
Page | 1

Lab 3: Three Boundary Value Analysis
Techniques

Objective:

• Understand and implement Boundary Value Analysis (BVA).
• Apply Boundary Value Check, Robust Testing, and Worst-Case Testing techniques.
• Design test cases to ensure coverage of edge conditions for given inputs.

Theory:

Boundary Value Analysis (BVA)

Boundary Value Analysis is a black-box test design technique based on testing at
boundaries between partitions. This is due to the observation that more errors occur at
the boundaries of input domains.

Let the input domain be between a and b (inclusive), then:

• The normal boundaries are: a, a+1, b-1, and b.
• The out-of-boundary values are: a−1, b+1.

Techniques Overview

Equipment/Software Required:

• Computer with Python/Java/C++ (any preferred language)
• Any IDE or text editor
• Compiler/Interpreter

Lab Task:

Problem Statement

Assume a software system that accepts the age of a user in the range 18 to 60. Design
and execute test cases using:

• Boundary Value Check
• Robust Testing
• Worst Case Testing

Implementation

Boundary Value Check

Technique Description

Boundary Value Check Focuses on valid boundaries: min, min+1, max-1, max

Robust Testing
Includes both valid and invalid values: min−1, min, min+1,

max−1, max, max+1

Worst Case Testing
Tests all combinations of min, min+1, max−1, max (for each

variable)

Page | 2

Test Cases:

Robust Testing

Test Cases:

Worst Case Testing

Assume a system with two input variables: Age (18–60) and Experience (0–40).

Boundary Values:

• Age: 18 (min), 19 (min+1), 59 (max−1), 60 (max)
• Experience: 0 (min), 1 (min+1), 39 (max−1), 40 (max)

Total Test Cases:

4 (Age) × 4 (Experience) = 16 combinations

Sample Test Cases:

Test Case ID Input Expected Result

BVC1 18 Valid

BVC2 19 Valid

BVC3 59 Valid

BVC4 60 Valid

Test Case ID Input Expected Result

RT1 17 Invalid (Below Min)

RT2 18 Valid

RT3 19 Valid

RT4 59 Valid

RT5 60 Valid

RT6 61 Invalid (Above Max)

Test Case ID Age Experience Expected Result

WC1 18 0 Valid

WC2 18 1 Valid

WC3 18 39 Valid

WC4 18 40 Valid

WC5 19 0 Valid

...

WC16 60 40 Valid

Page | 3

Sample Code (Python)

def is_valid_age(age):

 return 18 <= age <= 60

def is_valid_experience(exp):

 return 0 <= exp <= 40

def test_boundary_value_check():

 test_ages = [18, 19, 59, 60]

 for age in test_ages:

 print(f"Age {age} is", "Valid" if is_valid_age(age) else "Invalid")

def test_robust_testing():

 test_ages = [17, 18, 19, 59, 60, 61]

 for age in test_ages:

 print(f"Age {age} is", "Valid" if is_valid_age(age) else "Invalid")

def test_worst_case():

 ages = [18, 19, 59, 60]

 experiences = [0, 1, 39, 40]

 for age in ages:
 for exp in experiences:

 print(f"Age: {age}, Experience: {exp} =>",

 "Valid" if is_valid_age(age) and is_valid_experience(exp)

else "Invalid")

Run Tests
print("Boundary Value Check:")

test_boundary_value_check()

print("\nRobust Testing:")

test_robust_testing()

print("\nWorst Case Testing:")

test_worst_case()

Result:

• Implemented and verified the three boundary analysis techniques.
• Observed how edge values and combinations affect the behavior of software input

validation.

Viva Questions:

1. What is Boundary Value Analysis?
2. Why are boundaries important in test case design?
3. How does robust testing improve test coverage?
4. What's the difference between robust and worst-case testing?

Page | 4

5. Can you apply BVA for non-numeric data? How?

Conclusion:

Through this lab, students gained hands-on experience in:

• Designing effective boundary test cases.
• Understanding how to uncover hidden bugs at edges of input domains.
• Applying systematic testing strategies for robust software development.

