
Page | 1

Lab 2: Basics of Black Box Testing,
Types of Black Box Testing and

Boundary Value Analysis
Objective:

• Understand the concept of black box testing.
• Explore various types of black box testing techniques.
• Apply boundary value analysis (BVA) for effective test case design.

Theory:

1. Black Box Testing:

Black box testing is a software testing technique that focuses on testing the functionality
of an application without peering into its internal structures or workings. The tester is
only concerned with the inputs and outputs of the software system.

Key Features:

• Tester does not require knowledge of internal code or architecture.
• Focuses on functional requirements.
• Validates behavior based on specifications.

2. Types of Black Box Testing:

3. Boundary Value Analysis (BVA):

Boundary Value Analysis is a test case design technique that focuses on values at the
boundaries of input domains rather than in the center.

Example:

For a field that accepts values from 1 to 100:

• Valid boundaries: 1, 100

Type Description

Functional Testing Ensures the software performs its intended functions.

Non-functional Testing Checks performance, usability, reliability, etc.

Regression Testing Ensures new changes haven’t affected existing features.

Smoke Testing
Basic tests to verify critical functionality before further

testing.

Sanity Testing
Focuses on one or few areas of functionality after minor

changes.
User Acceptance

Testing
Conducted to determine if the system meets business

needs.

Compatibility Testing Tests software on different devices, OS, or networks.

Page | 2

• Invalid boundaries: 0, 101
• Typical test cases: 0, 1, 2, 99, 100, 101

Lab Requirements:

• Programming Language: Python / Java / C++
• IDE: Any (IDLE, Eclipse, Code::Blocks, etc.)
• Test Case Template (provided below)

Experiment 1: Black Box Testing Example

Problem Statement:

Write a program that determines whether a number is even or odd. Then perform black
box testing on it.

Sample Code (Python):

def even_or_odd(number):

 if number % 2 == 0:

 return "Even"

 else:
 return "Odd"

Test Cases:

Test Case No. Input
Expected

Output
Actual Output Result

TC1 2 Even Even Pass
TC2 5 Odd Odd Pass
TC3 0 Even Even Pass
TC4 -3 Odd Odd Pass

Experiment 2: Boundary Value Analysis

Problem Statement:

Assume a system accepts an input value between 10 and 100. Use BVA to design and
test cases.

Sample Code (Python):

def is_valid_input(n):

 if 10 <= n <= 100:

 return "Valid"

 else:
 return "Invalid"

BVA Test Cases:

Test Case No. Input
Expected

Output
Actual Output Result

TC1 9 Invalid Invalid Pass
TC2 10 Valid Valid Pass
TC3 11 Valid Valid Pass

Page | 3

TC4 99 Valid Valid Pass
TC5 100 Valid Valid Pass
TC6 101 Invalid Invalid Pass

Result:

• Students understood and implemented black box testing.
• Test cases were designed for both functional and boundary value conditions.

Conclusion:

Black box testing helps testers validate software without internal knowledge of code.
Boundary value analysis effectively identifies errors at the limits of input domains.

