a nonvertical line have geo-
metric interpretations. The coefficient m is the slope of the line. To see this, suppose
that (x1, y1) and (x2, y2) are two points on the line y � mx � b. Then, y1 � mx1 � b
and y2 � mx2 � b, and so

The constant b in the equation y � mx � b is the value of y corresponding to 
x � 0. Hence, b is the height at which the line y � mx � b crosses the y axis, and the
corresponding point (0, b) is the y intercept of the line. The situation is illustrated in
Figure 1.22.

Because the constants m and b in the equation y � mx � b correspond to the slope
and y intercept, respectively, this form of the equation of a line is known as the slope-
intercept form.

The slope-intercept form of the equation of a line is particularly useful when geo-
metric information about a line (such as its slope or y intercept) is to be determined
from the line’s algebraic representation. Here is a typical example.

The Slope-Intercept Form of the Equation of a Line ■ The 
equation

y � mx � b

is the equation of the line whose slope is m and whose y intercept is (0, b).

 �
mx2 � mx1

x2 � x1
�

m(x2 � x1)

x2 � x1
� m

Slope �
y2 � y1

x2 � x1
�

(mx2 � b) � (mx1 � b)

x2 � x1
 

The Slope-Intercept
Form of the Equation

of a Line

EXPLORE!

Determine what three slope
values must be placed into
List 1 so that Y1 � L1*X � 1
creates the screen pictured
here.

m
(0, b) 1

x

y

FIGURE 1.22 The slope
and y intercept of the line
y � mx � b.
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34 CHAPTER 1 Functions, Graphs, and Limits 1-34

EXAMPLE 1.3.3

Find the slope and y intercept of the line 3y � 2x � 6 and draw the graph.

Solution
First put the equation 3y � 2x � 6 in slope-intercept form y � mx � b. To do this,
solve for y to get

It follows that the slope is and the y intercept is (0, 2).

To graph a linear function, plot two of its points and draw a straight line through
them. In this case, you already know one point, the y intercept (0, 2). A convenient
choice for the x coordinate of the second point is x � 3, since the corresponding y

coordinate is Draw a line through the points (0, 2) and (3, 0)

to obtain the graph shown in Figure 1.23.

Geometric information about a line can be obtained readily from the slope-intercept
formula y � mx � b. There is another form of the equation of a line, however, that
is usually more efficient for problems in which the geometric properties of a line are
known and the goal is to find the equation of the line.

The point-slope form of the equation of a line is simply the formula for slope in
disguise. To see this, suppose the point (x, y) lies on the line that passes through a
given point (x0, y0) and has slope m. Using the points (x, y) and (x0, y0) to compute
the slope, you get

which you can put in point-slope form

by simply multiplying both sides by x � x0.
The use of the point-slope form of the equation of a line is illustrated in

Examples 1.3.4 and 1.3.5.

y � y0 � m(x � x0)

y � y0

x � x0
� m

The Point-Slope Form of the Equation of a Line ■ The equation

y � y0 � m(x � x0)

is an equation of the line that passes through the point (x0, y0) and that has slope
equal to m.

The Point-Slope 
Form of the Equation

of a Line

y � �
2

3
 (3) � 2 � 0.

�
2

3

3y � �2x � 6    or    y � �
2

3
x � 2

y

x

(0, 2)

(3, 0)

FIGURE 1.23 The line 
3y � 2x � 6.

EXPLORE!

Find the y intercept values
needed in List L1 so that the
function Y1 � 0.5X � L1
creates the screen shown
here.
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1-35 SECTION 1.3 LINEAR FUNCTIONS 35

EXAMPLE 1.3.4

Find the equation of the line that passes through the point (5, 1) with slope 

Solution
Use the formula y � y0 � m(x � x0) with (x0, y0) � (5, 1) and to get

which you can rewrite as

The graph is shown in Figure 1.24.

For practice, solve the problem in Example 1.3.4 using the slope-intercept for-
mula. Notice that the solution based on the point-slope formula is more efficient.

In Chapter 2, the point-slope formula will be used extensively for finding the
equation of the tangent line to the graph of a function at a given point. Example 1.3.5
illustrates how the point-slope formula can be used to find the equation of a line
through two given points.

EXAMPLE 1.3.5

Find the equation of the line that passes through the points (3, �2) and (1, 6).

Solution
First compute the slope

Then use the point-slope formula with (1, 6) as the given point (x0, y0) to get

y � 6 � �4(x � 1) or y � �4x � 10

Convince yourself that the resulting equation would have been the same if
you had chosen (3, �2) to be the given point (x0, y0). The graph is shown in 
Figure 1.25.

NOTE The general form for the equation of a line is Ax � By � C � 0, where
A, B, C are constants, with A and B not both equal to 0. If B � 0, the line is ver-
tical, and when B � 0, the equation Ax � By � C � 0 can be rewritten as

Comparing this equation with the slope-intercept form y � mx � b, we see that
the slope of the line is given by m � �A/B and the y intercept by b � �C/B.
The line is horizontal (slope 0) when A � 0. ■

y � ��A
B �x � ��C

B �

m �
6 � (�2)

1 � 3
�

8

�2
� �4

y �
1

2
 x �

3

2

y � 1 �
1

2
 (x � 5)

m �
1

2

1

2
.

y

x

(0,     )

(5, 1)

�
3
2

FIGURE 1.25 The line
y � �4x � 10.

y

x

(3, –2)

(1, 6)

10

FIGURE 1.24 The line

y �
1

2
 x �

3

2
.
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36 CHAPTER 1 Functions, Graphs, and Limits 1-36

If the rate of change of one quantity with respect to a second quantity is constant, the
function relating the quantities must be linear. The constant rate of change is the slope
of the corresponding line. Examples 1.3.6 and 1.3.7 illustrate techniques you can use
to find the appropriate linear functions in such situations.

EXAMPLE 1.3.6

Since the beginning of the year, the price of a bottle of soda at a local discount super-
market has been rising at a constant rate of 2 cents per month. By November first,
the price had reached $1.56 per bottle. Express the price of the soda as a function of
time and determine the price at the beginning of the year.

Solution
Let x denote the number of months that have elapsed since the first of the year and
y the price of a bottle of soda (in cents). Since y changes at a constant rate with respect
to x, the function relating y to x must be linear, and its graph is a straight line. Since
the price y increases by 2 each time x increases by 1, the slope of the line must be
2. The fact that the price was 156 cents ($1.56) on November first, 10 months after
the first of the year, implies that the line passes through the point (10, 156). To write
an equation defining y as a function of x, use the point-slope formula

y � y0 � m(x � x0)

with m � 2, x0 � 10, y0 � 156

to get y � 156 � 2(x � 10) or y � 2x � 136

The corresponding line is shown in Figure 1.26. Notice that the y intercept is
(0, 136), which implies that the price of soda at the beginning of the year was $1.36
per bottle.

Practical 
Applications

x

y

(0, 136)

(Jan. 1) (Nov. 1)

(10, 156)

10

y � 2x � 136

FIGURE 1.26 The rising price of soda: y � 2x � 136.

Sometimes it is hard to tell how two quantities, x and y, in a data set are related
by simply examining the data. In such cases, it may be useful to graph the data to
see if the points (x, y) follow a clear pattern (say, lie along a line). Here is an exam-
ple of this procedure.
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1-37 SECTION 1.3 LINEAR FUNCTIONS 37

EXAMPLE 1.3.7

Table 1.4 lists the percentage of the labor force that was unemployed during the
decade 1991–2000. Plot a graph with time (years after 1991) on the x axis and per-
centage of unemployment on the y axis. Do the points follow a clear pattern? Based
on these data, what would you expect the percentage of unemployment to be in the
year 2005?

Solution
The graph is shown in Figure 1.27. Note that except for the initial point (0, 6.8), the
pattern is roughly linear. There is not enough evidence to infer that unemployment
is linearly related to time, but the pattern does suggest that we may be able to get
useful information by finding a line that “best fits” the data in some meaningful way.
One such procedure, called “least-squares approximation,” requires the approximat-
ing line to be positioned so that the sum of squares of vertical distances from the
data points to the line is minimized. The least-squares procedure, which will be
developed in Section 7.4 of Chapter 7, can be carried out on your calculator. When
this procedure is applied to the unemployment data in this example, it produces the
“best-fitting line” y � �0.389x � 7.338, as displayed in Figure 1.27. We can then
use this formula to attempt a prediction of the unemployment rate in the year 2005
(when x � 14):

y(14) � �0.389(14) � 7.338 � 1.892

Thus, least-squares extrapolation from the given data predicts roughly a 1.9% unem-
ployment rate in 2005.

TABLE 1.4 Percentage
of Civilian Unemployment
1991–2000

1991 0 6.8

1992 1 7.5

1993 2 6.9

1994 3 6.1

1995 4 5.6

1996 5 5.4

1997 6 4.9

1998 7 4.5

1999 8 4.2

2000 9 4.0

SOURCE: U.S. Bureau of Labor Statis-
tics, Bulletin 2307; and Employment and
Earnings, monthly.

Number Percentage
of Years of

Year from 1991 Unemployed

1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

11 12 13 14 15

7

8

9

10

Pe
rc

en
ta

ge
 o

f 
un

em
pl

oy
ed

2005Years after 1991

Least-squares line
y � �0.389x � 7.338

(0, 6.8)

(1, 7.5)
(2, 6.9)

(3, 6.1)
(5, 5.4)

(7, 4.5)
(9, 4)

(14, 1.9)

(4, 5.6)
(6, 4.9)

(8, 4.2)

y

x

FIGURE 1.27 Percentage of unemployed in the United States for 1991–2000.

EXPLORE!

Place the data in Table 1.4
into L1 and L2 of the STAT

data editor, where L1 is the
number of years from 1991
and L2 is the percentage of
unemployed. Following the
Calculator Introduction for
statistical graphing using the
STAT and STAT PLOT keys,
verify the scatterplot and 
best-fit line displayed in
Figure 1.27.
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NOTE Care must be taken when making predictions by extrapolating from
known data, especially when the data set is as small as the one in Example 1.3.7.
In particular, the economy began to weaken after the year 2000, but the least-
squares line in Figure 1.27 predicts a steadily decreasing unemployment rate.
Is this reasonable? In Exercise 63, you are asked to explore this question by
first using the Internet to obtain unemployment data for years subsequent to
2000 and then comparing this new data with the values predicted by the least-
squares line. ■

In applications, it is sometimes necessary or useful to know whether two given lines
are parallel or perpendicular. A vertical line is parallel only to other vertical lines and
is perpendicular to any horizontal line. Cases involving nonvertical lines can be han-
dled by the following slope criteria.

Parallel and
Perpendicular Lines

Parallel and Perpendicular Lines ■ Let m1 and m2 be the slopes of the
nonvertical lines L1 and L2. Then

L1 and L2 are parallel if and only if m1 � m2.

L1 and L2 are perpendicular if and only if m2 �
�1

m1
.

These criteria are demonstrated in Figure 1.28a. Geometric proofs are outlined in
Exercises 64 and 65. We close this section with an example illustrating one way the
criteria can be used.

y

x

y

x

L2

L1 L1
L2

(a) Parallel lines have m1 � m2 (b) Perpendicular lines have m2 � �1/m1

FIGURE 1.28 Slope criteria for parallel and perpendicular lines.

EXAMPLE 1.3.8

Let L be the line 4x � 3y � 3.

a. Find the equation of a line L1 parallel to L through P(�1, 4).

b. Find the equation of a line L2 perpendicular to L through Q(2, �3).
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Solution
By rewriting the equation 4x � 3y � 3 in the slope-intercept form we

see that L has slope 

a. Any line parallel to L must also have slope The required line L1

contains P(�1, 4), so

b. A line perpendicular to L must have slope Since the required 

line L2 contains Q(2, �3), we have

The given line L and the required lines L1 and L2 are shown in Figure 1.29.

 y �
3

4
 x �

9

2

 y � 3 �
3

4
 (x � 2)

m � �
1

mL
�

3

4
.

 y � �
4

3
 x �

8

3

 y � 4 � �
4

3
 (x � 1)

m � �
4

3
.

mL � �
4

3
.

y � �
4

3
 x � 1,

EXPLORE!

Write Y1 � AX � 2 and 
Y2 � (�1/A)X � 5 in the
equation editor of your
graphing calculator. On the
home screen, store different
values into A and then graph
both lines using a ZOOM

Square Window. What do you
notice for different values of A
(A � 0)? Can you solve for the
point of intersection in terms
of the value A?

y

x

L L2

L1

P(�1, 4)

Q(2, �3)

y � �
4
3

x � 1

y � �
4
3

x � 
8
3

y � 
3
4

x � 
9
2

FIGURE 1.29 Lines parallel and perpendicular to a given line L.

EXERCISES 1.3

3. (2, 0) and (0, 2)

4. (5, �1) and (�2, �1)

5. (2, 6) and (2, �4)

In Exercises 1 through 8, find the slope (if possible) of
the line that passes through the given pair of points.

1. (2, �3) and (0, 4)

2. (�1, 2) and (2, 5)
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40 CHAPTER 1 Functions, Graphs, and Limits 1-40

6.

7.

8. (�1.1, 3.5) and (�1.1, �9)

In Exercises 9 through 12, find the slope and intercepts
of the line shown. Then find an equation for the line.

9.

10.

11.
y

x

y

x

y

x

�1

7
, 5� and ��

1

11
, 5�

�2

3
, �

1

5� and ��
1

7
, 

1

8�
12.

In Exercises 13 through 20, find the slope and
intercepts of the line whose equation is given and
sketch the graph of the line.

13. x � 3

14. y � 5

15. y � 3x

16. y � 3x � 6

17. 3x � 2y � 6

18. 5y � 3x � 4

19.

20.

In Exercises 21 through 36, write an equation for the
line with the given properties.

21. Through (2, 0) with slope 1

22. Through (�1, 2) with slope 

23. Through (5, �2) with slope 

24. Through (0, 0) with slope 5

25. Through (2, 5) and parallel to the x axis

26. Through (2, 5) and parallel to the y axis

27. Through (1, 0) and (0, 1)

28. Through (2, 5) and (1, �2)

29. Through and �2

3
, 

1

4���
1

5
, 1�

�
1

2

2

3

x � 3

�5
�

y � 1

2
� 1

x
2

�
y
5

� 1

y

x
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30. Through (�2, 3) and (0, 5)

31. Through (1, 5) and (3, 5)

32. Through (1, 5) and (1, �4)

33. Through (4, 1) and parallel to the line 2x � y � 3

34. Through (�2, 3) and parallel to the line
x � 3y � 5

35. Through (3, 5) and perpendicular to the line
x � y � 4

36. Through and perpendicular to the line

2x � 5y � 3

37. MANUFACTURING COST A manufacturer’s
total cost consists of a fixed overhead of $5,000
plus production costs of $60 per unit. Express the
total cost as a function of the number of units
produced and draw the graph.

38. MANUFACTURING COST A manufacturer
estimates that it costs $75 to produce each unit of
a particular commodity. The fixed overhead is
$4,500. Express the total cost of production as a
function of the number of units produced and
draw the graph.

39. CREDIT CARD DEBT A credit card company
estimates that the average cardholder owed $7,853
in the year 2000 and $9,127 in 2005. Suppose
average cardholder debt D grows at a constant rate.
a. Express D as a linear function of time t, where t

is the number of years after 2000. Draw the
graph.

b. Use the function in part (a) to predict the aver-
age cardholder debt in the year 2010.

c. Approximately when will the average cardholder
debt be double the amount in the year 2000?

40. CAR RENTAL A car rental agency charges 
$75 per day plus 70 cents per mile.
a. Express the cost of renting a car from this

agency for 1 day as a function of the number
of miles driven and draw the graph.

b. How much does it cost to rent a car for a l-day
trip of 50 miles? 

c. The agency also offers a rental for a flat fee of
$125 per day. How many miles must you drive
on a l-day trip for this to be the better deal?

��
1

2
, 1�

41. COURSE REGISTRATION Students at a state
college may preregister for their fall classes by
mail during the summer. Those who do not
preregister must register in person in September.
The registrar can process 35 students per hour
during the September registration period. Suppose
that after 4 hours in September, a total of 360
students (including those who preregistered) have
been registered.
a. Express the number of students registered as a

function of time and draw the graph.
b. How many students were registered after 3 hours?
c. How many students preregistered during the

summer?

42. MEMBERSHIP FEES Membership in a
swimming club costs $250 for the 12-week
summer season. If a member joins after the start
of the season, the fee is prorated; that is, it is
reduced linearly.
a. Express the membership fee as a function of the

number of weeks that have elapsed by the time
the membership is purchased and draw the graph.

b. Compute the cost of a membership that is pur-
chased 5 weeks after the start of the season.

43. LINEAR DEPRECIATION A doctor owns
$1,500 worth of medical books which, for tax
purposes, are assumed to depreciate linearly to
zero over a 10-year period. That is, the value of
the books decreases at a constant rate so that it is
equal to zero at the end of 10 years. Express the
value of the books as a function of time and draw
the graph.

44. LINEAR DEPRECIATION A manufacturer buys
$20,000 worth of machinery that depreciates
linearly so that its trade-in value after 10 years will
be $1,000.
a. Express the value of the machinery as a function

of its age and draw the graph.
b. Compute the value of the machinery after 4 years.
c. When does the machinery become worthless? The

manufacturer might not wait this long to dispose
of the machinery. Discuss the issues the manu-
facturer may consider in deciding when to sell.

45. WATER CONSUMPTION Since the beginning
of the month, a local reservoir has been losing
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1-63 SECTION 1.5 LIMITS 63

SECTION 1.5 Limits
As you will see in subsequent chapters, calculus is an enormously powerful branch
of mathematics with a wide range of applications, including curve sketching, opti-
mization of functions, analysis of rates of change, and computation of area and prob-
ability. What gives calculus its power and distinguishes it from algebra is the concept
of limit, and the purpose of this section is to provide an introduction to this impor-
tant concept. Our approach will be intuitive rather than formal. The ideas outlined
here form the basis for a more rigorous development of the laws and procedures of
calculus and lie at the heart of much of modern mathematics.

Roughly speaking, the limit process involves examining the behavior of a function
f (x) as x approaches a number c that may or may not be in the domain of f. Limit-
ing behavior occurs in a variety of practical situations. For instance, absolute zero,
the temperature Tc at which all molecular activity ceases, can be approached but never
actually attained in practice. Similarly, economists who speak of profit under ideal
conditions or engineers profiling the ideal specifications of a new engine are really
dealing with limiting behavior.

To illustrate the limit process, consider a manager who determines that when x%
of her company’s plant capacity is being used, the total cost of operation is C hun-
dred thousand dollars, where

The company has a policy of rotating maintenance in an attempt to ensure that
approximately 80% of capacity is always in use. What cost should the manager
expect when the plant is operating at this ideal capacity?

It may seem that we can answer this question by simply evaluating C(80), but

attempting this evaluation results in the meaningless fraction However, it is still

possible to evaluate C(x) for values of x that approach 80 from the right (x � 80,
when capacity is temporarily overutilized) and from the left (x � 80, when capacity
is underutilized). A few such calculations are summarized in the following table.

x approaches 80 from the left → ← x approaches 80 from the right

x 79.8 79.99 79.999 80 80.0001 80.001 80.04

C(x) 6.99782 6.99989 6.99999 	 7.000001 7.00001 7.00043

The values of C(x) displayed on the lower line of this table suggest that C(x)
approaches the number 7 as x gets closer and closer to 80. Thus, it is reasonable
for the manager to expect a cost of $700,000 when 80% of plant capacity is
utilized.

The functional behavior in this example can be described by saying “C(x) has the
limiting value 7 as x approaches 80” or, equivalently, by writing

More generally, the limit of f (x) as x approaches the number c can be defined infor-
mally as follows.

lim
x→80

C(x) � 7

0

0
.

C(x) �
8x2 � 636x � 320

x2 � 68x � 960

Intuitive Introduction
to the Limit
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64 CHAPTER 1 Functions, Graphs, and Limits 1-64

Geometrically, the limit statement means that the height of the graph

y � f (x) approaches L as x approaches c, as shown in Figure 1.43. This interpretation
is illustrated along with the tabular approach to computing limits in Example 1.5.1.

lim
x→c

 f (x) � L

The Limit of a Function ■ If f (x) gets closer and closer to a number L as
x gets closer and closer to c from both sides, then L is the limit of f (x) as x
approaches c. The behavior is expressed by writing

lim
x→c

 f (x) � L

x→c←x

f(x)
↓
L
↑

f(x)

x

y

0

FIGURE 1.43 If the height of the graph of f approaches L as x approaches c.lim
x→c

 f (x) � L,

EXAMPLE 1.5.1

Use a table to estimate the limit

Solution
Let

and compute f (x) for a succession of values of x approaching 1 from the left and from
the right:

x → 1 ← x

x 0.99 0.999 0.9999 1 1.00001 1.0001 1.001

f (x) 0.50126 0.50013 0.50001 	 0.499999 0.49999 0.49988

The numbers on the bottom line of the table suggest that f (x) approaches 0.5 as x
approaches 1; that is,

lim
x→1  

�x � 1

x � 1
� 0.5

f (x) �  
�x � 1

x � 1

lim
x→1

 
�x � 1

x � 1

EXPLORE!

Graph using 

the modified decimal viewing
window 

[0, 4.7]1 by [�1.1, 2.1]1.
Trace values near x � 1. Also
construct a table of values,
using an initial value of 0.97
for x with an incremental
change of 0.01. Describe what
you observe. Now use an
initial value of 0.997 for x with
an incremental change of
0.001. Specifically what
happens as x approaches 1
from either side? What would
be the most appropriate value
for f(x) at x � 1 to fill the hole
in the graph?

f(x) � 
�x � 1
x � 1

,
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1-65 SECTION 1.5 LIMITS 65

The graph of f (x) is shown in Figure 1.44. The limit computation says that the height
of the graph of y � f (x) approaches L � 0.5 as x approaches 1. This corresponds to
the “hole” in the graph of f (x) at (1, 0.5). We will compute this same limit using an
algebraic procedure in Example 1.5.6.

x
c � 1

L � 0.5
(1, 0.5)

y

1

y � ��x � 1
x � 1

FIGURE 1.44 The function tends toward L � 0.5 as x approaches c � 1.f (x) �
�x � 1

x � 1

It is important to remember that limits describe the behavior of a function near
a particular point, not necessarily at the point itself. This is illustrated in Figure 1.45.
For all three functions graphed, the limit of f (x) as x approaches 3 is equal to 4. Yet
the functions behave quite differently at x � 3 itself. In Figure 1.45a, f (3) is equal to
the limit 4; in Figure 1.45b, f (3) is different from 4; and in Figure 1.45c, f (3) is not
defined at all.

x

y

0

4 4

(a)

x

y

0

4

(b) (c)

x

y

0x→3←x x→3←x x→3←x

FIGURE 1.45 Three functions for which lim
x→3

 f(x) � 4.

Figure 1.46 shows the graph of two functions that do not have a limit as x
approaches 2. The limit does not exist in Figure 1.46a because f (x) tends toward
5 as x approaches 2 from the right and tends toward a different value, 3, as x
approaches 2 from the left. The function in Figure 1.46b has no finite limit as x
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66 CHAPTER 1 Functions, Graphs, and Limits 1-66

approaches 2 because the values of f (x) increase without bound as x tends toward
2 and hence tend to no finite number L. Such so-called infinite limits will be dis-
cussed later in this section.

Algebraic Properties of Limits ■ If and exist, then

That is, the limit of a sum, a difference, a multiple, a product, a quotient, or a
power exists and is the sum, difference, multiple, product, quotient, or power of
the individual limits, as long as all expressions involved are defined.

 lim
x→c

 [ f (x)]p � [lim
x→c

 f (x)]p    if [lim
x→c

 f (x)]p exists

 lim
x→c

 
f (x)

g(x)
�

lim
x→c

 f (x)

lim
x→c

 g(x)
     if lim

x→c
 g(x) � 0

 lim
x→c 

[ f (x)g(x)] � [lim
x→c  

f (x)][lim
x→c

 g(x)]

 lim
x→c 

[kf(x)] � k lim
x→c  

f (x)    for any constant k

 lim 
x→c

[ f (x) � g(x)] � lim
x→c  

f (x) � lim
x→c

 g(x)

 lim
x→c 

[ f(x) � g(x)] � lim
x→c  

f (x) � lim
x→c

 g(x)

lim
x→c

 g(x)lim
x→c

 f (x)

Limits obey certain algebraic rules that can be used to simplify computations. These
rules, which should seem plausible on the basis of our informal definition of limit,
are proved formally in more theoretical courses.

Properties of Limits

x

y

0

3

5

(a)

x→2←x 0

(b)

x

y

x→2←x

FIGURE 1.46 Two functions for which does not exist.lim
x→2

 f (x)

Here are two elementary limits that we will use along with the limit rules to com-
pute limits involving more complex expressions.

EXPLORE!

Graph using the 

window [0, 4]1 by [�5, 40]5.
Trace the graph on both sides
of x � 2 to view the behavior
of f (x) about x � 2. Also
display the table value of the
function with the incremental
change of x set to 0.01 and
the initial value x � 1.97. What
happens to the values of f (x)
as x approaches 2?

f (x) � 
2

(x � 2)2

EXPLORE!

Graph the function

using the dot graphing style
and writing 

Y1 � 3(X � 2) � 5(X � 2)

in the equation editor of your
graphing calculator. Use your
TRACE key to determine the
values of y when x is near 2.
Does it make a difference from
which side x � 2 is ap-
proached? Also evaluate f(2).

f(x) � �3
5

x � 2
x � 2
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1-67 SECTION 1.5 LIMITS 67

In geometric terms, the limit statement says that the height of the graph 

of the constant function f (x) � k approaches k as x approaches c. Similarly, 

says that the height of the linear function f (x) � x approaches c as x approaches c.
These statements are illustrated in Figure 1.47.

lim
x→c

 x � c

lim
x→c

 k � k

0

y = k
(c, k)

x

y

0

c

(b)  lim  x = c

xx

(c, c)

y = x

x

y

c

(a)  lim k = k
x→c x→c

→ →c xx → →

FIGURE 1.47 Limits of two linear functions.

Limits of Two Linear Functions ■ For any constant k,

That is, the limit of a constant is the constant itself, and the limit of f (x) � x as
x approaches c is c.

lim
x→c

 k � k    and    lim
x→c

 x � c

Examples 1.5.2 through 1.5.6 illustrate how the properties of limits can be used to
calculate limits of algebraic functions. In Example 1.5.2, you will see how to find the
limit of a polynomial.

EXAMPLE 1.5.2

Find 

Solution
Apply the properties of limits to obtain

In Example 1.5.3, you will see how to find the limit of a rational function whose
denominator does not approach zero.

 � 3(�1)3 � 4(�1) � 8 � 9

 lim
x→�1

 (3x3 � 4x � 8) � 3� lim
x→�1

 x3 � 4� lim
x→�1

 x � lim
x→�1

 8

lim
x→�1

 (3x3 � 4x � 8).

Computation
of Limits
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68 CHAPTER 1 Functions, Graphs, and Limits 1-68

In Example 1.5.4, the denominator of the given rational function approaches zero,
while the numerator does not. When this happens, you can conclude that the limit
does not exist. The absolute value of such a quotient increases without bound and
hence does not approach any finite number.

EXAMPLE 1.5.4

Find 

Solution
The quotient rule for limits does not apply in this case since the limit of the denom-
inator is

Since the limit of the numerator is which is not equal to zero, you 

can conclude that the limit of the quotient does not exist.

The graph of the function in Figure 1.48 gives you a better idea of 

what is actually happening in this example. Note that f (x) increases without bound as
x approaches 2 from the right and decreases without bound as x approaches 2 from
the left.

f (x) �
x � 1

x � 2

lim
x→2

 (x � 1) � 3,

lim
x→2

 (x � 2) � 0

lim
x→2

 
x � 1

x � 2
.

EXAMPLE 1.5.3

Find 

Solution
Since you can use the quotient rule for limits to get

In general, you can use the properties of limits to obtain these formulas, which
can be used to evaluate many limits that occur in practical problems.

lim
x→1

 
3x3 � 8

x � 2
�

lim
x→1 (3x3 � 8)

lim
x→1

 (x � 2)
�

3 lim
x→1 x

3
� lim

x→1 8

lim
x→1

 x � lim
x→1

 2
�

3 � 8

1 � 2
� 5

lim
x→1

 (x � 2) � 0,

lim
x→1

 
3x3 � 8

x � 2
.

x

y

1

2

FIGURE 1.48 The graph of

f (x) �
x � 1

x � 2
.

Limits of Polynomials and Rational Functions ■ If p(x) and q(x) are
polynomials, then

and

 lim
x→c

 
p(x)

q(x)
�

p(c)

q(c)
    if q(c) � 0

 lim
x→c

 p(x) � p(c)

EXPLORE!

Graph 

using the viewing window
[0, 2]0.5 by [0, 5]0.5. Trace to
x � 1 and notice there is no
corresponding y value. Create
a table with an initial value 
of 0.5 for x, increasing in
increments of 0.1. Notice that
an error is displayed for 
x � 1, confirming that f(x) is
undefined at x � 1. What
would be the appropriate y
value if this gap were filled?
Change the initial value of x
to 0.9 and the increment size
to 0.01 to get a better
approximation. Finally, zoom 
in on the graph about x � 1 to
conjecture a limiting value for
the function at x � 1.

f (x) �
x2 � x � 2

x � 1
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4. 5. 6.

x

y

x

y

x

y

a

b

c

a

b

a

b

In Exercises 7 through 26, find the indicated limit 
if it exists.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. lim
x→4

 
(x � 1)(x � 4)

(x � 1)(x � 4)

lim
x→2

 
x2 � x � 6

x � 2

lim
x→5

 
x2 � 3x � 10

x � 5

lim
x→3

 
9 � x2

x � 3

lim
x→1

 
x2 � 1

x � 1

lim
x→3

 
2x � 3

x � 3

lim
x→5

 
x � 3

5 � x

lim
x→1

 
2x � 3

x � 1

lim
x→1/3

 
x � 1

x � 2

lim
x→�1

 (x2 � 1)(1 � 2x)2

lim
x→3

 (x � 1)2(x � 1)

lim
x→�1/2

(1 � 5x3)

lim
x→0

 (x5 � 6x4 � 7)

lim
x→�1

 (x3 � 2x2 � x � 3)

lim
x→2

 (3x2 � 5x � 2)

22.

23.

24.

25.

26.

For Exercises 27 through 36, find f (x) and 

f (x). If the limiting value is infinite, indicate 

whether it is �� or ��.

27. f (x) � x3 � 4x2 � 4

28. f (x) � 1 � x � 2x2 � 3x3

29. f (x) � (1 � 2x)(x � 5)

30. f (x) � (1 � x2)3

31.

32.

33.

34.

35.

36. f (x) �
1 � 2x3

x � 1

f (x) �
3x2 � 6x � 2

2x � 9

f (x) �
x2 � x � 5

1 � 2x � x3

f (x) �
2x � 1

3x2 � 2x � 7

f (x) �
1 � 3x3

2x3 � 6x � 2

f (x) �
x2 � 2x � 3

2x2 � 5x � 1

lim
x→��

 

lim
x→��

 

lim
x→9

 
�x � 3

x � 9

lim
x→4

 
�x � 2

x � 4

lim
x→1

 
x2 � 4x � 5

x2 � 1

lim
x→�2

 
x2 � x � 6

x2 � 3x � 2

lim
x→0

 
x(x2 � 1)

x2
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SECTION 1.6 One-Sided Limits and Continuity
The dictionary defines continuity as an “unbroken or uninterrupted succession.” Con-
tinuous behavior is certainly an important part of our lives. For instance, the growth
of a tree is continuous, as are the motion of a rocket and the volume of water flow-
ing into a bathtub. In this section, we shall discuss what it means for a function to
be continuous and shall examine a few important properties of such functions.

Informally, a continuous function is one whose graph can be drawn without the “pen”
leaving the paper (Figure 1.52a). Not all functions have this property, but those that
do play a special role in calculus. A function is not continuous where its graph has a
“hole or gap” (Figure 1.52b), but what do we really mean by “holes and gaps” in a
graph? To describe such features mathematically, we require the concept of a one-
sided limit of a function; that is, a limit in which the approach is either from the right
or from the left, rather than from both sides as required for the “two-sided” limit intro-
duced in Section 1.5.

One-Sided Limits

78 CHAPTER 1 Functions, Graphs, and Limits 1-78

I (units in inventory)

t

L1

L2

t1t t t2 t3

FIGURE 1.52 Continuity and discontinuity.

(a) A continuous graph

x

y

(b) A graph with “holes” or “gaps”
 is not continuous

“hole” “gap”

x

y

a b

For instance, Figure 1.53 shows the graph of inventory I as a function of time
t for a company that immediately restocks to level L1 whenever the inventory falls
to a certain minimum level L2 (this is called just-in-time inventory). Suppose the
first restocking time occurs at t � t1. Then as t tends toward t1 from the left, the
limiting value of I(t) is L2, while if the approach is from the right, the limiting
value is L1.

FIGURE 1.53 One-sided limits in a just-in-time inventory example.
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1-79 SECTION 1.6 ONE-SIDED LIMITS AND CONTINUITY 79

Here is the notation we will use to describe one-sided limiting behavior.

One-Sided Limits ■ If f (x) approaches L as x tends toward c from the left
(x � c), we write Likewise, if f (x) approaches M as x tends toward 

c from the right (c � x), then lim
x→c�

 f (x) � M.

lim
x→c�

 f (x) � L.

If this notation is used in our inventory example, we would write

Here are two more examples involving one-sided limits.

EXAMPLE 1.6.1

For the function

evaluate the one-sided limits 

Solution
The graph of f (x) is shown in Figure 1.54. Since f (x) � 1 � x2 for 0 � x � 2,
we have

Similarly, f (x) � 2x � 1 if x � 2, so

EXAMPLE 1.6.2

Find lim as x approaches 4 from the left and from the right.

Solution
First, note that for 2 � x � 4 the quantity

is negative, so as x approaches 4 from the left, f(x) decreases without bound. We
denote this fact by writing

lim
x→4�

 
x � 2
x � 4

� ��

f (x) �
x � 2

x � 4

x � 2

x � 4

 lim
x→2�

 f(x) � lim
x→2�

 (2x � 1) � 5

 lim
x→2�

 f(x) � lim
x→2�

 (1 � x2) � �3

lim
x→2�

 f (x) and lim
x→2�

 f (x).

f (x) � �1 � x2

2x � 1

if 0 � x � 2

if x � 2

lim
t→t 1

�
I(t) � L2    and    lim

t→t 1
�

I(t) � L1

y

x
210

–3

5

FIGURE 1.54 The graph of

f (x) � �1 � x2

2x � 1

if  0 � x � 2

if x � 2

EXPLORE!

Refer to Example 1.6.2. Graph 

using the window 

[0, 9.4]1 by [�4, 4]1 to verify
the limit results as x
approaches 4 from the left
and the right. Now trace f(x)
for large positive or negative
values of x. What do you
observe?

f(x) �
x � 2
x � 4
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80 CHAPTER 1 Functions, Graphs, and Limits 1-80

Notice that the two-sided limit does not exist for the function in Exam-

ple 1.6.2 since the functional values f (x) do not approach a single value L as x tends 
toward 4 from each side. In general, we have the following useful criterion for the
existence of a limit.

lim
x→4

 f (x)

FIGURE 1.55 The graph of f (x) �
x � 2

x � 4
.

x

y � 1

x � 4

1

4

y
lim  f (x) � ��

x→4�

lim  f (x) � ��
x→4�

Existence of a Limit ■ The two-sided limit exists if and only if 

the two one-sided limits both exist and are equal, and then

lim
x→c

 f (x) � lim
x→c�

 f (x) � lim
x→c�

 f (x)

lim
x→c�

 f (x) and lim
x→c�

 f (x)

lim
x→c

 f (x)

Likewise, as x approaches 4 from the right (with x � 4), f (x) increases without bound
and we write

The graph of f is shown in Figure 1.55.

lim
x→4�

 
x � 2

x � 4
� ��

EXAMPLE 1.6.3

Determine whether exists, where

f (x) � �x � 1

�x2 � 4x � 1

if x � 1

if x � 1

lim
x→1

 f (x)

EXPLORE!

Re-create the piecewise linear
function f(x) defined in the
Explore! Box on page 66.
Verify graphically that

and lim
x→2�

 f(x) � 5.lim
x→2�

 f(x ) � 3
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1-81 SECTION 1.6 ONE-SIDED LIMITS AND CONTINUITY 81

Solution
Computing the one-sided limits at x � 1, we find

and

� �(1)2 � 4(1) � 1 � 2

Since the two one-sided limits are equal, it follows that the two-sided limit of f (x) at
x � 1 exists, and we have

The graph of f (x) is shown in Figure 1.56.

lim
x→1

 f (x) � lim
x→1�

 f (x) � lim
x→1�

 f (x) � 2

since f (x) � �x2 � 4x � 1 when x � 1lim
x→1�

 f (x) � lim
x→1�

 (�x2 � 4x � 1)

since f (x) � x � 1 when x � 1lim
x→1�

 f (x) � lim
x→1�

 (x � 1) � (1) � 1 � 2

At the beginning of this section, we observed that a continuous function is one whose
graph has no “holes or gaps.” A “hole” at x � c can arise in several ways, three of
which are shown in Figure 1.57.

Continuity

FIGURE 1.56 The graph of .f (x) � �x � 1

�x2 � 4x � 1

if x � 1

if x � 1

x
1

y

2

y � �x2 � 4x � 1

y � x � 1

FIGURE 1.57 Three ways the graph of a function can have a “hole” at x � c.

x

y

(a) f (c) is not defined

c
x

y

c

(b) lim f (x) � f (c)
x→c

x

y

x � c

(c) lim  f (x) � lim  f (x) � ��
x→c� x→c�
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82 CHAPTER 1 Functions, Graphs, and Limits 1-82

So what properties will guarantee that f (x) does not have a “hole or gap” at 
x � c? The answer is surprisingly simple. The function must be defined at x � c, it must
have a finite, two-sided limit at x � c; and must equal f (c). To summarize:lim

x→c
 f (x)

Recall that if p(x) and q(x) are polynomials, then

and

These limit formulas can be interpreted as saying that a polynomial or a rational
function is continuous wherever it is defined. This is illustrated in Examples 1.6.4
through 1.6.7.

EXAMPLE 1.6.4

Show that the polynomial p(x) � 3x3 � x � 5 is continuous at x � 1.

lim
x→c

 
p(x)

q(x)
�

p(c)

q(c)
  if q(c) � 0

lim
x→c

 p(x) � p(c)

Continuity of
Polynomials and

Rational Functions

The graph of f (x) will have a “gap” at x � c if the one-sided limits and 

are not equal. Three ways this can happen are shown in Figure 1.58.lim
x→c�

 f (x)

lim
x→c�

 f (x)

x

y

c

(a) A finite gap:
 lim  f (x) � lim  f (x)

x→c� x→c�

(c) An infinite gap:
 lim  f (x) � ��

 and lim  f (x) � ��
x→c�

x→c�

x

y

x � c
x

y

x � c

(b) An infinite gap:
 lim  f (x) is finite

 but lim  f (x) � ��
x→c�

x→c�

Continuity ■ A function f is continuous at c if all three of these conditions
are satisfied:

a. f (c) is defined.

b. exists.

c.

If f (x) is not continuous at c, it is said to have a discontinuity there.

lim
x→c 

f (x) � f (c).

lim
x→c

 f (x)

FIGURE 1.58 Three ways for the graph of a function to have a “gap” at x � c.
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1-83 SECTION 1.6 ONE-SIDED LIMITS AND CONTINUITY 83

EXPLORE!

Graph using the 

enlarged decimal window
[�9.4, 9.4]1 by [�6.2, 6.2]1. Is
the function continuous? Is it
continuous at x � 2? How
about at x � 3? Also examine
this function using a table with
an initial value of x at 1.8,
increasing in increments of 0.2.

f (x) �
x � 1
x � 2

Solution
Verify that the three criteria for continuity are satisfied. Clearly p(1) is defined; in
fact, p(1) � 7. Moreover, exists and Thus,

as required for p(x) to be continuous at x � 1.

EXAMPLE 1.6.5

Show that the rational function is continuous at x � 3.

Solution

Note that Since you find that

as required for f(x) to be continuous at x � 3.

EXAMPLE 1.6.6

Discuss the continuity of each of the following functions:

a. b. c.

Solution
The functions in parts (a) and (b) are rational and are therefore continuous wherever
they are defined (that is, wherever their denominators are not zero).

a. is defined everywhere except x � 0, so it is continuous for all x � 0  

(Figure 1.59a).

b. Since x � �1 is the only value of x for which g(x) is undefined, g(x) is contin-
uous except at x � �1 (Figure 1.59b).

c. This function is defined in two pieces. First check for continuity at x � 1, the
value of x that separates the two pieces. You find that does not exist,

since h(x) approaches 2 from the left and 1 from the right. Thus, h(x) is not con-
tinuous at 1 (Figure 1.59c). However, since the polynomials x � 1 and 2 � x are
each continuous for every value of x, it follows that h(x) is continuous at every
number x other than 1.

lim 
x→1

h(x)

f(x) �
1

x

h(x) � �x � 1

2 � x
  if x � 1

  if x � 1
g(x) �

x2 � 1

x � 1
f (x) �

1

x

lim
x→3

f (x) � lim
x→3

x � 1

x � 2
�

 lim x→3
(x � 1)

lim
x→3

(x � 2)
�

4

1
� 4 � f (3)

lim
x→3

 (x � 2) � 0,f (3) �
3 � 1

3 � 2
� 4.

f (x) �
x � 1
x � 2

lim
x→1

 p(x) � 7 � p(1)

lim
x→1

 p(x) � 7.lim
x→1 

p(x)

EXPLORE!

Graph , using a 

standard window. Does this
graph appear continuous? Now
use a modified decimal window
[�4.7, 4.7]1 by [0, 14.4]1 and
describe what you observe.
Which case in Example 1.6.6
does this resemble?

f (x) �
x3 � 8
x � 2

EXPLORE!

Store h(x) of Example 1.6.6(c)
into the equation editor as
Y1 � (X � 1)(X , 1) �

(2 � X)(X $ 1). Use a decimal
window with a dot graphing
style. Is this function
continuous at x � 1? Use the
TRACE key to display the value
of the function at x � 1 and to
find the limiting values of y as x
approaches 1 from the left side
and from the right side.
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84 CHAPTER 1 Functions, Graphs, and Limits 1-84

EXAMPLE 1.6.7

For what value of the constant A is the following function continuous for all real x?

Solution
Since Ax � 5 and x2 � 3x � 4 are both polynomials, it follows that f (x) will be con-
tinuous everywhere except possibly at x � 1. Moreover, f (x) approaches A � 5 as
x approaches 1 from the left and approaches 2 as x approaches 1 from the right. Thus,
for to exist, we must have A � 5 � 2 or A � �3, in which case

This means that f is continuous for all x only when A � �3.

For many applications of calculus, it is useful to have definitions of continuity on
open and closed intervals.

Continuity
on an Interval

lim
x→1 

 f (x) � 2 � f (1)

lim
x→1   

f (x)

f (x) � �Ax � 5

x2 � 3x � 4

  if x � 1

  if x � 1

FIGURE 1.59 Functions for Example 1.6.6.

xx x

yyy

0 0

(a) Continuous for x ≠ 0 (b) Continuous for x ≠ –1 (c) Continuous for x ≠ 1

y = 1
x

y = x2 – 1
x + 1

(–1, –2)

–1

y = x + 1 y = 2 – x

10

Continuity on an Interval ■ A function f (x) is said to be continuous on
an open interval a � x � b if it is continuous at each point x � c in that interval.

Moreover, f is continuous on the closed interval a � x � b if it is continuous
on the open interval a � x � b and

lim
x→a�

 f (x) � f (a)    and    lim
x→b�

 f (x) � f (b)

In other words, continuity on an interval means that the graph of f is “one piece”
throughout the interval.
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EXAMPLE 1.6.8

Discuss the continuity of the function

on the open interval �2 � x � 3 and on the closed interval �2 � x � 3.

Solution
The rational function f(x) is continuous for all x except x � 3. Therefore, it is con-
tinuous on the open interval �2 � x � 3 but not on the closed interval �2 � x � 3,
since it is discontinuous at the endpoint 3 (where its denominator is zero). The graph
of f is shown in Figure 1.60.

An important feature of continuous functions is the intermediate value property, which
says that if f(x) is continuous on the interval a � x � b and L is a number between f(a)
and f(b), then f(c) � L for some number c between a and b (see Figure 1.61). In other
words, a continuous function attains all values between any two of its values. For instance,
a girl who weighs 5 pounds at birth and 100 pounds at age 12 must have weighed exactly
50 pounds at some time during her 12 years of life, since her weight is a continuous
function of time.

The Intermediate
Value Property

f (x) �
x � 2

x � 3

y

x
�2 3

FIGURE 1.60 The graph of 

f (x) �
x � 2

x � 3
.

(a, f (a))

(b, f (b))

f (c) = L for some c
between a and by = f (x)

x
c ba

L

y

FIGURE 1.61 The intermediate value property.

The intermediate value property has a variety of applications. In Example 1.6.9,
we show how it can be used to estimate a solution of a given equation.

EXAMPLE 1.6.9

Show that the equation has a solution for 1 � x � 2.x2 � x � 1 �
1

x � 1

hof32339_ch01_001-100.qxd  11/17/08  3:03 PM  Page 85 User-S198 201:MHDQ082:mhhof10%0:hof10ch01:



86 CHAPTER 1 Functions, Graphs, and Limits 1-86

Solution

Let . Then Since f (x) is con-

tinuous for 1 � x � 2 and the graph of f is below the x axis at x � 1 and above the
x axis at x � 2, it follows from the intermediate value property that the graph must
cross the x axis somewhere between x � 1 and x � 2 (see Figure 1.62). In other
words, there is a number c such that 1 � c � 2 and f (c) � 0, so

NOTE The root-location procedure described in Example 1.6.9 can be applied
repeatedly to estimate the root c to any desired degree of accuracy. For instance,
the midpoint of the interval 1 � x � 2 is d � 1.5 and f (1.5) � �0.65, so the root
c must lie in the interval 1.5 � x � 2 (since f (2) � 0), and so on.

“That’s nice,” you say, “but I can use the solve utility on my calculator to find a
much more accurate estimate for c with much less effort.” You are right, of course,
but how do you think your calculator makes its estimation? Perhaps not by the method
just described, but certainly by some similar algorithmic procedure. It is important to
understand such procedures as you use the technology that utilizes them. ■

EXERCISES ■ 1.6

c2 � c � 1 �
1

c � 1

f (1) � �
3

2
  and  f (2) �

2

3
.f (x) � x2 � x � 1 �

1

x � 1

y

x
1

2–1
–2

3

FIGURE 1.62 The graph 

of y � x2 � x � 1 �
1

x � 1
.

In Exercises 1 through 4, find the one-sided limits 
f (x) and f (x) from the given graph of f and

determine whether f (x) exists.

1.

2.
y

x
�4 2 4�2

�2

2

4

�4

0

y

x
�4 2 4�2

�2

2

4

�4

0

lim
x→2

 
lim

x→2�
 lim

x→2�

3.

4.
y

x
�4 2 4�2

�2

2

4

�4

0

y

x
�4 2 4�2

�2

2

4

�4

0
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In Exercises 5 through 16, find the indicated one-sided
limit. If the limiting value is infinite, indicate whether it
is �� or ��.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

In Exercises 17 through 28, decide if the given function
is continuous at the specified value of x.

17. f (x) � 5x2 � 6x � 1 at x � 2

18. f (x) � x3 � 2x2 � x � 5 at x � 0

19.

20.

21.

22. f (x) �
2x � 1

3x � 6
  at x � 2

f (x) �
x � 1

x � 1
  at x � 1

f (x) �
2x � 4

3x � 2
  at x � 2

f (x) �
x � 2

x � 1
  at x � 1

where f(x) � �
1

x � 1

x2 � 2x

if x � �1

if x � �1

lim
x→�1�

 f (x) and lim
x→�1�

 f (x) 

 where f(x) � �2x2 � x
3 � x

if x � 3

if x � 3

lim
x→3�

 f (x) and lim
x→3�

 f (x),

lim
x→5�

 
�2x � 1 � 3

x � 5

lim
x→3�

 
�x � 1 � 2

x � 3

lim
x→1�

 
x � �x
x � 1

lim
x→0�

 (x � �x)

lim
x→2�

 
x2 � 4

x � 2

lim
x→2�

 
x � 3

x � 2

lim
x→2�

 �4 � 2x

lim
x→3�

�3x � 9

lim
x→1�

 x(2 � x)

lim
x→4�

 (3x2 � 9)

23.

24.

25.

26.

27.

28.

In Exercises 29 through 42, list all the values of x for
which the given function is not continuous.

29. f (x) � 3x2 � 6x � 9

30. f (x) � x5 � x3

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41. f (x) � �3x � 2

x2 � x
if x � 0

if x � 0

f (x) � �x2

9

if x � 2

if x � 2

f (x) � �2x � 3

6x � 1

if x � 1

if x � 1

f (x) �
x2 � 2x � 1

x2 � x � 2

f (x) �
x

x2 � x

f (x) �
x

(x � 5)(x � 1)

f (x) �
3x � 2

(x � 3)(x � 6)

f (x) �
x2 � 1

x � 1

f (x) �
3x � 3

x � 1

f (x) �
3x � 1

2x � 6

f (x) �
x � 1

x � 2

f (x) � �
x2 � 1

x � 1

x2 � 3

if x � �1

if x � �1
  at x � �1

f (x) � �x2 � 1

2x � 4

if x � 3

if x � 3
  at x � 3

f (x) � �x � 1

x � 1

if x � 0

if x � 0
  at x � 0

f (x) � �x � 1

2

if x � 2

if x � 2
  at x � 2

f (x) �
�x � 2

x � 4
  at x � 2

f (x) �
�x � 2

x � 4
  at x � 4
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