

Last updated: September 10, 2012

Ivan Marsic

Copyright © 2012 by Ivan Marsic. All rights reserved.

Rutgers University, New Brunswick, New Jersey

Permission to reproduce or copy all or parts of this material for non-profit use is granted on the
condition that the author and source are credited. Suggestions and comments are welcomed.

Author’s address:

Rutgers University
Department of Electrical and Computer Engineering
94 Brett Road
Piscataway, New Jersey 08854
marsic@ece.rutgers.edu

Book website: http://www.ece.rutgers.edu/~marsic/books/SE/

i

Preface

This book reviews important technologies for software development with a particular focus on
Web applications. In reviewing these technologies I put emphasis on underlying principles and
basic concepts, rather than meticulousness and completeness. In design and documentation, if
conflict arises, clarity should be preferred to precision because, as will be described, the key
problem of software development is having a functioning communication between the involved
human parties. My main goal in writing this book has been to make it useful.

The developer should always keep in mind that software is written for people, not for computers.
Computers just run software—a minor point. It is people who understand, maintain, improve, and
use software to solve problems. Solving a problem by an effective abstraction and representation
is a recurring theme of software engineering. The particular technologies evolve or become
obsolete, but the underlying principles and concepts will likely resurface in new technologies.

Audience

This book is designed for upper-division undergraduate and graduate courses in software
engineering. It intended primarily for learning, rather than reference. I also believe that the book’s
focus on core concepts should be appealing to practitioners who are interested in the “whys”
behind the software engineering tools and techniques that are commonly encountered. I assume
that readers will have some familiarity with programming languages and I do not cover any
programming language in particular. Basic knowledge of discrete mathematics and statistics is
desirable for some advanced topics, particularly in Chapters 3 and 4. Most concepts do not
require mathematical sophistication beyond a first undergraduate course.

Approach and Organization

The first part (Chapters 1–5) is intended to accompany a semester-long hands-on team project in
software engineering. In the spirit of agile methods, the project consists of two iterations. The
first iteration focuses on developing some key functions of the proposed software product. It is
also exploratory to help with sizing the effort and setting realistic goals for the second iteration.
In the second iteration the students perform the necessary adjustments, based on what they have
learned in the first iteration. Appendix G provides a worked example of a full software
engineering project.

The second part (Chapters 6–8 and most Appendices) is intended for a semester-long course on
software engineering of Web applications. It also assumes a hands-on student team project. The
focus is on Web applications and communication between clients and servers. Appendix F briefly
surveys user interface design issues because I feel that proper treatment of this topic requires a
book on its own. I tried to make every chapter self-contained, so that entire chapters can be

Ivan Marsic Rutgers University

ii

skipped if necessary. But you will not benefit the most by reading it that way. I tried to avoid
“botanical” approach, telling you in detail what is here and what is there in software engineering,
so you can start from any point and walk it over in any way. Instead, this book takes an
evolutionary approach, where new topics systematically build on previous topics.

The text follows this outline.

Chapter 2 introduces object-oriented software engineering. It is short enough to be covered in few
weeks, yet it provides sufficient knowledge for students to start working on a first version of their
software product. Appendix G complements the material of Chapter 2 by showing a practical
application of the presented concepts. In general, this knowledge may be sufficient for amateur
software development, on relatively small and non-mission-critical projects.

Chapters 3 through 5 offer more detailed coverage of the topics introduced in Chapter 2. They are
intended to provide the foundation for iterative development of high-quality software products.

Chapters 6 – 8 provide advanced topics which can be covered selectively, if time permits, or in a
follow-up course dedicated to software engineering of Web applications.

This is not a programming text, but several appendices are provided as reference material for
special topics that will inevitably arise in many software projects.

Examples, Code, and Solved Problems

I tried to make this book as practical as possible by using realistic examples and working through
their solutions. I usually find it difficult to bridge the gap between an abstract design and coding.
Hence, I include a great deal of code. The code is in the Java programming language, which
brings me to another point.

Different authors favor different languages and students often complain about having to learn yet
another language on not having learned enough languages. I feel that the issue of selecting a
programming language for a software engineering textbook is artificial. Programming language is
a tool and the software engineer should master a “toolbox” of languages so to be able to choose
the tool that best suits the task at hand.

Every chapter (except for Chapters 1 and 9) is accompanied with a set of problems. Solutions to
most problems can be found on the back of this book, starting on page 523.

Design problems are open-ended, without a unique or “correct” solution, so the reader is welcome
to question all the designs offered in this book. I have myself gone through many versions of each
design, and will probably change them again in the future, as I learn more and think more. At the
least, the designs in this book represent a starting point to critique and improve.

Additional information about team projects and online links to related topics can be found at the
book website: http://www.ece.rutgers.edu/~marsic/books/SE/ .

iii

Contents at a Glance

PREFACE .. I

CONTENTS AT A GLANCE ... III

TABLE OF CONTENTS ... V

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 OBJECT-ORIENTED SOFTWARE ENGINEERING .. 61

CHAPTER 3 MODELING AND SYSTEM SPECIFICATION ... 170

CHAPTER 4 SOFTWARE MEASUREMENT AND ESTIMATION ... 217

CHAPTER 5 DESIGN WITH PATTERNS ... 246

CHAPTER 6 XML AND DATA REPRESENTATION ... 319

CHAPTER 7 SOFTWARE COMPONENTS ... 361

CHAPTER 8 WEB SERVICES ... 374

CHAPTER 9 FUTURE TRENDS.. 410

APPENDIX A JAVA PROGRAMMING ... 417

APPENDIX B NETWORK PROGRAMMING .. 419

APPENDIX C HTTP OVERVIEW ... 433

APPENDIX D DATABASE-DRIVEN WEB APPLICATIONS ... 442

APPENDIX E DOCUMENT OBJECT MODEL (DOM) ... 443

APPENDIX F USER INTERFACE PROGRAMMING ... 446

APPENDIX G EXAMPLE PROJECT: TIC-TAC-TOE GAME .. 449

APPENDIX H SOLUTIONS TO SELECTED PROBLEMS ... 523

Ivan Marsic Rutgers University

iv

REFERENCES ... 596

ACRONYMS AND ABBREVIATIONS ... 606

INDEX ... 608

Software Engineering Contents v

Table of Contents

PREFACE .. I

CONTENTS AT A GLANCE ... III

TABLE OF CONTENTS ... V

CHAPTER 1 INTRODUCTION .. 1

1.1 What is Software Engineering? .. 2

1.1.1 Why Software Engineering Is Difficult (1) ... 7
1.1.2 Book Organization .. 8

1.2 Software Engineering Lifecycle .. 8

1.2.1 Symbol Language ... 11
1.2.2 Requirements Analysis and System Specification .. 13
1.2.3 Object-Oriented Analysis and the Domain Model .. 15
1.2.4 Object-Oriented Design ... 17
1.2.5 Project Effort Estimation and Product Quality Measurement .. 20

1.3 Case Studies .. 25

1.3.1 Case Study 1: From Home Access Control to Adaptive Homes.. 26
1.3.2 Case Study 2: Personal Investment Assistant .. 30

1.4 The Object Model ... 39

1.4.1 Controlling Access to Object Elements .. 44
1.4.2 Object Responsibilities and Relationships .. 47
1.4.3 Reuse and Extension by Inheritance and Composition .. 48

1.5 Student Team Projects .. 49

1.5.1 Stock Market Investment Fantasy League ... 49
1.5.2 Web-based Stock Forecasters ... 52
1.5.3 Remarks about the Projects ... 54

1.6 Summary and Bibliographical Notes ... 57

CHAPTER 2 OBJECT-ORIENTED SOFTWARE ENGINEERING .. 61

2.1 Software Development Methods ... 62

2.1.1 Agile Development .. 63

Ivan Marsic Rutgers University

vi

2.1.2 Decisive Methodological Factors .. 65

2.2 Requirements Engineering .. 68

2.2.1 Requirements and User Stories .. 70
2.2.2 Requirements Gathering Strategies .. 77
2.2.3 Effort Estimation ... 78

2.3 Software Architecture .. 80

2.3.1 Problem Architecture ... 82
2.3.2 Software Architectural Styles .. 86
2.3.3 Recombination of Subsystems ... 87

2.4 Use Case Modeling ... 88

2.4.1 Actors, Goals, and Sketchy Use Cases ... 88
2.4.2 System Boundary and Subsystems ... 94
2.4.3 Detailed Use Case Specification ... 96
2.4.4 Security and Risk Management ...107
2.4.5 Why Software Engineering Is Difficult (2) ..108

2.5 Analysis: Building the Domain Model .. 109

2.5.1 Identifying Concepts ...110
2.5.2 Concept Associations and Attributes ..113
2.5.3 Domain Analysis ..118
2.5.4 Contracts: Preconditions and Postconditions ..119

2.6 Design: Assigning Responsibilities ... 120

2.6.1 Design Principles for Assigning Responsibilities ..124
2.6.2 Class Diagram ...130
2.6.3 Why Software Engineering Is Difficult (3) ..133

2.7 Test-driven Implementation .. 133

2.7.1 Overview of Software Testing ..134
2.7.2 Test Coverage and Code Coverage ...136
2.7.3 Practical Aspects of Unit Testing ...140
2.7.4 Integration and Security Testing ..143
2.7.5 Test-driven Implementation ...146
2.7.6 Refactoring: Improving the Design of Existing Code ..151

2.8 Summary and Bibliographical Notes ... 152

Problems .. 156

CHAPTER 3 MODELING AND SYSTEM SPECIFICATION ... 170

3.1 What is a System? .. 171

3.1.1 World Phenomena and Their Abstractions ..172
3.1.2 States and State Variables ..176
3.1.3 Events, Signals, and Messages ...181

Software Engineering Contents vii

3.1.4 Context Diagrams and Domains ..183
3.1.5 Systems and System Descriptions ...185

3.2 Notations for System Specification ... 186

3.2.1 Basic Formalisms for Specifications ...186
3.2.2 UML State Machine Diagrams ...193
3.2.3 UML Object Constraint Language (OCL) ..196
3.2.4 TLA+ Notation ...201

3.3 Problem Frames ... 203

3.3.1 Problem Frame Notation ...204
3.3.2 Problem Decomposition into Frames ..205
3.3.3 Composition of Problem Frames ..208
3.3.4 Models ..209

3.4 Specifying Goals ... 210

3.5 Summary and Bibliographical Notes ... 211

Problems .. 212

CHAPTER 4 SOFTWARE MEASUREMENT AND ESTIMATION ... 217

4.1 Fundamentals of Measurement Theory ... 218

4.1.1 Measurement Theory ...219

4.2 What to Measure? .. 221

4.2.1 Use Case Points ..222
4.2.2 Cyclomatic Complexity ...231

4.3 Measuring Module Cohesion .. 233

4.3.1 Internal Cohesion or Syntactic Cohesion ..233
4.3.2 Interface-based Cohesion Metrics ..235
4.3.3 Cohesion Metrics using Disjoint Sets of Elements ...236
4.3.4 Semantic Cohesion ..237

4.4 Coupling .. 237

4.5 Psychological Complexity .. 238

4.5.1 Algorithmic Information Content ...238

4.6 Effort Estimation ... 240

4.6.1 Deriving Project Duration from Use Case Points..241

4.7 Summary and Bibliographical Notes ... 242

Problems .. 244

CHAPTER 5 DESIGN WITH PATTERNS ... 246

5.1 Indirect Communication: Publisher-Subscriber ... 247

5.1.1 Applications of Publisher-Subscriber ..254
5.1.2 Control Flow ..255

Ivan Marsic Rutgers University

viii

5.1.3 Pub-Sub Pattern Initialization ..257

5.2 More Patterns ... 257

5.2.1 Command ...258
5.2.2 Decorator ..261
5.2.3 State ...262
5.2.4 Proxy ..264

5.3 Concurrent Programming .. 271

5.3.1 Threads ..272
5.3.2 Exclusive Resource Access—Exclusion Synchronization ...274
5.3.3 Cooperation between Threads—Condition Synchronization ...276
5.3.4 Concurrent Programming Example ..277

5.4 Broker and Distributed Computing .. 283

5.4.1 Broker Pattern ...286
5.4.2 Java Remote Method Invocation (RMI) ...288

5.5 Information Security .. 295

5.5.1 Symmetric and Public-Key Cryptosystems ..297
5.5.2 Cryptographic Algorithms ..298
5.5.3 Authentication ..300
5.5.4 Program Security ...300

5.6 Summary and Bibliographical Notes ... 302

Problems .. 305

CHAPTER 6 XML AND DATA REPRESENTATION ... 319

6.1 Structure of XML Documents ... 322

6.1.1 Syntax ..322
6.1.2 Document Type Definition (DTD) ...328
6.1.3 Namespaces ...332
6.1.4 XML Parsers ...334

6.2 XML Schemas .. 336

6.2.1 XML Schema Basics ..337
6.2.2 Models for Structured Content ...342
6.2.3 Datatypes ..345
6.2.4 Reuse ...352
6.2.5 RELAX NG Schema Language ..352

6.3 Indexing and Linking ... 353

6.3.1 XPointer and Xpath ..353
6.3.2 XLink ..354

6.4 Document Transformation and XSL .. 355

6.5 Summary and Bibliographical Notes ... 358

Software Engineering Contents ix

Problems .. 359

CHAPTER 7 SOFTWARE COMPONENTS ... 361

7.1 Components, Ports, and Events ... 362

7.2 JavaBeans: Interaction with Components .. 363

7.2.1 Property Access ...364
7.2.2 Event Firing ...364
7.2.3 Custom Methods ..365

7.3 Computational Reflection ... 366

7.3.1 Run-Time Type Identification ...367
7.3.2 Reification ...368
7.3.3 Automatic Component Binding ..369

7.4 State Persistence for Transport .. 369

7.5 A Component Framework .. 370

7.5.1 Port Interconnections ...370
7.5.2 Levels of Abstraction ..372

7.6 Summary and Bibliographical Notes ... 373

Problems .. 373

CHAPTER 8 WEB SERVICES ... 374

8.1 Service Oriented Architecture .. 376

8.2 SOAP Communication Protocol .. 377

8.2.1 The SOAP Message Format ...378
8.2.2 The SOAP Section 5 Encoding Rules ..383
8.2.3 SOAP Communication Styles ..386
8.2.4 Binding SOAP to a Transport Protocol ...389

8.3 WSDL for Web Service Description .. 390

8.3.1 The WSDL 2.0 Building Blocks ..391
8.3.2 Defining a Web Service’s Abstract Interface ...394
8.3.3 Binding a Web Service Implementation ..396
8.3.4 Using WSDL to Generate SOAP Binding ..397
8.3.5 Non-functional Descriptions and Beyond WSDL ..398

8.4 UDDI for Service Discovery and Integration ... 399

8.5 Developing Web Services with Axis .. 400

8.5.1 Server-side Development with Axis ..400
8.5.2 Client-side Development with Axis ...406

8.6 OMG Reusable Asset Specification .. 407

8.7 Summary and Bibliographical Notes ... 408

Problems .. 409

Ivan Marsic Rutgers University

x

CHAPTER 9 FUTURE TRENDS.. 410

9.1 Aspect-Oriented Programming ... 411

9.2 OMG MDA ... 412

9.3 Autonomic Computing ... 412

9.4 Software-as-a-Service (SaaS) .. 413

9.5 End User Software Development .. 413

9.6 The Business of Software .. 416

9.7 Summary and Bibliographical Notes ... 416

APPENDIX A JAVA PROGRAMMING ... 417

A.1 Introduction to Java Programming .. 417

A.2 Bibliographical Notes .. 417

APPENDIX B NETWORK PROGRAMMING .. 419

B.1 Socket APIs ... 419

B.2 Example Java Client/Server Application .. 424

B.3 Example Client/Server Application in C ... 427

B.4 Windows Socket Programming .. 430

B.5 Bibliographical Notes .. 432

APPENDIX C HTTP OVERVIEW ... 433

C.1 HTTP Messages ... 434

C.2 HTTP Message Headers ... 438

C.3 HTTPS—Secure HTTP ... 441

C.4 Bibliographical Notes .. 441

APPENDIX D DATABASE-DRIVEN WEB APPLICATIONS ... 442

APPENDIX E DOCUMENT OBJECT MODEL (DOM) ... 443

E.1 Core DOM Interfaces .. 443

E.2 Bibliographical Notes .. 445

APPENDIX F USER INTERFACE PROGRAMMING ... 446

F.1 Model/View/Controller Design Pattern ... 446

F.2 UI Design Recommendations ... 446

F.3 Bibliographical Notes .. 447

APPENDIX G EXAMPLE PROJECT: TIC-TAC-TOE GAME .. 449

G.1 Customer Statement of Requirements .. 450

G.1.1 Problem Statement ..450

Software Engineering Contents xi

G.1.2 Glossary of Terms ..451

G.2 System Requirements Engineering ... 452

G.2.1 Enumerated Functional Requirements ...452
G.2.2 Enumerated Nonfunctional Requirements ...457
G.2.3 On-Screen Appearance Requirements ...457
G.2.4 Acceptance Tests ..457

G.3 Functional Requirements Specification ... 461

G.3.1 Stakeholders ...461
G.3.2 Actors and Goals ...461
G.3.3 Use Cases Casual Description ..461
G.3.4 Use Cases Fully-Dressed Description ..464
G.3.5 Acceptance Tests for Use Cases ...470
G.3.6 System Sequence Diagrams ...473

G.4 User Interface Specification ... 477

G.4.1 Preliminary UI Design ...477
G.4.2 User Effort Estimation ...478

G.5 Domain Analysis ... 479

G.5.1 Domain Model ...479
G.5.2 System Operation Contracts ...486
G.5.3 Mathematical Model ...486

G.6 Design of Interaction Diagrams .. 488

G.6.1 First Iteration of Design Sequence Diagrams ..488
G.6.2 Evaluating and Improving the Design ...493

G.7 Class Diagram and Interface Specification .. 498

G.8 Unit Tests and Coverage ... 499

G.8.1 Deriving the Object States ..499
G.8.2 Events and State Transitions ...505
G.8.3 Unit Tests for States ...506
G.8.4 Unit Tests for Valid Transitions ..510

G.9 Refactoring to Design Patterns ... 511

G.9.1 Roadmap for Applying Design Patterns ..511
G.9.2 Remote Proxy Design Pattern ...511
G.9.3 Publish-Subscribe Design Pattern ..513
G.9.4 Command Design Pattern ...513
G.9.5 Decorator Design Pattern..513
G.9.6 State Design Pattern ..514
G.9.7 Model-View-Controller (MVC) Design Pattern ...520

G.10 Concurrency and Multithreading ... 521

Ivan Marsic Rutgers University

xii

APPENDIX H SOLUTIONS TO SELECTED PROBLEMS ... 523

REFERENCES ... 596

ACRONYMS AND ABBREVIATIONS ... 606

INDEX ... 608

1

Contents
1.1 What is Software Engineering?

1.1.1
1.1.2 Why Software Engineering Is Difficult (1)
1.1.3 Book Organization

1.2 Software Engineering Lifecycle
1.2.1 Symbol Language
1.2.2 Requirements Analysis and System

Specification
1.2.3 Object-Oriented Analysis and the Domain

Model
1.2.4 Object-Oriented Design
1.2.5 Project Effort Estimation and Product

Quality Measurement

1.3 Case Studies
1.3.1 Case Study 1: From Home Access Control

to Adaptive Homes
1.3.2 Case Study 2: Personal Investment

1.4 The Object Model
1.4.1 Controlling Access to Object Elements
1.4.3 Reuse and Extension by Inheritance

and Composition
1.4.2 Object Responsibilities
1.4.4 x

1.5 Student Team Projects
1.5.1 Stock Market Investment Fantasy League
1.5.2 Web-based Stock Forecasters
1.5.3 Remarks about the Projects

1.6 Summary and Bibliographical Notes

Chapter 1
Introduction

“There is nothing new under the sun but there are lots of old
things we don’t know.”

—Ambrose Bierce, The Devil’s Dictionary

Software engineering is a discipline for solving business
problems by designing and developing software-based
systems. As with any engineering activity, a software engineer
starts with problem definition and applies tools of the trade to
obtain a problem solution. However, unlike any other
engineering, software engineering seems to require great
emphasis on methodology or method for managing the
development process, in addition to great skill with tools and
techniques. Experts justify this with the peculiar nature of the
problems solved by software engineering. These “wicked
problems” can be properly defined only after being solved.

This chapter first discusses what software engineering is about
and why it is difficult. Then we give a brief preview of
software development. Next, cases studies are introduced that
will be used throughout the book to illustrate the theoretical
concepts and tools. Software object model forms the
foundation for concepts and techniques of modern software
engineering. Finally, the chapter ends by discussing hands-on
projects designed for student teams.

Ivan Marsic Rutgers University

2

1.1 What is Software Engineering?

“To the optimist, the glass is half full. To the pessimist, the glass is half empty. To the engineer, the glass
is twice as big as it needs to be.” —Anonymous

“Computer science is no more about computers than astronomy is about telescopes.” —Edsger W. Dijkstra

The purpose of software engineering is to develop software-based systems that let customers
achieve business goals. The customer may be a hospital manager who needs patient-record
software to be used by secretaries in doctors’ offices; or, a manufacturing manager who needs
software to coordinate multiple parallel production activities that feed into a final assembly stage.
Software engineer must understand the customer’s business needs and design software to help
meet them. This task requires

 The ability to quickly learn new and diverse disciplines and business processes

 The ability to communicate with domain experts, extract an abstract model of the
problem from a stream of information provided in discipline-specific jargon, and
formulate a solution that makes sense in the context of customer’s business

 The ability to design a software system that will realize the proposed solution and
gracefully evolve with the evolving business needs for many years in the future.

Software engineering is often confused with programming. Software engineering is the creative
activity of understanding the business problem, coming up with an idea for solution, and
designing the “blueprints” of the solution. Programming is the craft of implementing the given
blueprints (Figure 1-1). Software engineer’s focus is on understanding the interaction between
the system-to-be and its users and the environment, and designing the software-to-be based on
this understanding. Unlike this, programmer’s focus is on the program code and ensuring that the
code faithfully implements the given design. This is not a one-way process, because sometimes

Chapter 1 Introduction 3

the designs provided by the “artist” (software engineer) cannot be “carved” in “marble”
(programming infrastructure) as given, and the “craftsman” (programmer) needs to work closely
with the designer to find a workable solution. In an ideal world, both activities would be done by
the same person to ensure the best result; in reality, given their different nature and demands,
software engineering and programming are often done by different people.

Some people say software engineering is about writing loads of documentation. Other people say
software engineering is about writing a running code. It is neither one. Software engineering is
about understanding business problems, inventing solutions, evaluating alternatives, and making
design tradeoffs and choices. It is helpful to document the process (not only the final solution) to
know what alternatives were considered and why particular choices were made. But software
engineering is not about writing documentation. Software engineering is about delivering value
for the customer, and both code and documentation are valuable.

Customer:
Requires a computer system to achieve some business goals
by user interaction or interaction with the environment
in a specified manner

System-to-be

Software-to-be

System-to-be

Software-to-beUser

Software Engineer’s task:
To understand how the system-to-be needs to interact with
the user or the environment so that customer’s requirement is met
and design the software-to-be

Programmer’s task:
To implement the software-to-be
designed by the software engineer

Environment

May be the
same person

Figure 1-1: The role for software engineering.

Ivan Marsic Rutgers University

4

I hope to convey in this text that software is many parts, each of which individually may be easy,
but the problem is that there are too may of them. It is not the difficulty of individual
components; it is the multitude that overwhelms you—you simply lose track of bits and pieces.
Let me illustrate this point on a simple example. Suppose one wants to construct a fence around a
house. The construction involves four tasks: setting posts, cutting wood, painting, and nailing
(Figure 1-2). Setting posts must precede painting and nailing, and cutting must precede nailing.
Suppose that setting posts takes 3 units of time, cutting wood takes 2 units of time, painting takes
5 units of time for uncut wood and 4 units of time otherwise, and nailing takes 2 units of time for
unpainted wood and 3 units of time otherwise. In what order should these tasks be carried out to
complete the project in the shortest possible time?

It is difficult to come up with a correct solution (or, solutions) without writing down possible
options and considering them one by one. It is hard to say why this problem is complicated,
because no individual step seems to be difficult. After all, the most complicated operation
involves adding small integer numbers. Software engineering is full of problems like this: all
individual steps are easy, yet the overall problem may be overwhelming.

Mistakes may occur both in understanding the problem or implementing the solution. The
problem is, for discrete logic, closeness to being correct is not acceptable; one flipped bit can
change the entire sense of a program. Software developers have not yet found adequate methods
to handle such complexity, and this text is mostly dedicated to present the current state of the
knowledge of handling the complexity of software development.

Setting posts Cutting wood PaintingNailing

Figure 1-2: Illustration of complexity on the problem of scheduling construction tasks.

Chapter 1 Introduction 5

Software engineering relies on our ability to think about space and time, processes, and
interactions between processes and structures. Consider an example of designing a software
system to operate an automatic banking machine, known as Automatic Teller Machine (ATM)
(Figure 1-3). Most of us do not know what is actually going on inside an ATM box; nonetheless,
we could offer a naïve explanation of how ATM machines work. We know that an ATM machine
allows us to deposit or withdraw money, and we can imagine how to split these activities into
simpler activities to be performed by imaginary little “agents” working inside the machine. Figure
1-4 illustrates how one might imagine what should be inside an ATM to make it behave as it
does. We will call the entities inside the system “concepts” because they are imaginary. As seen,
there are two types of concepts: “workers” and “things.”

We know that an ATM machine plays the role of a bank window clerk (teller). The reader may
wonder why we should imagine many virtual agents doing a single teller’s job. Why not simply
imagine a single virtual agent doing the teller’s job?! The reason that this would not help much is
because all we would accomplish is to transform one complicated and inscrutable object (an
ATM machine) into another complicated and inscrutable object (a virtual teller). To understand a
complex thing, one needs to develop ideas about relationships among the parts inside. By
dividing a complicated job into simpler tasks and describing how they interact, we simplify the
problem and make it easier to understand and solve. This is why imagination is critical for
software engineering (as it is for any other problem-solving activity!).

Of course, it is not enough to uncover the static structure of the system-to-be, as is done in Figure
1-4. We also need to describe how the system elements (“workers” and “things”) interact during
the task accomplishment. Figure 1-5 illustrates the working principle (or operational principle) of
the ATM model from Figure 1-4 by a set of step-by-step interactions.

Bank’s
remote

datacenter

Bank
customer

ATM machine

1
2 34

5 67 8
90

1
2 34

5 67 8
90

1
2 34

5 67 8
90

Communication link

Figure 1-3: Example: developing software for an Automatic Teller Machine (ATM).

Ivan Marsic Rutgers University

6

P

Window clerk

Bookkeeper

Safe keeper

Datacenter
liaison

Dispenser

Safe

Cash

Transaction
record

Phone

Speakerphone

Bank’s
remote

datacenter

Domain Model

How may I
help you?

Customer

Figure 1-4: Imagined static structure of ATM shows internal components and their roles.

B

Verify
this

account

B

Verify
this

account

C Verify
account

XYZ

XYZ valid.
Balance:

$100

C Verify
account

XYZ

XYZ valid.
Balance:

$100

D

Account
valid.

Balance:
$100

D

Account
valid.

Balance:
$100

G Record
$60 less

G Record
$60 less

A Enter
your PIN

Typing in
PIN number

…

A Enter
your PIN

Typing in
PIN number

…

E How may
I help
you?

Withdraw
$60

E How may
I help
you?

Withdraw
$60

F Release
$60

Dispense
$60

F Release
$60

Dispense
$60

H

Please take
your cash

Dispensing!H

Please take
your cash

Dispensing!

Figure 1-5: Dynamic interactions of the imagined components during task accomplishment.

Chapter 1 Introduction 7

rogramming language, like any other formal language, is a set of symbols and rules for
manipulating them. It is when they need to meet the real world that you discover that associations
can be made in different ways and some rules were not specified. A novice all too often sees only
benefits of building a software product and ignores and risks. An expert sees a broader picture
and anticipates the risks. After all, dividing the problem in subproblems and conquering them
piecewise does not guarantee logical rigor and strict consistency between the pieces. Risks
typically include conditions such as, the program can do what is expected of it and then some
more, unexpected capabilities (that may be exploited by bad-intentioned people). Another risk is
that not all environment states are catalogued before commencing the program development.
Depending on how you frame your assumptions, you can come up with a solution. The troubles
arise if the assumptions happen to be inaccurate, wrong, or get altered due to the changing world.

1.1.1 Why Software Engineering Is Difficult (1)
“Software is like entropy. It is difficult to grasp, weighs nothing, and obeys the second law of

thermodynamics; i.e., it always increases.” —Norman R. Augustine

If you are a civil engineer building bridges then all you need to know is about bridges. Unlike
this, if you are developing software you need to know about software domain (because that is
what you are building) and you need to know about the problem domain (because that is what
you are building a solution for). Some problems require extensive periods of dedicated research
(years, decades, or even longer). Obviously, we cannot consider such problem research as part of
software engineering. We will assume that a theoretical solution either exists, or it can be found
in a relatively short time by an informed non-expert.

A further problem is that software is a formal domain, where the inputs and goal states are well
defined. Unlike software, the real world is informal with ill-defined inputs and goal states.
Solving problems in these different domains demands different styles and there is a need to
eventually reconcile these styles. A narrow interpretation of software engineering deals only with
engineering the software itself. This means, given a precise statement of what needs to be
programmed, narrow-scope software engineering is concerned with the design, implementation,
and testing of a program that represents a solution to the stated problem. A broader interpretation
of software engineering includes discovering a solution for a real-world problem. The real-world
problem may have nothing to do with software. For example, the real-world problem may be a
medical problem of patient monitoring, or a financial problem of devising trading strategies. In
broad-scope software engineering there is no precise statement of what needs to be programmed.
Our task amounts to none less than engineering of change in a current business practice.

Software engineering is mainly about modeling the physical world and finding good abstractions.
If you find a representative set of abstractions, the development flows naturally. However, finding
abstractions in a problem domain (also known as “application domain”) involves certain level of
“coarse graining.” This means that our abstractions are unavoidably just approximations—we
cannot describe the problem domain in perfect detail: after all that would require working at the
level of atomic or even subatomic particles. Given that every physical system has very many
parts, the best we can do is to describe it in terms of only some of its variables. Working with
approximations is not necessarily a problem by itself should the world structure be never
changing. But, we live in a changing world: things wear out and break, organizations go bankrupt
or get acquired or restructured, business practices change, government regulations change, fads

Ivan Marsic Rutgers University

8

and fashions change, and so on. On a fundamental level, one could argue that the second law of
thermodynamics works against software engineers (or anyone else trying to build models of the
world), as well. The second law of thermodynamics states that the universe tends towards
increasing disorder. Whatever order was captured in those comparatively few variables that we
started with, tends to get dispersed, as time goes on, into other variables where it is no longer
counted as order. Our (approximate) abstractions necessarily become invalid with passing time
and we need to start afresh. This requires time and resources which we may not have available.
We will continue discussion of software development difficulties in Sections 2.4.5 and 2.6.3.

Software development still largely depends on heroic effort of select few developers. Product line
and development standardization are still largely missing, but there are efforts in this direction.
Tools and metrics for product development and project management are the key and will be given
considerable attention in this text.

1.1.2 Book Organization

Chapter 2 offers a quick tour of software engineering that is based on software objects, known as
Object-Oriented Software Engineering (OOSE). The main focus is on tools, not methodology, for
solving software engineering problems. Chapter 3 elaborates on techniques for problem
understanding and specification. Chapter 4 describes metrics for measuring the software process
and product quality. Chapter 5 elaborates on techniques for problem solution, but unlike Chapter
2 it focuses on advanced tools for software design. Chapter 6 describes structured data
representation using XML. Chapter 7 presents software components as building blocks for
complex software. Chapter 8 introduces service-oriented architectures and Web services.

I adopt an incremental and iterative refinement approach to presenting the material. For every
new topic, we will scratch the surface and move on, only to revisit later and dig deeper.

The hope with metaphors and analogies is that they will evoke understanding much faster and
allow “cheap” broadening it, based on the existing knowledge.

1.2 Software Engineering Lifecycle

The Feynman Problem-Solving Algorithm:
(i) Write down the problem (ii) think very hard, and (iii) write down the answer.

Any product development can be expected to proceed as an organized process that usually
includes the following phases:

 Planning / Specification

 Design

 Implementation

 Evaluation

Chapter 1 Introduction 9

So is with software development. The common software development phases are as follows:

1. Requirements Specification
- Understanding the usage scenarios and deriving the static domain model

2. Design
- Assigning responsibilities to objects and specifying detailed dynamics of their

interactions under different usage scenarios

3. Implementation
- Encoding the design in a programming language

4. Testing
- Individual classes/components (unit testing) and the entire system (integration

testing)

5. Operation and Maintenance
- Running the system; Fixing bugs and adding new features

The lifecycle usually comprises many other activities, some of which precede the above ones,
such as marketing survey to determine the market need for the planned product. This text is
restricted to engineering activities, usually undertaken by the software developer.

The early inspiration for software lifecycle came from other engineering disciplines, where the
above activities usually proceed in a sequential manner (or at least it was thought so). This
method is known as Waterfall Process because developers build monolithic systems in one fell
swoop (Figure 1-6). It requires completing the artifacts of the current phase before proceeding to
the subsequent one. In civil engineering, this approach would translate to: finish all blueprints
neatly before starting construction; finish the construction before testing it for soundness; etc.
There is also psychological attraction of the waterfall model: it is a linear process that leads to a
conclusion by following a defined sequence of steps. However, over the years developers realized
that software development is unlike any other product development in these aspects:

Deployment &
Maintenance

Requirements

Design

Implementation

Testing
Waterfall
method

Figure 1-6: Waterfall process for software development.

Ivan Marsic Rutgers University

10

 Unlike most other products, software is intangible and hard to visualize. Most people
experience software through what it does: what inputs it takes and what it generates as
outputs

 Software is probably the most complex artifact—a large software product consists of so
many bits and pieces as well as their relationships, every single one having an important
role—one flipped bit can change the entire sense of a program

 Software is probably the most flexible artifact—it can be easily and radically modified at
any stage of the development process, so it can quickly respond to changes in customer
requirements (or, at least it is so perceived)

Therefore, software development process that follows a linear order of understanding the
problem, designing a solution, implementing and deploying the solution, does not produce best
results. It is easier to understand a complex problem by implementing and evaluating pilot
solutions. These insights led to adopting incremental and iterative (or, evolutionary) development
methods, which are characterized by:

1. Break the big problem down into smaller pieces (increments) and prioritize them.

2. In each iteration progress through the development in more depth.

3. Seek the customer feedback and change course based on improved understanding.

Incremental and iterative process seeks to get to a working instance1 as soon as possible. Having
a working instance available lets the interested parties to have something tangible, to play with,
make inquiries and receive feedback. Through this experimentation (preferably by end users),
unsuspected deficiencies are discovered that drive a new round of development using failures and
the knowledge of things that would not work as a springboard to new approaches. This greatly
facilitates the consensus reaching and building the understanding of all parties of what needs to
be developed and what to expect upon the completion. So, the key of incremental and iterative
methods is to progressively deepen the understanding or “visualization” of the target product, by
both advancing and retracting to earlier activities to rediscover more of its features. A popular
incremental and iterative process is called Unified Process [Jacobson et al., 1999]. Methods that
are even more aggressive in terms of short iterations and heavy customer involvement are
characterized as Agile. The customer is continuously asked to prioritize the remaining work items
and provide feedback about the delivered increments of software.

All lifecycle processes have a goal of incremental refinement of the product design, but different
people hold different beliefs on how this is to be achieved. This has been true in the past and it
continues to be true, and I will occasionally comment on different approaches. Personally, I
enthusiastically subscribe to the incremental and iterative approach, and in that spirit the
exposition in this text progresses in an incremental and iterative manner, by successively
elaborating the software lifecycle phases. For every new topic, we will scratch the surface and
move on, only to revisit later and dig deeper.

A quick review of existing software engineering textbooks reveals that software engineering is
largely about management. Project management requires organizational and managerial skills

1 This is not necessarily a prototype, because “prototype” creates impression of something to be thrown

away after initial experimentation. Conversely, a “working instance” can evolve into the actual product.

Chapter 1 Introduction 11

such as identifying and organizing the many tasks comprising a project, allocating resources to
complete those tasks, and tracking actual against expected/anticipated resource utilization.
Successful software projects convey a blend of careful objective evaluation, adequate preparation,
continuous observation and assessment of the environment and progress, and adjusting tactics.

It is interesting to compare the issues considered by Brooks [1975] and compare those of the
recent agile methods movement—both put emphasis on communication of the development team
members. My important goal here is, therefore, to present the tools that facilitate communication
among the developers. The key such tools are:

 Modular design: Breaking up the system in modules helps to cope with complexity; we
have already seen how the ATM system was made manageable by identifying smaller
tasks and associated “modules” (Figure 1-4). Modules provide building blocks or
“words” of a language when describing complex solutions.

 Symbol language: The Unified Modeling Language (UML) is used similar to how the
symbols such as , , , and , are used in mathematics. They abbreviate the exposition
of the material and facilitate the reader’s understanding of the material.

 Project and product metrics: Metrics for planning and measuring project progress, and
metrics for measuring the quality of software products provide commonly agreeable tools
for tracking the work quality and progress towards the completion.

 Design heuristics: Also known as patterns, they create a design language for naming and
describing the best practices that were proven in many contexts and projects.

Decomposing a problem into simpler ones, so called divide-and-conquer approach, is common
when dealing with complex problems. In software development it is embodied in modularity: The
source code for a module can be written and maintained independently of the source code for
other modules. As with any activity, the value of a structured approach to software development
becomes apparent only when complex problems are tackled.

1.2.1 Symbol Language
“Without images we can neither think nor understand anything.” —Martin Luther (1483-1546)

“There are only 10 types of people in this world. Those who know binary, and those who don’t.”
—Unknown

As part of a design process, it is essential to communicate your ideas. When describing a process
of accomplishing a certain goal, person actually thinks in terms of the abbreviations and symbols
as they describe the “details” of what she is doing, and could not proceed intelligently if she were
not to do so. George Miller found in the 1950s that human short-term memory can store about
seven items at a time [Miller, 1957]. The short-term memory is what we use, for instance, to
remember a telephone number just long enough to look away from the paper on which it is
written to dial the number. It is also known as working memory because in it information is
assumed to be processed when first perceived. It has been likened to the RAM (random access
memory) of a computer. Recall how many times you had to look back in the middle of dialing,
particularly if you are not familiar with the area code, which makes the number a difficult 10
digits! It turns out that the Miller’s hypothesis is valid for any seven “items,” which could be
anything, such as numbers, faces, people, or communities—as we organize information on higher

Ivan Marsic Rutgers University

12

levels of abstraction, we can still remember seven of whatever it is. This item-level thinking is
called chunking. Symbols can be easier chunked into patterns, which are represented by new
symbols. Using symbols and hierarchical abstraction makes it easier for people to think about
complex systems.

Diagrams and symbols are indispensible to the software engineer. Program code is not the best
way to document a software system, although some agile methodologists have claimed that it is
(more discussion in Section 2.1.1). Code is precise, but it is also riddled with details and
idiosyncrasies of the programming language. Because it is essentially text, is not well-suited for
chunking and abstraction. The visual layout of code can be used to help the reader with chunking
and abstraction, but it is highly subjective with few widely accepted conventions.

Our primary symbol language is UML, but it is not strictly adhered to throughout the text. I will
use other notations or an ad-hoc designed one if I feel that it conveys the message in a more
elegant way. I would prefer to use storyboards and comic-strip sequences to represent that
problem and solution in a comprehensible manner. On the other hand, they are time-consuming
and often ambiguous, so we will settle for the dull but standardized graphics of the UML.

Example UML symbols are shown in Figure 1-7. To become familiar with UML, you can start at
http://www.uml.org, which is the official standard’s website. People usually use different symbols
for different purposes and at different stages of progression. During development there are many
ways to think about your design, and many ways to informally describe it. Any design model or
modeling language has limits to what it can express and no one view of a design tells all. For
example, strict adherence to a standard may be cumbersome for the initial sketches; contrariwise,
documenting the completed design is always recommended in UML simply because so many
people are already familiar with UML.

«interface»
BaseInterface

+ operation()

Actor

ClassName

attribute_1 : int
attribute_2 : boolean
attribute_3 : String

+ operation_1() : void
+ operation_2() : String
+ operation_3(arg1 : int)

Software Class

Three common
compartments:

1. Classifier name

2. Attributes

3. Operations

Comment

Class1Implement

+ operation()

Class2Implement

+ operation()

Software Interface Implementation

Interaction Diagram

doSomething()

instance1 : Class1 instance5 : Class2 instance8 : Class3

doSomethingElse()

doSomethingYetElse()

Inheritance
relationship:
BaseInterface
is implemented
by two classes

Stereotype
«» provides
additional info/
annotation/
explanation

Figure 1-7: Example UML symbols for software concepts.

Chapter 1 Introduction 13

As can be observed throughout this text, the graphic notation is often trivial and can be mastered
relatively quickly. The key is in the skills in creating various models—it can take considerable
amount of time to gain this expertise.

1.2.2 Requirements Analysis and System Specification

We start with the customer statement of work (also known as customer statement of
requirements), if the project is sponsored by a specific customer, or the vision statement, if the
project does not have a sponsor. The statement of work describes what the envisioned system-to-
be is about, followed by a list of features/services it will provide or tasks/activities it will support.

Given the statement of work, the first step in the software development process is called
requirements analysis or systems analysis. During this activity the developer attempts to
understand the problem and delimit its scope. The result is an elaborated statement of

Bank’s remote
datacenter

System
(ATM machine)

Bank customer

1
2

34
5

67
8

90

1
2

34
5

67
8

90

Bank’s remote
datacenter

System
(ATM machine)

Bank customer

Window clerk Bookkeeper Safe keeperDatacenter
liaison

Dispenser

Safe CashTransaction
record

TelephoneSpeakerphone

(a)

(b)

Figure 1-8: Gallery of actors (a) and concepts (b) of the system under discussion. The actors
are relatively easy to identify because they are external to the system and visible; conversely,
the concepts are hard to identify because they are internal to the system, hence
invisible/imaginary.

Ivan Marsic Rutgers University

14

requirements. The goal is to produce the system specification—the document that is an exact
description of what the planned system-to-be is to do. Requirements analysis delimits the system
and specifies the services it offers, identifies the types of users that will interact with the system,
and identifies other systems that interact with ours. For example, the software engineer might ask
the customer to clarify if the ATM machine (Figure 1-3) will support banking for customers of
other banks or only the bank that owns the ATM machine. The system is at first considered a
black box, its services (“push buttons”) are identified, and typical interaction scenarios are
detailed for each service. Requirement analysis includes both fact-finding of how the problem is
solved in the current practice as well as envisioning how the planned system might work.

Recall the ATM example from Figure 1-3. We identified the relevant players in Figure 1-4.
However, this may be too great a leap for a complex system. A more gradual approach is to start
considering how the system-to-be will interact with the external players and defer the analysis of
what happens inside the system until a later time. Figure 1-8(a) shows the players external to the
system (called “actors”). If the ATM machine will support banking for customers of other banks,
then we will need to identify additional actors.

A popular technique for requirements analysis is use case modeling. A set of use cases describes
the elemental tasks a system is to perform and the relation between these tasks and the outside
world. Each use case description represents a dialog between the user and the system, with the
aim of helping the user achieve a business goal. In each dialog, the user initiates actions and the
system responds with reactions. The use cases specify what information must pass the boundary
of the system in the course of a dialog (without considering what happens inside the system).
Because use cases represent recipes for user achieving goals, each use-case name must include a

B Verify
account

XYZ

XYZ valid.
Balance:

$100

B Verify
account

XYZ

XYZ valid.
Balance:

$100

1
2 34

5 67 8
90

1
2 34

5 67 8
90

C How may
I help
you?

Withdraw
$60

1
2 34

5 67 8
90

1
2 34

5 67 8
90

C How may
I help
you?

Withdraw
$60

1
2 34

5 67 8
90

1
2 34

5 67 8
90

A Enter
your PIN

Typing in
PIN number

…

1
2 34

5 67 8
90

1
2 34

5 67 8
90

A Enter
your PIN

Typing in
PIN number

…

D

1
2 34

5 67 8
90

1
2 34

5 67 8
90

Please take
your cash

Collecting
cash …

D

1
2 34

5 67 8
90

1
2 34

5 67 8
90

Please take
your cash

Collecting
cash …

E XYZ
withdrew

$60

Acknowledged

E XYZ
withdrew

$60

Acknowledged

Figure 1-9: Scenario for use case “Withdraw Cash.” Unlike Figure 1-5, this figure only
shows interactions of the actors and the system.

Chapter 1 Introduction 15

verb capturing the goal achievement. Given the ATM machine example (Figure 1-3), Figure 1-9
illustrates the flow of events for the use case “Withdraw Cash.”

Use cases are only a beginning of software engineering process. When we elaborate use cases of
a system, it signifies that we know what the system needs to accomplish, not how; therefore, it is
not just “a small matter of system building” (programming) that is left after we specify the use
cases. Requirements analysis is detailed in Sections 2.2 and 2.4.

1.2.3 Object-Oriented Analysis and the Domain Model
“…if one wants to understand any complex thing—be it a brain or an automobile—one needs to develop

good sets of ideas about the relationships among the parts inside. …one must study the parts to know the
whole.” —Marvin Minsky, The Emotion Machine

Use cases consider the system as a black box and help us understand how the system as a whole
interacts with the outside word. The next step is to model the inside of the system. We do this by
building the domain model, which shows what the black box (the system-to-be) encloses. Given a
service description, we can imagine populating the black box with domain concepts that will do
the work. In other words, use cases elaborate the system’s behavioral characteristics (sequence
of stimulus-response steps), while the domain model details the system’s structural
characteristics (system parts and their arrangement) that make it possible for the system to
behave as described by its use cases.

It is useful to consider a metaphor in which software design is seen as creating a virtual
enterprise or an agency. The designer is given an enterprise’s mission description and hiring
budget, with the task of hiring appropriate workers, acquiring things, and making it operational.
The first task is to create a list of positions with a job description for each position. The designer
needs to identify the positions, the roles and responsibilities, and start filling the positions with
the new workers. Recall the ATM machine example from Figure 1-3. We need to identify the
relevant players internal to the system (called “concepts”), as illustrated in Figure 1-8(b).

In the language of requirements analysis, the enterprise is the system to be developed and the
employees are the domain concepts. As you would guess, the key task is to hire the right
employees (identify good concepts, or abstractions). Somewhat less critical is to define their
relationships and each individual’s attributes, which should be done only if they are relevant for
the task the individual is assigned to. I like this metaphor of “hiring workers” because it is in the
spirit of what Richard Feynman considered the essence of programming, which is “getting
something to do something” [Feynman et al., 2000]. It also sets up the stage for the important
task of assigning responsibilities to software objects.

The idea for conducting object-oriented analysis in analogy to setting up an enterprise is inspired
by the works of Fritz Kahn. In the early 20th century, Kahn produced a succession of books
illustrating the inner workings of the human body, using visual metaphors drawn from industrial
society. His illustrations drew a direct functional analogy between human physiology and the
operation of contemporary technologies—assembly lines, internal combustion engines, refineries,
dynamos, telephones, etc. Kahn’s work is aptly referred to as “illustrating the incomprehendable”
and I think it greatly captures the task faced by a software engineer. The interested reader should
search the Web for more information on Kahn.

Ivan Marsic Rutgers University

16

Domain analysis is more than just letting our imagination loose and imagining any model for the
system-to-be. Design problems have unlimited number of alternative solutions. For example,
consider again the design for an ATM system from Figure 1-4. One could imagine countless
alternative solutions, two of which are shown in Figure 1-10. In Figure 1-10(a), we imagine
having a draftsman to draw the banknotes requested by the customer then and there. In Figure
1-10(b), we imagine having a courier run to a nearest bank depository to retrieve the requested

Window clerk

Bookkeeper

Dispenser

Transaction
record

Speakerphone

How may I
help you?

Customer

Draftsman

Solution
modification

Solution
modification

(a)

Remote
bank

Window clerk

Bookkeeper

Dispenser

Transaction
record

Speakerphone

How may I
help you?

Customer

Courier

Solution
modification

Solution
modification

(b)

Figure 1-10: Alternative solutions for an ATM system. (Compare to Figure 1-4)

Chapter 1 Introduction 17

monies. How do we know which solution is best, or even feasible? Implementing and evaluating
all imaginable solutions is impossible, because it takes time and resources. Two factors help
constrain the options and shorten the time to solution:

 Knowing an existing solution for the same or similar problem

 Analyzing the elements of the external world that the system-to-be will interact with

I created the solution in Figure 1-4 because I have seen how banks with human tellers operate. I
know that solutions in Figure 1-10 would take an unacceptable amount of time for each
withdrawal, and the problem statement does not mention having a stack of blank paper and ink at
disposal for solution in Figure 1-10(a), or having a runner at disposal for solution in Figure
1-10(b). The problem statement only mentions a communication line to a remote datacenter.
There is nothing inherent in any of these solutions that makes some better than others. What
makes some solutions “better” is that they copy existing solutions and take into account what is at
our disposal to solve the problem. The implication is that the analyst needs to consider not only
what needs to be done, but also how it can be done—what are feasible ways of doing it. We need
to know what is at our disposal in the external world: do we have a stack of blank papers, ink, or
a courier to run between the ATM and a depository? If this information is not given, we need to
ask our customer to clarify. For example, the customer may answer that the system-to-be will
have at disposal only a communication line to a remote datacenter. In this case, we demand the
details of the communication protocol and the format of messages that can be exchanged. We
need to know how will the datacenter answer to different messages and what exceptions may
occur. We also need to know about the hardware that accepts the bank cards and disposes
banknotes. How will our software be able to detect that the hardware is jammed?

Our abstractions must be grounded in reality, and the grounding is provided by knowing what is
at the disposal in the external world that the system-to-be can use to function. This is why we
cannot delimit domain analysis to what the black box (software-to-be) will envelop. Rather, we
need to consider entities that are both external and internal to the software-to-be. The external
environment constrains the problem to be solved and by implication constrains the internal design
of the software-to-be. We also need to know what is implementable and what not, either from
own experience, or from that of a person familiar with the problem domain (known as the
“domain expert”).None of our abstractions is realistic, but some are useful and others are not.

Object-oriented analysis is detailed in Section 2.5.

1.2.4 Object-Oriented Design
“Design is not just what it looks like and feels like. Design is how it works.”—Steve Jobs

The act of design involves assigning form and function to parts so to create an esthetical and
functional whole. In software development, the key activity in the design phase is assigning
responsibilities to software objects. A software application can be seen as a set or community of
interacting software objects. Each object embodies one or more roles, a role being defined by a
set of related responsibilities. Roles, i.e., objects, collaborate to carry out their responsibilities.
Our goal is to create a design in which they do it in a most efficient manner. Efficient design
contributes to system performance, but no less important contribution is in making the design
easier to understand by humans.

Ivan Marsic Rutgers University

18

Design is the creative process of searching how to implement all of the customer’s requirements.
It is a problem-solving activity and, as such, is very much subject to trial and error. Breaking up
the system into modules and designing their interactions can be done in many ways with varying
quality of the results. In the ATM machine example, we came up with one potential solution for
step-by-step interactions, as illustrated Figure 1-5. The key question for the designer is: is this the
best possible way to assign responsibilities and organize the activities of virtual agents? One
could solve the same design problem with a different list of players and different organization of
their step-by-step interactions. As one might imagine, there is no known way for exactly
measuring the optimality of a design. Creativity and judgment are key for good software design.
Knowledge of rules-of-thumb and heuristics are critical in deciding how good a design is.
Luckily, most design work is routine design, where we solve a problem by reusing and adapting
solutions from similar problems.

So, what kinds of designs are out there? Two very popular kinds of software designs are what I
would call Maurits Escher2 and Rube Goldberg3 designs. Both are fun to look at but have little
practical value. Escher designs are impossible to implement in reality. Goldberg designs are
highly-complicated contraptions, which solve the problem, but they are very brittle. If anything
changes in the underlying assumptions, they fail miserably.

A key problem of design is that we cannot know for sure if a design will work unless we
implement it and try it. Therefore, a software engineer who is also a skilled programmer has
advantage in software design, because he knows from experience how exactly to implement the
abstract constructs and what will or will not work. Related to this issue, some agile
methodologists claim that program code is the only faithful representation of program design.
Although it may be faithful, code alone is insufficient to understand software design. One also
needs diagrams to “see the forest for the trees.” Code also usually does not document the design
objectives, alternative designs that were considered, merits of different designs, and the rationale
for the chosen designs.

2 Maurits Cornelis Escher (1898-1972) is one of the world’s most famous graphic artists, known for his so-

called impossible structures, such as Ascending and Descending, Relativity, his Transformation Prints,
such as Metamorphosis I, Metamorphosis II and Metamorphosis III, Sky & Water I or Reptiles.

3 Reuben Lucius Goldberg (Rube Goldberg) (1883-1970) was a Pulitzer Prize winning cartoonist, sculptor,
and author. He is best known for his “inventions”—elaborate sets of arms, wheels, gears, handles, cups,
and rods, put in motion by balls, canary cages, pails, boots, bathtubs, paddles, and live animals—that
take simple tasks and make them extraordinarily complicated.

Chapter 1 Introduction 19

Consider the garage-door opener designs in Figure 1-11. The top row shows a Rube Goldberg
design and the bottom row shows an actual design. What makes the latter design realistic and
what is lacking in the former design? Some observations:

 The Rube Goldberg design uses complex components (the rabbit, the hound, etc.) with
many unpredictable or uncontrollable behaviors; conversely, a realistic design uses
specialized components with precisely controllable functions

Rail with a belt or chain

Operator (includes motor and radio control mechanism)

Garage door

Safety reversing sensor

Pressing of a button on the remote control transmitter (1)
authenticates the device & activates the motor in the operator (2).
The motor pulls the chain (or belt) along the rail (3) and winds
the torsion spring (4).
The torsion spring winds the cable on the pulleys (or drums) (5)
on both sides of the door.
The cables lift the door, pushing the different sections of the door
into the horizontal tracks (6)
At the same time, the trolley (or traveler) (7) moves along the rail (3)
and controls how far the door opens (or closes),
as well as the force the garage door exerts by way of the curved door arm (8)

Remote control transmitter
2

1

3

4 5

5

6

6

7

8

Rail with a belt or chain

Operator (includes motor and radio control mechanism)

Garage doorGarage door

Safety reversing sensor

Pressing of a button on the remote control transmitter (1)
authenticates the device & activates the motor in the operator (2).
The motor pulls the chain (or belt) along the rail (3) and winds
the torsion spring (4).
The torsion spring winds the cable on the pulleys (or drums) (5)
on both sides of the door.
The cables lift the door, pushing the different sections of the door
into the horizontal tracks (6)
At the same time, the trolley (or traveler) (7) moves along the rail (3)
and controls how far the door opens (or closes),
as well as the force the garage door exerts by way of the curved door arm (8)

Remote control transmitter
2

1

3

4 5

5

6

6

7

8

Figure 1-11: Top row: A Rube Goldberg machine for garage door opening.
Bottom row: An actual design of a garage door opener.

Ivan Marsic Rutgers University

20

 The Rube Goldberg design makes unrealistic assumptions, such as that the rabbit will not
move unless frightened by an exploding cap.

 The Rube Goldberg design uses unnecessary links in the operational chain.

We will continue discussion of software design when we introduce the object model in Section
1.4. Recurring issues of software design include:

 Design quality evaluation: Optimal design may be an unrealistic goal given the
complexity of real-world applications. A more reasonable goal is to find criteria for
comparing two designs and deciding which one is better. The principles for good object-
oriented design are introduced in Section2.6 and elaborated in subsequent chapters.

 Design for change: Useful software lives for years or decades and must undergo
modifications and extensions to account for the changing world in which it operates.
Chapter 5 describes the techniques for modifiable and extensible design.

 Design for reuse: Reusing existing code and designs is economical and allows creating
more sophisticated systems. Chapter 7 considers techniques for building reusable
software components.

Other important design issues include design for security and design for testability.

1.2.5 Project Effort Estimation and Product Quality
Measurement

I will show, on an example of hedge pruning, how project effort estimation and product quality
measurement work hand in hand with incremental and iterative development, particularly in agile
methods. Imagine that you want to earn some extra cash this summer and you respond to an
advertisement by a certain Mr. McMansion to prune the hedges around his property (Figure
1-12). You have never done hedge pruning before, so you will need to learn as you go. The first
task is to negotiate the compensation and completion date. The simplest way is to make a guess
that you can complete the job in two weeks and you ask for a certain hourly wage. Suppose that
Mr. McMansion agrees and happily leaves for vacation. After one week, you realize that you are
much behind the schedule, so to catch up you lower the quality of your work. After two weeks,
the hedges are pruned and Mr. McMansion is back from vacation. He will likely find many
problems with your work and may balk at paying for the work done.

Now suppose that you employ incremental and iterative hedge pruning. You start by dividing the
hedges into smaller sections, because people are better at guessing the relative sizes of object
parts than the absolute size of an entire object. Suppose that you came up with the partitioning
labeled with encircled numbers to in Figure 1-12. Think of hedge pruning as traveling along
the hedge at a certain velocity (while pruning it). The velocity represents your work productivity.
To estimate the travel duration, you need to know the length of the path (or, path size). That is

 velocityTravel

sizePath
 duration Travel (1.1)

Because you have never pruned hedges, you cannot know your velocity, so the best you can do is
to guess it. You could measure the path size using a tape measure, but you realize there is a

Chapter 1 Introduction 21

problem. Different sections seem to have varying difficulty of pruning, so your velocity will be
different along different sections. For example, it seems that section at the corner of Back and
Side Streets (Figure 1-12) will take much more work to prune than section between the garden
and Main Street. Let us assume you assign “pruning points” to different sections to estimate their
size and complexity. Suppose you use the scale from 1 to 10. Because section seems to be the
most difficult, so we assign it 10 pruning points. The next two sections in terms of difficulty
appear to be and , and relative to section you feel that they are at about 7 pruning points.
Next are sections , , and , and you give them 4 pruning points. Finally, section gets 3
pruning points and section gets 2 pruning points. The total for the entire hedge is calculated
simply by adding the individual sizes

N

i

i
1

section -for-pointssize Total (1.2)

Therefore, the total for the entire hedge is 10 27 34 3 2 = 41 pruning points. This
represents your size estimate of the entire hedge. It is very important that this is a relative-size
estimate, because it measures how big individual sections are relative to one another. So, a
section estimated at four pruning points is expected to take twice as long work as a section
estimated at two pruning points.

How accurate is this estimate? Should section be weighted 3.5
points instead of 3? There are two parts to this question: (a) how
accurate is the relative estimate for each section, and (b) is it
appropriate to simply add up the individual sizes? As for the former
issue, you may wish to break down the hedge sections into smaller parts, because it is easier to do
eyeballing of smaller parts and comparing to one another. Section is particularly large and it
may be a good idea to split it up to smaller pieces. If you keep subdividing, in the extreme instead
of eyeballing hedge sections you could spend weeks and count all the branches and arrive at a

Figure 1-12: Example for project estimation: Formal hedge pruning.

Ivan Marsic Rutgers University

22

much more accurate estimate. You could even measure density of branches in individual sections,
their length, hardness, etc. Obviously, there is a point beyond which only minor improvement in
estimation accuracy is brought at a huge cost (known as the law of diminishing returns). Many
people agree that the cost-accuracy relationship is exponential (Figure 1-13). It is also interesting
to note that, in the beginning of the curve, we can obtain huge gains in accuracy with modest
effort investment. The key points for size estimation are that (1) the pieces should be fairly small
and (2) they should be of similar size, because it is easier to compare the relative sizes of small
and alike pieces.

As for the latter issue about equation (1.2), the appropriateness of using a linear summation, a key
question is if the work on one section is totally independent on the work on another section. The
independence is equivalent to assuming that every section will be pruned by a different person
and each starts with an equal degree of experience in hedge pruning. I believe there are
confounding factors that can affect the accuracy of the estimate. For example, as you progress,
you will learn about hedge pruning and become more proficient, so your velocity will increase
not because the size of some section became smaller but because you became more proficient. In
Section 2.2.3 I will further discuss the issue of linear superposition in the context of software
project estimation.

All you need now is the velocity estimate, and using equation (1.1) you can give Mr. McMansion
the estimate of how long the entire hedge pruning will take. Say you guess your velocity at 2
pruning points per day. Using equation (1.1) you obtain 41/2 21 working days or 4 weeks. You
tell Mr. McMansion that your initial estimate is 21 days to finish the work. However, you must
make it clear that this is just a guess, not a hard commitment; you cannot make hard
commitments until you do some work and find out what is your actual productivity (or
“velocity”). You also tell Mr. McMansion how you partitioned the work into smaller items
(sections of the hedge) and ask him to prioritize the items, so that you know his preferred
ordering. Say that Mr. McMansion prefers that you start from the back of the house and as a
result you obtain the work backlog list shown in Figure 1-14. He will inspect the first deliverable
after one week, which is the duration of one iteration.

Here comes the power of iterative and incremental work. Given Mr. McMansion’s prioritized
backlog, you pull as many items from the top of the list as will fit into an iteration. Because the

Estimation cost
E

st
im

at
io

n
ac

cu
ra

cy

100%

Figure 1-13: Exponential cost of estimation. Improving accuracy of estimation beyond a
certain point requires huge cost and effort (known as the law of diminishing returns).

Chapter 1 Introduction 23

first two items (sections and) add up to 5.5 days, which is roughly one week, i.e., one
iteration, you start by pruning sections and . Suppose that after the first week, you pruned
have about three quarters of the hedges in sections and . In other words after the first
iteration you found that your actual velocity is 3/4 of what you originally thought, that is, 1.5
pruning point per day. You estimate a new completion date as follows.

Total number of remaining points = 1/4 11 points remaining from sections and
 30 points from all other sections

 33 points

Estimated completion date = 22 days + 5 days already worked = 27 days total

You go to Mr. McMansion and tell him that your new estimate is that it will take you 27 days
total, or 22 more days to complete the work. Although this is still an estimate and may prove
incorrect, you are much more confident about this estimate, because it is based on your own
experience. Note that you do not need to adjust your size estimate of 41 pruning points, because
the relative sizes of hedge sections have not changed! Because of this velocity adjustment, you
need to calculate new work durations for all remaining items in the backlog (Figure 1-14). For
example, the new durations for sections and will be 1.3 days and 2.7 days, respectively. As
a result, you will pull into the second iteration the remaining work from the first iteration plus
sections and . Section that was originally planned for the second iteration (Figure 1-14)
will be left for the third iteration.

It is important to observe that initially you estimate your velocity, but after the first increment you
use the measured velocity to obtain a more accurate estimate of the project duration. You may
continue measuring your velocity and re-estimating the total effort duration after each increment,

Time

2nd iteration n-th iteration

Estimated completion date

Items pulled by the team into an iteration

1) Prune Section 8 3.5 days (7pts)

Work backlog

2) Prune Section 7 2 days (4pts)

3) Prune Section 6 1 day (2pts)

4) Prune Section 5 2 days (4pts)

1st iteration

5) Prune Section 4 1.5 days (3p)

6) Prune Section 1 2 days (4pts)

7) Prune Section 2 3.5 days (7p)

Work items

8) Prune Section 3 5 days (10p)

21 days

5 days
List prioritized by the customer

Estimated work duration

Figure 1-14: The key concepts for iterative and incremental project effort estimation.

Ivan Marsic Rutgers University

24

but this probably will not be necessary, because after the first few increments you will obtain an
accurate measurement of your pruning velocity. The advantage of incremental work is that you
can quickly gain accurate estimate of the entire effort and will not need to rush it later to complete
on time, while sacrificing product quality.

Speaking of product quality, next we will see how iterative work helps improve product quality.
You may be surprised to find that hedge pruning involves more than simply trimming the shrub.
Some of parameters that characterize the quality of hedge pruning are illustrated in Figure 1-15.
Suppose that after the first iteration (sections and), Mr. McMansion can examine the work
and decide if the quality is satisfactory or needs to be adjusted for future iterations.

It is much more likely that Mr. McMansion will be satisfied with your work if he is continuously
consulted then if he simply disappeared to vacation after describing the job requirements.
Regardless of how detailed the requirements description, you will inevitably face unanticipated
situations and your criteria of hedge esthetics may not match those of Mr. McMansion. Everyone
sees things differently, and frequent interactions with your customer will help you better
understand his viewpoint and preferences. Early feedback will allow you to focus on things that
matter most to the customer, rather than facing a disappointment when the work is completed.
This is why it is important that the customer remains engaged throughout the duration of the
project, and participates in all important decisions and inspects the quality of work any time a
visible progress is made.

Good Shape
(Low branches get sun)

Poor Shape
(Low branches

shaded from sun) Heading back not
recommended as
it alters the natural
shape of the shrub

Remove dead wood

Remove water spouts
and suckers

Snow accumulates
on broad flat tops

Straight lines require
more frequent trimming

Peaked and rounded tops
hinder snow accumulation

Rounded forms, which
follow nature’s tendency,

require less trimming

Figure 1-15: Quality metrics for hedge pruning.

Chapter 1 Introduction 25

I

friend

have

coding

engages in

program

constructs a

new
is

In summary, we use incremental staging and scheduling strategy to quickly arrive at an effort
estimate and to improve the development process quality. We use the iterative, rework-
scheduling strategy to improve the product quality. Of course, for both of these strategies it is
essential to have good metrics. Project and product metrics are described in Chapter 4. We will
also see in Section 2.2.3 how user-story points work similar to hedge-pruning points, and how
they can be used to estimate development effort and plan software releases.

1.3 Case Studies

Two case studies will be used in examples throughout the text to illustrate software development
techniques. In addition, several more projects are designed for student teams later in Section 1.5.

Both case studies (as well as student projects) address relatively complex problems. I favor
complex projects, threading throughout the book, rather than simple, unconnected examples,
because I feel that the former illustrate better the difficulties and merits of the solutions. Both
projects are open-ended and without a clear objective, so that we can consider different features
and better understand the requirements derivation process. My hope is that by seeing software
engineering applied on complex (and realistic) scenarios, the reader will better grasp
compromises that must be made both in terms of accuracy and richness of our abstractions. This
should become particularly evident in Chapter 3, which deals with modeling of the problem
domain and the system that will be developed.

Before we discuss the case studies, I briefly introduce a simple diagrammatic technique for
representing knowledge about problem domains. Concept maps4 are expressed in terms of
concepts and propositions, and are used to represent knowledge, beliefs, feelings, etc. Concepts
are defined as apperceived regularities in objects, events, and ideas, designated by a label, such as
“green,” “high,” “acceleration,” and “confused.” A proposition is a basic unit of meaning or
expression, which is an expression of the relation among concepts. Here are some example
propositions:

 Living things are composed of cells

 The program was flaky

 Ice cube is cold

We can decompose arbitrary sentences into propositions. For example, the sentence

“My friend is coding a new program”

can be written as the following propositions
Proposition Concept Relation Concept

1. I have friend

4 A good introduction about concept maps can be found here: http://en.wikipedia.org/wiki/Concept_map.

CmapTools (http://cmap.ihmc.us/) is free software that facilitates construction of concept maps.

Ivan Marsic Rutgers University

26

2. friend engages in coding
3. coding constructs a program
4. program is new

How to construct a concept map? A common strategy starts with listing all the concepts that you
can identify in a given problem domain. Next, create the table as above, initially leaving the
“Relation” column empty. Then come up with (or consult a domain expert for) the relations
among pairs of concepts. Note that, unlike the simple case shown in the above table, in general
case some concepts may be related to several other concepts. Finally, drawing the concept map is
easy when the table is completed. We will learn more about propositions and Boolean algebra in
Chapter 3.

Concept maps are designed for capturing static knowledge and relationships, not sequential
procedures. A concept map provides a semiformal way to represent knowledge about a problem
domain. It has reduced ambiguity compared to free-form text, and visual illustration of
relationships between the concepts is easier to understand. I will use concepts maps in describing
the case study problems and they can be a helpful tool is software engineering in general. But
obviously we need other types of diagrammatic representations and our main tool will be UML.

1.3.1 Case Study 1: From Home Access Control to
Adaptive Homes

Figure 1-16 illustrates our case-study system that is used in the rest of the text to illustrate the
software engineering methods. In a basic version, the system offers house access control. The
system could be required to authenticate (“Are you who you claim to be?”) and validate (“Are
you supposed to be entering this building?”) people attempting to enter a building. Along with
controlling the locks, the system may also control other household devices, such as the lighting,
air conditioning, heating, alarms, etc.

As typical of most software engineering projects, a seemingly innocuous problem actually hides
many complexities, which will be revealed as we progress through the development cycle. Figure
1-16 already indicates some of those—for example, houses usually have more than one lock.
Shown are two locks, but there could be additional ones, say for a garage entrance, etc.
Additional features, such as intrusion detection further complicate the system. For example, the
house could provide you with an email report on security status while you are away on vacation.
Police will also attend when they receive notification from a central monitoring station that a
monitored system has been activated. False alarms require at least two officers to check on and
this is a waste of police resources. Many cities now fine residents for excessive false alarms.

Here are some additional features to think about. You could program the system to use timers to
turn lights, televisions and sound systems on and off at different times to give your home a
“lived-in look” when you are away. Install motion-detecting outdoor floodlights around your
home or automatic announcing of visitors with a chime sound. More gadgets include garage door
openers, active badges, and radio-frequency identification (RFID) tags, to detect and track the
tenants. Also, an outside motion sensor may turn on the outdoors light even before the user
unlocks the door. We could dream up all sorts of services; for example, you may want to be able
to open the door for a pizza-deliveryman remotely, as you are watching television, by point-and-

Chapter 1 Introduction 27

click remote controls. Moreover, the system may bring up the live video on your TV set from a
surveillance camera at the doors.

Looking at the problem in a broader business context, it is unlikely that all or even the majority of
households targeted as potential customers of this system will be computer-savvy enough to
maintain the system. Hence, in the age of outsourcing, what better idea than to contract a security
company to manage all systems in a given area. This brings a whole new set of problems, because
we need to deal with potentially thousands of distributed systems, and at any moment many new
users may need to be registered or unregistered with the (centralized?) system.

There are problems maintaining a centralized database of people’s access privileges. A key
problem is having a permanent, hard-wired connection to the central computer. This sort of
network is very expensive, mainly due to the cost of human labor involved in network wiring and
maintenance. This is why, even in the most secure settings, a very tiny fraction of locks tend to be
connected. The reader should check for an interesting decentralized solution proposed by a
software company formerly known as CoreStreet (http://www.actividentity.com/). In their proposed
solution, the freshest list of access privileges spreads by “viral propagation” [Economist, 2004].

First Iteration: Home Access Control

Our initial goal is only to support the basic door unlocking and locking functions.
Although at the first sight these actions appear simple, there are difficulties with
both.

Figure 1-16 shows the locks connected by wire-lines to a central personal
computer (PC). This is not necessarily how we want to solve the problem; rather,
the PC just illustrates the problem. We need it to manage the users
(adding/removing valid users) and any other voluminous data entry, which may be
cumbersome from a lock’s keypad—using a regular computer keyboard and
monitor would be much more user friendly. The connections could be wireless,

System

Lock Photosensor Switch

Light bulb

Alarm bell

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

Central
Computer

Backyard doors:
External &

Internal lock

Front doors:
External &

Internal lock

Central
Computer

Backyard doors:
External &

Internal lock

Front doors:
External &

Internal lock

Figure 1-16: Our first case-study system provides several functions for controlling the home
access, such as door lock control, lighting control, and intrusion detection and warning.

Ivan Marsic Rutgers University

28

and moreover, the PC may not even reside in the house. In case of an apartment complex, the PC
may be located in the renting office.5

The first choice is about the user identification. Generally, a person can be identified by one of
the following:

 What you carry on you (physical key or another gadget)

 What you know (password)

 Who you are (biometric feature, such as fingerprint, voice, face, or iris)

I start with two constraints set for this specific system: (1) user should not need to carry any
gadgets for identification; and, (2) the identification mechanism should be cheap. The constraint
(1) rules out a door-mounted reader for magnetic strip ID cards or RFID tags—it imposes that the
user should either memorize the key (i.e., “password”) or we should use biometric identification
mechanism(s). The constraint (2) rules out expensive biometric identifiers, such as face
recognition (see, e.g., http://www.identix.com/ and http://passfaces.com/) or voice recognition (see,
e.g., http://www.nuance.com/prodserv/prodverifier.html). There are relatively cheap fingerprint readers
(see, e.g., http://www.biometrics-101.com/) and this is an option, but to avoid being led astray by
technology details, for now we assume that the user memorizes the key. In other words, at present
we do not check the person’s true identity (hence, no authentication)—as long as she knows a
valid key, she will be allowed to enter (i.e., validation only).

For unlocking, a difficulty is with handling the failed attempts
(Figure 1-17). The system must withstand “dictionary attacks” (i.e.,
burglars attempting to discover an identification key by systematic
trial). Yet it must allow the legitimate user to make mistakes.

For locking coupled with light controls, a difficulty is with
detecting the daylight: What with a dark and gloomy day, or if the
photo sensor ends up in a shade. We could instead use the wall-
clock time, so the light is always turned on between 7:30 P.M. and
7:30 A.M. In this case, the limits should be adjusted for the
seasons, assuming that the clock is automatically adjusted for daylight saving time shift. Note

5 This is an architectural decision (see Section 2.3 about software architecture).

tenant

key

can be prevented by enforcing
lock opened

wishes

causes

enters

valid key invalid key

can be

dictionary attack

may signal

upper bound on failed attempts

burglar launches

Figure 1-17: Concept map representing home access control.

Chapter 1 Introduction 29

also that we must specify which light should be turned on/off: the one most adjacent to the doors?
The one in the hallway? The kitchen light? … Or, all lights in the house?

Interdependency question: What if the door needs to be locked after the
tenant enters the house—should the light stay on or should different lights
turn on as the tenant moves to different rooms?

Also, what if the user is not happy with the system’s decision and does opposite of what the
system did, e.g., the user turns off the light when the system turned it on? How do these events
affect the system functioning, i.e., how to avoid that the system becomes “confused” after such an
event?

Figure 1-18 illustrates some of the difficulties in specifying exactly what the user may want from
the system. If all we care about is whether the door is unlocked or locked, identify two possible
states: “unlocked” and “locked.” The system should normally be in the “locked” state and
unlocked only in the event the user supplies a valid key. To lock, the user should press a button
labeled “Lock,” but to accommodate forgetful users, the system should lock automatically
autoLockInterval seconds after being unlocked. If the user needs the door open longer for some
reason, she may specify the holdOpenInterval. As seen, even with only two clearly identified
states, the rules for transitioning between them can become very complex.

I cannot overstate the importance of clearly stating the user’s goals. The goal state can be
articulated as unlocked AND light_on. This state is of necessity temporary, because the door
should be locked once the user enters the house and the user may choose to turn off the hallway
light and turn on the one in the kitchen, so the end state ends up being lockeded AND light_off.
Moreover, this definition of the goal state appears to be utterly incomplete.

Due to the above issues, there are difficulties with unambiguously establishing the action
preconditions. Therefore, the execution of the “algorithm” turns out to be quite complex and
eventually we have to rely only on heuristics. Although each individual activity is simple, the
combination of all is overwhelming and cannot be entirely solved even with an extremely
complex system! Big software systems have too many moving parts to conform to any set of
simple percepts. What appeared a simple problem turns out not to have an algorithmic solution,
and on the other hand we cannot guarantee that the heuristics will always work, which means that
we may end up with an unhappy customer.

Note that we only scratched the surface of what appeared a simple problem, and any of the above

bolt

locked unlockedlocked unlocked

IF validKey THEN unlock

IF pushLockButton THEN lock

IF timeAfterUnlock = max{ autoLockInterval, holdOpenInterval } THEN lock

IF validKey AND holdOpenInterval THEN unlock

Figure 1-18: System states and transition rules.

Ivan Marsic Rutgers University

30

issues can be further elaborated. The designer may be simply unable to explicitly represent or
foresee every detail of the problem. This illustrates the real problem of heuristics: at a certain
point the designer/programmer must stop discerning further details and related issues. But, of
course, this does not mean that they will not arise sooner or later and cause the program to fail.
And we have not mentioned program bugs, which are easy to sneak-in in a complex program.
Anything can happen (and often does).

1.3.2 Case Study 2: Personal Investment Assistant
“The way to make money is to buy stock at a low price, then when the price goes up, sell it.

If the price doesn’t go up, don’t buy it.” —Will Rogers

Financial speculation, ranging from straight gambling and betting to modern trading of financial
securities, has always attracted people. For many, the attraction is in what appears to be a promise
of wealth without much effort; for most, it is in the promise of a steady retirement income as well
as preserving their wealth against worldly uncertainties. Investing in company equities (stocks)
has carried the stigma of speculation through much of history. Only relatively recently stocks
have been treated as reliable investment vehicles (Figure 1-19). Nowadays, more than 50% of the
US households own stocks, either directly, or indirectly through mutual funds, retirement
accounts or other managed assets. There are over 600 securities exchanges around the world.
Many people have experience with financial securities via pension funds, which today are the
largest investor in the stock market. Quite often, these pension funds serve as the “interface” to
the financial markets for individual investors. Since early 1990s the innovations in personal
computers and the Internet made possible for the individual investor to enter the stock markets
without the help from pension funds and brokerage firms. The Internet also made it possible to do
all kinds of researches and comparisons about various companies, in a quick and cheap fashion—
an arena to which brokerage firms and institutional investors had almost exclusive access owing
to their sheer size and money-might.

Computers have, in the eyes of some, further reduced the amount of effort needed for
participation in financial markets, which will be our key motivation for our second case study:
how to increase automation of trading in financial markets for individual investors. Opportunities
for automation range from automating the mechanics of trading to analysis of how wise the
particular trades appear to be and when risky positions should be abandoned.

There are many different financial securities available to investors. Most investment advisers
would suggest hedging the risk of investment loss by maintaining a diversified investment
portfolio. In addition to stocks, the investor should buy less-risky fixed income securities such as
bonds, mutual funds, treasuries bills and notes or simply certificate of deposits. To simplify our
case study, I will ignore such prudent advice and assume that our investor wants to invest in
stocks only.

Chapter 1 Introduction 31

Why People Trade and How Financial Markets Work?

Anyone who trades does so with the expectation of making profits. People take risks to gain
rewards. Naturally, this immediately begets questions about the kind of return the investor
expects to make and the kind of risk he is willing to take. Investors enter into the market with
varied objectives. Broadly, the investor objectives could be classified into short-term-gain and
long-term-gain. The investors are also of varied types. There are institutional investors working
for pension funds or mutual funds, and then there are day-traders and hedge-fund traders who
mainly capitalize on the anomalies or the arbitrages that exist in the markets. Usually the
institutional investors have a “long” outlook while the day-traders and the hedge-funds are more
prone to have a “short” take on the market.

Here I use the terms “trader” and “investor” and synonymous. Some people use these terms to
distinguish market participants with varied objectives and investment styles. Hence, an “investor”
is a person with a long outlook, who invests in the company future by buying shares and holds
onto them expecting to profit in long term. Conversely, a “trader” is a person with a short
outlook, who has no long-term interest in the company but only looks to profit from short-term
price variations and sells the shares at first such opportunity.

As shown in Figure 1-20(a), traders cannot exchange financial securities directly among
themselves. The trader only places orders for trading with his broker and only accredited
financial brokers are allowed to execute transactions. Before the Internet brokers played a more
significant role, often provided investment advice in addition to executing transactions, and
charged significant commission fees. Nowadays, the “discount brokers” mostly provide the
transaction service at a relatively small commission fee.

people who trade

profit returns

have expectation of

short-term objectives

retirement income

are needed for

market’s performance history

are attracted by

hints at

+10% annual returns over long run

shows

negative returns 1/3 of the time

direct participation

indirect participation

can have

broker

retirement plan

is done through

pension fund

mutual fund

is done through

hedge fund

Figure 1-19: Concept map of why people trade and how they do it.

Ivan Marsic Rutgers University

32

Mechanics of Trading in Financial Markets

A market provides a forum where people always sell to the highest bidder. For a market to exist
there must be a supply and demand side. As all markets, financial markets operate on a bid-offer
basis: every stock has a quoted bid and a quoted ask (or offer). The concept map in Figure 1-21
summarizes the functioning of stock prices. The trader buys at the current ask and sells at the
current bid. The bid is always lower than the ask. The difference between the bid and the ask is
referred to as the spread. For example, assume there is a price quote of 100/105. That means the
highest price someone is willing to pay to buy is 100 (bid), and the lowest price there is selling
interest at 105 (offer or ask). Remember that there are volumes (number of shares) associated
with each of those rates as well.

Using the bid side for the sake of illustration, assume that the buyer at 100 is willing to purchase
1,000 units. If someone comes in to sell 2,000 units, he would execute the first 1,000 at 100, the
bid rate. That leaves 1,000 units still to be sold. The price the seller can get will depend on the
depth of the market. It may be that there are other willing buyers at 100, enough to cover the
reminder of the order. In an active (or liquid) market this is often the case.

Market exchange

Brokers

Traders/
Investors

BrokerTrader Exchange

Bank

(a) (b)

Figure 1-20: Structure of securities market. (a) Trading transactions can be executed only
via brokers. (b) “Block diagram” of market interactions.

selling stock bid priceis executed at

buying stock

price quote

last trade

is set by

ask priceis executed at

can be

traded price

indicative price

can be

can be

Figure 1-21: Concept map explaining how quoted stock prices are set.

Chapter 1 Introduction 33

What happens in a thin market, though? In such a situation, there may not be a willing buyer at
100. Let us assume a situation illustrated in the table below where the next best bid is by buyer
B3 at 99 for 500 units. It is followed by B4 at 98 for 100 units, B1 for 300 units at 97, and B2 for
200 at 95. The trader looking to sell those 1,000 remaining units would have to fill part of the
order at 99, more at 98, another bit at 97, and the last 100 at 95. In doing so, that one 2,000 unit
trade lowered the bid down five points (because there would be 100 units left on the bid by B2).
More than likely, the offer rate would move lower in a corresponding fashion.

Trader Seller S1 Buyer B1 Buyer B2 Buyer B3 Buyer B4
Bid

Ask
market

$97

$95

$99

$98
Num. of shares 1000 300 200 500 100

The above example is somewhat exaggerated but it illustrates the point. In markets with low
volume it is possible for one or more large transactions to have significant impact on prices. This
can happen around holidays and other vacation kinds of periods when fewer traders are active,
and it can happen in the markets that are thinly traded (lack liquidity) in the first place.

When a trader wishes to arrange a trade, he places an order, which is a request for a trade yet to
be executed. An order is an instruction to a broker/dealer to buy, sell, deliver, or receive
securities that commits the issuer of the “order” to the terms specified. An order ticket is a form
detailing the parameters of an Order instruction. Buy or sell orders differ in terms of the time
limit, price limit, discretion of the broker handling the order, and nature of the stock-ownership
position (explained below). Four types of orders are most common and frequently used:

1. Market order: An order from a trader to a broker to buy or sell a stock at the best
available price. The broker should execute the order immediately, but may wait for a
favorable price improvement. A market order to buy 10 shares of Google means buy the
stock at whatever the lowest ask (offer) price is at the time the trade is executed. The
broker could pay more (or less) than the price quoted to the trader, because in the
meantime the market may have shifted (also recall the above example). Market orders are
the quickest but not necessarily the optimal way to buy or sell a security.

2. Limit order: An order to buy or sell at a specific price, or better. The trader using a limit
order specifies the maximum buy price or the minimum sale price at which the
transaction shall be executed. That means when buying it would be at the limit price or
below, while the reverse is true for a sell order. For example, a limit order to sell 100
Google shares at 600 means the trade will be executed at or above 600. A limit order can
only be filled if the stock’s market price reaches the limit price.

3. Stop order: (also referred to as a stop-loss order) A delayed market order to buy or sell a
security when a certain price is reached or passed. A stop order is set at a point above (for
a buy) or below (for a sell) the current price. When the current price reaches or passes
through the specified level, the stop order is converted into an active market order
(defined above in item 1). For example, a sell stop at 105 would be triggered if the
market price touches or falls below 105. A buy stop order is entered at a stop price above
the current market price. Investors generally use a buy stop order to limit a loss or to
protect a profit on a stock that they have sold short. A sell stop order is entered at a stop

Ivan Marsic Rutgers University

34

price below the current market price. Investors generally use a sell stop order to limit a
loss or to protect a profit on a stock that they own.

4. Stop Limit Order: A combination of the stop and limit orders. Unlike the simple stop
order, which is converted into a market order when a certain price is reached, the stop
limit order is converted into a limit order. Hence, the trader can control the price at which
the order can be executed and will get a fill at or better than the limit order price.

For information on other, more advanced order types, the reader should search the Web. There
are two types of security-ownership positions: long and short, see Figure 1-22(a). A long position
represents actual ownership of the security regardless of whether personal funds, financial
leverage (borrowed funds), or both are used in its purchase. Profits are realized if the price of the
security increases.

(a)

long position stock price appreciation

short position stock price depreciation

profits through

profits through

owning stock

means

owning cash earned by selling borrowed stock

means

selling stock

is exited by

buying stock

is exited by

returning borrowed stock

creates

profit = salePrice – purchasePrice – commissions

profit

creates profit

profit = salePrice – purchasePrice – loanInterest – commissions

(b)

trader

broker

borrows shares from

short position

buying shares

is exited by

ask price

is executed at

selling borrowed shares

share price depreciationexpects

creates a

bid price

is
executed

at

performs

commissions

collects

interest on loan

triggers

repossessed shares yields

are returned to

sale proceeds

generates

are
held by

interest on sale proceeds

3

1
2

4

Figure 1-22: (a) Concept map of two types of stock-ownership positions: long and short.
(b) Concept map explaining how short position functions.

Chapter 1 Introduction 35

A short position involves first a sale of the stock, followed by a purchase at, it is hoped, a lower
price, Figure 1-22(b). The trader is “short” (does not own the stock) and begins by borrowing a
stock from the investment broker, who ordinarily holds a substantial number of shares and/or has
access to the desired stock from other investment brokers. The trader then sells the borrowed
stock at the market price. The short position holder owes the shares to the broker; the short
position can be covered by buying back the shares and returning the purchased shares to the
broker to settle the loan of shares. This sequence of steps is labeled by numbers in Figure 1-22(b).
The trader hopes that the stock price will drop and the difference between the sale price and the
purchase price will result in a positive profit.

One can argue that there is no such thing as a “bad market,” there is only the wrong position in
the market. If the trader believes that a particular stock will move upwards, he should establish a
long position. Conversely, if he believes that the stock will slide, he should establish a short
position6. The trader can also hedge his bets by holding simultaneously both long and short
positions on the same stock.

Computerized Support for Individual Investor Trading

We need to consider several choices and constraints for the system-to-be. First, we need to decide
whether the system-to-be will provide brokerage services, or will just provide trading advice.
Online brokerage firms already offer front-end systems for traders, so it will be difficult to insert
our system-to-be between a trader and a broker. Offering our system-to-be as tool for on-a-side
analysis (out of the trading loop) would have limited appeal. The other option is to include
brokerage services, which will introduce significant complexity into the system. An important
constraint on applicability of our system is that real-time price quotations currently are not
available for free. We choose to consider both options in this book. The first five chapters will
consider a case study of a system that includes a trader/broker services. Chapter 8 on Web
services will consider stock analyst services. Both versions are described in Section 1.5.

Knowing how to place a trading order does not qualify one as a trader. It would be equivalent of
saying that one knows how to drive a car just after learning how to use the steering wheel or the
brake. There is much more to driving a car than just using the steering wheel or the brake.
Similarly, there is much more to trading than just executing trades. To continue with the analogy,
we need to have a “road map,” a “travel plan,” and we also need to know how to read the “road
signs,” and so on.

In general, the trader would care to know if a trading opportunity arose and, once he places a
trading order, to track the status of the order. The help of computer technology has always been
sought by traders for number crunching and scenario analysis. The basic desire is to be able to tell
the future based on the knowledge of the past. Some financial economists view price movements
on stock markets as a purely “random walk,” and believe that the past prices cannot tell us
anything useful about future behavior of the price. Others, citing chaos theory, believe that useful

6 This is the idea of the so called inverse funds, see more here: B. Steverman: “Shorting for the 21st century:

Inverse funds allow investors to place bets on predictions of a drop in stocks,” Business Week, no. 4065,
p. 78, December 31, 2007.

Ivan Marsic Rutgers University

36

regularities can be observed and exploited. Chaos theory states that seemingly random processes
may in fact have been generated by a deterministic function that is not random [Bao, et al., 2004].

Bao, Yukun, Yansheng Lu, Jinlong Zhang. “Forecasting stock prices by SVMs regression,”
Artificial Intelligence: Methodology, Systems, and Applications, vol. 3192, 2004.

A simple approach is to observe prices pricei(t) of a given stock i over a window of time tcurrent
Window, …, tcurrent 2, tcurrent 1, tcurrent. We could fit a regression line through the observed
points and devise a rule that a positive line slope represents a buying opportunity, negative slope
a need to sell, and zero slope calls for no action. Obviously, it is not most profitable to buy when
the stock already is gaining nor it is to sell when the stock is already sliding. The worst-case
scenario is to buy at a market top or to sell when markets hit bottom. Ideally, we would like to
detect the turning points and buy when the price is just about to start rising or sell when the price
is just about to start falling. Detecting an ongoing trend is relatively easy; detecting an imminent
onset of a new trend is difficult but most desirable.

Symmetrical

Triangles

Ascending Descending

“Wedge”

50

45

40

35

50

45

40

35

“Flag”

30

25

20

15

30

25

20

15

“Pennant”

30

25

20

15

30

25

20

15

50

45

40

35

?
50

45

40

35

?
50

45

40

35

?

50

45

40

35

?

70

65

60

55 ?

70

65

60

55 ?

M
ajo

r t
re

nd

Neckline

Left
shoulder

Head Right
shoulder

Head and Shoulders Top

M
ajo

r t
re

nd

Neckline

Left
shoulder

Head Right
shoulder

Head and Shoulders Top

Major trend

Neckline

Left
shoulder

Head

Right
shoulder

Head and Shoulders Bottom

Major trend

Neckline

Left
shoulder

Head

Right
shoulder

Head and Shoulders Bottom
Trading
volume

Figure 1-23: Technical analysis of stock price trends: Some example types of trend patterns.
In all charts the horizontal axis represents time and the vertical axis stock price range. Each
vertical bar portrays the high and low prices of a particular stock for a chosen time unit.
Source: Alan R. Shaw, “Market timing and technical analysis,” in Sumner N. Levine
(Editor), The Financial Analyst’s Handbook, Second Edition, pp. 312-372, Dow Jones-Irwin,
Inc., Homewood, IL, 1988.

Chapter 1 Introduction 37

This is where technical analysis comes into picture. Technical analysts believe that market prices
exhibit identifiable regularities (or patterns or indicators) that are bound to be repeated. Using
technical analysis, various trends could be “unearthed” from the historical prices of a particular
stock and potentially those could be “projected into future” to have some estimation around
where that stock price is heading. Technical analysts believe that graphs give them the ability to
form an opinion about any security without following it in real time. They have come up with
many types of indicators that can be observed in stock-price time series and various
interpretations of the meaning of those indicators. Some chart formations are shown in Figure
1-23. For example, the triangles and flags represent consolidations or corrective moves in market
trends. A flag is a well-defined movement contrary to the main trend. The head-and-shoulder
formations are used as indicators of trend reversals and can be either top or bottom. In the
“bottom” case, for example, a major market low is flanked on both sides (shoulders) by two
higher lows. Cutting across the shoulders is some resistance level called the neckline. (Resistance
represents price levels beyond which the market has failed to advance.) It is important to observe
the trading volume to confirm the price movements. The increasing volume, as you progress
through the pattern from left to right, tells you that more and more traders see the shifting
improvement in the company’s fortunes. A “breakout” (a price advance) in this situation signals
the end of a downtrend and a new direction in the price trend. Technical analysts usually provide
behavioral explanations for the price action and formation of trends and patterns.

However, one may wonder if just looking at a sequence of price numbers can tell us everything
we need to know about the viability of an investment?! Should we not look for actual causes of
price movements? Is the company in bad financial shape? Unable to keep up with competition?
Or, is it growing rapidly? There is ample material available to the investor, both, in electronic and
in print media, for doing a sound research before making the investment decision. This kind of
research is called fundamental analysis, which includes analysis of important characteristics of
the company under review, such as:

1. Market share: What is the market standing of the company under review? How much share of
the market does it hold? How does that compare against the competitors?

2. Innovations: How is the company fairing in terms of innovations? For example in 3M company
no less than 25% of the revenues come from the innovative products of last 5 years. There is even
an index for innovations available for review and comparison (8th Jan’2007 issue of Business
Week could be referred to).

3. Productivity: This relates the input of all the major factors of production – money, materials
and people to the (inflation adjusted) value of total output of goods and services from the outside

4. Liquidity and Cash-flow: A company can run without profits for long years provided it has
enough cash flows, but hardly the reverse is true. A company, if it has a profitable unit, but not
enough cash flows, ends of “putting that on sale” or “spinning that unit out.”

In addition to the above indicators, number crunching is also a useful way to fine-tune the
decision. Various financial numbers are readily available online, such as

- Sales

- EPS: Earning per Share

- P/E – ttm: Trailing 12 months’ ratio of Price per Share to that of Earning per Share

Ivan Marsic Rutgers University

38

- P/E – forward: Ratio of Estimated Price per Share for coming 12 months to that of Estimated
Earning of coming 12 months

- ROI: Return on Investment

The key barometer of stock market volatility is the Chicago Board Options Exchange's Volatility
Index, or VIX, which measures the fluctuations of options contracts based on the S&P 100-stock
index.

In fact, one could argue that the single most important decision an investor can make is to get out
of the way of a collapsing market7.

Where the investor is usually found to be handicapped is when she enters into the market with the
objective of short term gains. The stock market, with its inherent volatility offers ample
opportunities to exploit that volatility but what the investor lacks is an appropriate tool to assist in
this “decision-making” process.

The investor would ideally like to “enter” the market after it is open and would “exit” the market
before it is closed, by the end of that day. The investor would seek a particular stock, the price of
which she is convinced would rise by the end of the day, would buy it at a “lower” price and
would sell it at a higher price. If she gets inkling, somehow, that a particular stock is going to go
up, it will be far easier for her to invest in that stock. Usually time is of essence here and this is
where technical analysis comes into picture.

Again, we must clearly state what the user needs: the user’s goals. It is not very helpful to state
that the user’s goal is “to make money.” We must be as specific as possible, which can be
achieved by keeping asking questions “How?” An example of goal refinement is shown in Figure
1-24. Note that in answering how to identify a trading opportunity, we also need to know whether
our trader has a short-term or long-term outlook to investment. In addition, different trader types
may compose differently the same sub-goals (low-level goals) into high-level goals. For example,
the long-term investor would primarily consider the company’s prospects (G1.2.1), but may
employ time-series indicators (G1.2.2) to decide the timing of their investments. Just because one

7 Michael Mandel, “Bubble, bubble, who’s in trouble?” Business Week, p. 34, June 26, 2006.

Question: How?

Possible answers:

Question: How?

Possible answers:

Trader’s goal G1: To profit from investment

Trader’s goal G1.1: To identify trading opportunity

Trader’s goal G1.2: To ensure timely & reliable transaction

Trader’s goal G1.3: To track order status

Long-term investor’s goal G1.2.1: To identify growth/value stock

Short-term trader’s goal G1.2.2: To identify arbitrage opportunity (“indicators” in time series)

Figure 1-24: Example of refining the representation of user’s goals.

Chapter 1 Introduction 39

anticipates that an investment will be held for several years because of its underlying
fundamentals, that does not mean that he should overlook the opportunity for buying at a lower
price (near the bottom of an uptrend).

It is important to understand the larger context of the problem that we are trying to solve. There
are already many people who are trying to forecast financial markets. Companies and
governments spend vast quantities of resources attempting to predict financial markets. We have
to be realistic of what we can achieve with relatively minuscule resources and time period of one
academic semester.

From the universe of possible market data, we have access only to a subset, which is both due to
economic (real-time data are available with paid subscription only) and computational (gathering
and processing large data quantities requires great computing power) reasons. Assuming we will
use freely available data and a modest computing power, the resulting data subset is suitable only
for certain purposes. By implication, this limits our target customer and what he can do with the
software-to-be.

In conclusion, our planned tool is not for a “professional trader.” This tool is not for institutional
investor or large brokerage/financial firm. This tool is for an ordinary single investor who does
not have acumen of financial concepts, yet would like to trade smartly. This tool is for an investor
who does not have too much time to do a thorough research on all aspects of a particular
company, neither does he have understanding and mastery over financial number crunching. It is
unlikely to be used for “frequency trading,” because we lack computing power and domain
knowledge needed for such sophisticated uses.

1.4 The Object Model

“You cannot teach beginners top-down programming, because they don’t know which end is up.”
—C.A.R. Hoare

An object is a software packaging of data and code together into a unit within a running
computer program. Objects can interact by calling other objects for their services. In Figure 1-25,
object Stu calls the object Elmer to find out if 905 and 1988 are coprimes. Two integers are
said to be coprime or relatively prime if they have no common factor other than 1 or,
equivalently, if their greatest common divisor is 1. Elmer performs computation and answers
positively. Objects do not accept arbitrary calls. Instead, acceptable calls are defined as a set of
object “methods.” This fact is indicated by the method areCoprimes() in Figure 1-25. A
method is a function (also known as operation, procedure, or subroutine) associated with an
object so that other objects can call on its services. Every software object supports a limited
number of methods. Example methods for an ATM machine object are illustrated in Figure 1-26.
The set of methods along with the exact format for calling each method (known as the method
“signature”) represents the object’s interface (Figure 1-27). The interface specifies object’s
behavior—what kind of calls it accepts and what it does in response to each call.

Ivan Marsic Rutgers University

40

Software objects work together to carry out the tasks required by the program’s business logic. In
object-oriented terminology, objects communicate with each other by sending messages. In the
world of software objects, when an object A calls a method on an object B we say, “A sends a
message to B.” In other words, a client object requests the execution of a method from a server
object by sending it a message. The message is matched up with a method defined by the
software class to which the receiving object belongs. Objects can alternate between a client role
and a server role. An object is in a client role when it is the originator of an object invocation, no
matter whether the objects are located in the same memory space or on different computers. Most
objects play both client and server roles.

In addition to methods, software objects have attributes or properties. An attribute is an item of
data named by an identifier that represents some information about the object. For example, a
person’s attribute is the age, or height, or weight. The attributes contain the information that
differentiates between the various objects. The currently assigned values for object attributes
describe the object’s internal state or its current condition of existence. Everything that a
software object knows (state) and can do (behavior) is expressed by the attributes and the
methods within that object. A class is a collection of objects that share the same set of attributes
and methods (i.e., the interface). Think of a class as a template or blueprint from which objects
are made. When an instance object is created, we say that the objects are instantiated. Each
instance object has a distinct identity and its own copy of attributes and methods. Because objects
are created from classes, you must design a class and write its program code before you can
create an object.

Objects also have special methods called constructors, which are called at the creation of an
object to “construct” the values of object’s data members (attributes). A constructor prepares the
new object for use, often accepting parameters which the constructor uses to set the attributes.
Unlike other methods, a constructor never has a return value. A constructor should put an object
in its initial, valid, safe state, by initializing the attributes with meaningful values. Calling a
constructor is different from calling other methods because the caller needs to know what values
are appropriate to pass as parameters for initialization.

ElmerStu

elmer .areCoprimes(
905, 1988

)

Prime factorization:

905 = 5 181

1988 = 2 2 7 71

Result:
YES!

Figure 1-25: Client object sends a message to a server object by invoking a method on it.
Server object is the method receiver.

Chapter 1 Introduction 41

1
2
3
4

5
6
7
8

1
2
3
4
5

1
2
3
4

5
6
7
8

1
2
3
4
5

method-1:
Accept card method-2:

Read code

method-3:
Take selection

1
2 34

5 67 8
90

1
2 34

5 67 8
90

1
2 34

5 67 8
90

Object:
ATM machine

1
2

3
4

5
6

7
8

90

1
2

3
4

5
6

7
8

90

1
2

3
4

5
6

7
8

90

Figure 1-26: Acceptable calls are defined by object “methods,” as shown here by example
methods for an ATM machine object.

method-1

method-2

method-3

attributes

Interface

Figure 1-27: Software object interface is a set of object’s methods with the format for
calling each method.

Ivan Marsic Rutgers University

42

Traditional approach to program development, known as procedural approach, is process
oriented in that the solution is represented as a sequence of steps to be followed when the
program is executed. The processor receives certain input data and first does this, then that, and
so on, until the result is outputted. The object-oriented approach starts by breaking up the whole
program into software objects with specialized roles and creating a division of labor. Object-
oriented programming then, is describing what messages get exchanged between the objects in
the system. This contrast is illustrated on the safe home access system case study (Section 1.3.1).

Example 1.1 Procedural approach versus Object-oriented approach

The process-based or procedural approach represents solution as a sequence of steps to be followed
when the program is executed, Figure 1-28(a). It is a global view of the problem as seen by the single
agent advancing in a stepwise fashion towards the solution. The step-by-step approach is easier to
understand when the whole problem is relatively simple and there are few alternative choices along the
path. The problem with this approach is when the number of steps and alternatives becomes
overwhelming.

Object-oriented (OO) approach adopts a local view of the problem. Each object specializes only in a
relatively small subproblem and performs its task upon receiving a message from another object,
Figure 1-28(b). Unlike a single agent travelling over the entire process, we can think of OO approach
as organizing many tiny agents into a “bucket brigade,” each carrying its task when called upon, Figure
1-28(c). When an object completes its task, it sends a message to another object saying “that does it for
me; over to you—here’s what I did; now it’s your turn!” Here are pseudo-Java code snippets for two
objects, KeyChecker and LockCtrl:

Listing 1-1: Object-oriented code for classes KeyChecker (left) and LockCtrl (right).
public class KeyChecker {
 protected LockCtrl lock_;
 protected java.util.Hashtable
 validKeys_;
 ...

 /** Constructor */
 public KeyChecker(
 LockCtrl lc, ...) {
 lock_ = lc;
 ...
 }

 /** This method waits for and
 * validates the user-supplied key
 */
 public keyEntered(
 String key
) {
 if (
 validKeys.containsKey(key)
) {
 lock_.unlock(id);
 }
 } else {
 // deny access
 // & sound alarm bell?
 }

public class LockCtrl {
 protected boolean
 locked_ = true; // start locked
 protected LightCtrl switch_;
 ...

 /** Constructor */
 public LockCtrl(
 LightCtrl sw, ...) {
 switch_ = sw;
 ...
 }

 /** This method sets the lock state
 * and hands over control to the switch
 */
 public unlock() {
 ... operate the physical lock device
 locked_ = false;
 switch_.turnOn();
 }

 public lock(boolean light) {
 ... operate the physical lock device
 locked_ = true;
 if (light) {
 switch_.turnOff();
 }

Chapter 1 Introduction 43

 }
}

 }
}

Two important observations:

Object roles/responsibilities are focused (each object is focused on one task, as its name says); later,
we will see that there are more responsibilities, like calling other objects

Object’s level of abstraction must be carefully chosen: here, we chose key checker and its method
keyEntered(), instead of specifying the method of key entry (type in code vs. acquire biometric
identifier), and LockCtrl does not specify how exactly the lock device functions. Too low level
specifies such details (which could be specified in a derived class), or too high abstraction level just
says control-the-access().

The key developer skill in object-oriented software development is performing the division of labor for
software objects. Preferably, each object should have only one clearly defined task (or, responsibility)
and that is relatively easy to achieve. The main difficulty in assigning responsibilities arises when an
object needs to communicate with other objects in accomplishing a task.

When something goes wrong, you want to know where to look or whom to single out. This is
particularly important for a complex system, with many functions and interactions. Object-oriented
approach is helpful because the responsibilities tend to be known. However, the responsibilities must
be assigned adequately in the first place. That is why assigning responsibilities to software objects is
probably the most important skill in software development. Some responsibilities are obvious. For
example, in Figure 1-28 it is natural to assign the control of the light switch to the LightCtrl object.

However, assigning the responsibility of communicating messages is harder. For example, who should
send the message to the LightCtrl object to turn the switch on? In Figure 1-28, LockCtrl is charged
with this responsibility. Another logical choice is KeyChecker, perhaps even more suitable, because it
is the KeyChecker who ascertains the validity of a key and knows whether or not unlocking and
lighting actions should be initiated. More details about assigning responsibilities are presented in
Section 2.6.

The concept of objects allows us to divide software into smaller pieces to make it manageable.
The divide-and-conquer approach goes under different names: reductionism, modularity, and
structuralism. The “object orientation” is along the lines of the reductionism paradigm: “the

(b) Key
Checker

Key
Checker

Lock
Ctrl

Lock
Ctrl

Light
Ctrl

Light
Ctrl

unlock() turnOn()

Unlock the
lock

Yes

No

Turn the
light on

Valid
key
?

(a)

Key
Checker

Key
Checker

Lock
Ctrl

Lock
Ctrl

Light
Ctrl

Light
Ctrl

unlock() turnOn()

(c)

Figure 1-28: Comparison of process-oriented (procedural) and object-oriented methods on
the safe home access case study. (a) A flowchart for a procedural solution; (b) An object-
oriented solution. (c) An object can be thought of as a person with expertise and
responsibilities.

Ivan Marsic Rutgers University

44

tendency to or principle of analysing complex things into simple constituents; the view that a
system can be fully understood in terms of its isolated parts, or an idea in terms of simple
concepts” [Concise Oxford Dictionary, 8th Ed., 1991]. If your car does not work, the mechanic
looks for a problem in one of the parts—a dead battery, a broken fan belt, or a damaged fuel
pump. A design is modular when each activity of the system is performed by exactly one unit,
and when inputs and outputs of each unit are well defined. Reductionism is the idea that the best
way to understand any complicated thing is to investigate the nature and workings of each of its
parts. This approach is how humans solve problems, and it comprises the very basis of science.

SIDEBAR 1.1: Object Orientation

 Object orientation is a worldview that emerged in response to real-world problems faced by
software developers. Although it has had many successes and is achieving wide adoption, as
with any other worldview, you may question its soundness in the changing landscape of
software development. OO stipulates that data and processing be packaged together, data being
encapsulated and unreachable for external manipulation other than through object’s methods. It
may be likened to disposable cameras where film roll (data) is encapsulated within the camera
mechanics (processing), or early digital gadgets with a built-in memory. People have not really
liked this model, and most devices now come with a replaceable memory card. This would
speak against the data hiding and for separation of data and processing. As we will see in
Chapter 8, web services are challenging the object-oriented worldview in this sense.

There are three important aspects of object orientation that will be covered next:

 Controlling access to object elements, known as encapsulation

 Object responsibilities and relationships

 Reuse and extension by inheritance and composition

1.4.1 Controlling Access to Object Elements

Modular software design provides means for breaking software into meaningful components,
Figure 1-29. However, modules are only loose groupings of subprograms and data. Because there
is no strict ownership of data, subprograms can infringe on each other’s data and make it difficult
to track who did what and when. Object oriented approach goes a step further by emphasizing
state encapsulation, which means hiding the object state, so that it can be observed or modified
only via object’s methods. This approach enables better control over interactions among the
modules of an application. Traditional software modules, unlike software objects, are more
“porous;” encapsulation helps prevent “leaking” of the object state and responsibilities.

In object-orientation, object data are more than just program data—they are object’s attributes,
representing its individual characteristics or properties. When we design a class, we decide what
internal state it has and how that state is to appear on the outside (to other objects). The internal
state is held in the attributes, also known as class instance variables. UML notation for software
class is shown in Figure 1-30. Many programming languages allow making the internal state
directly accessible through a variable manipulation, which is a bad practice. Instead, the access to
object’s data should be controlled. The external state should be exposed through method calls,

Chapter 1 Introduction 45

called getters and setters, to get or set the instance variables. Getters and setters are sometimes
called accessor and mutator methods, respectively. For example, for the class LightController in
Figure 1-31 the getter and setter methods for the attribute lightIntensity are
getLightIntensity() and setLightIntensity(), respectively. Getter and setter
methods are considered part of object’s interface. In this way, the interface exposes object’s
behavior, as well as its attributes via getters and setters.

Access to object attributes and methods is controlled using access designations, also known as
visibility of attributes and methods. When an object attribute or method is defined as public,
other objects can directly access it. When an attribute or method is defined as private, only
that specific object can access it (not even the descendant objects that inherit from this class).
Another access modifier, protected, allows access by related objects, as described in the next
section. The UML symbols for access designations in class diagrams are as follows (Figure 1-30):
+ for public, global visibility; # for protected visibility; and, − for private within-the-
class-only visibility.

We separate object design into three parts: its public interface, the terms and conditions of use
(contracts), and the private details of how it conducts its business (known as implementation).

The services presented to a client object comprise the interface. The interface is the fundamental
means of communication between objects. Any behavior that an object provides must be invoked
by a message sent using one of the provided interface methods. The interface should precisely
describe how client objects of the class interact with the class. Only the methods that are
designated as public comprise the class interface (“+” symbol in UML class diagrams). For
example, in Figure 1-31 the class HouseholdDeviceController has three public methods that
constitute its interface. The private method sendCommandToUSBport() is not part of the

Methods
(behavior) Attributes

/data
(state)

Software Object 1

Subprograms
(behavior)

Data
(state)

Software Module 2 Software Module 3Software Module 1

Software Object 2 Software Object 3

(a)

(b)

Figure 1-29: Software modules (a) vs. software objects (b).

Ivan Marsic Rutgers University

46

interface. Note that interfaces do not normally include attributes—only methods. If a client needs
to access an attribute, it should use the getter and setter methods.

Encapsulation is fundamental to object orientation. Encapsulation is the process of packaging
your program, dividing its classes into the public interface and the private implementation. The
basic question is, what in a class (which elements) should be exposed and what should be hidden.
This question pertains equally to attributes and behavior. (Recall that attributes should never be
exposed directly, but instead by using getter and setter methods.) Encapsulation hides everything
that is not necessary for other classes to know about. By localizing attributes and behaviors and
preventing logically unconnected functions from manipulating object elements, we ensure that a
change in a class will not cause a rippling effect around the system. This property makes for
easier maintaining, testing, and extending the classes.

Object orientation continues with the black-box approach of focusing on interface. In Section
1.2.2, the whole system was considered as a black box, and here we focus on the micro-level of
individual objects. When specifying an interface, we are only interested in what an object does,
not how it does it. The “how” part is considered in implementation. Class implementation is the
program code that specifies how the class conducts its business, i.e., performs the computation.
Normally, the client object does not care how the computation is performed as long as it produces
the correct answer. Thus, the implementation can change and it will not affect the client’s code.
For example, in Figure 1-25, object Stu does not care that the object Elmer answers if numbers
are coprimes. Instead, it may use any other object that provides the method areCoprimes() as
part of its interface.

Any MathematicianStu

anymathematician .areCoprimes(
905, 1988

)

[some correct

computation]

Result:
YES!

ClassName

– attribute_1 : int
– attribute_2 : boolean
attribute_3 : String

+ operation_1() : void
+ operation_2() : String
operation_3(arg1 : int)

Three compartments:

1. Classifier name

2. Attributes

3. Operations

private attributesprivate attributes

protected attributeprotected attribute

public operationspublic operations

protected operationprotected operation

Figure 1-30: UML notation for software class.

Chapter 1 Introduction 47

Contracts can specify different terms and conditions of object. Contract may apply at design time
or at run time. Programming languages such as Java and C# have two language constructs for
specifying design-time contracts.

Run time contracts specify the conditions under which an object methods can be called upon
(conditions-of-use guarantees), and what outcome methods achieve when they are finished
(aftereffect guarantees).

It must be stressed that the interchangeable objects must be identical in every way—as far as the
client object’s perceptions go.

1.4.2 Object Responsibilities and Relationships

The key characteristic of object-orientation is the concept of responsibility that an object has
towards other objects. Careful assignment of responsibilities to objects makes possible the
division of labor, so that each object is focused on its specialty. Other characteristics of object
orientation, such as polymorphism, encapsulation, etc., are characteristics local to the object
itself. Responsibilities characterize the whole system design. To understand how, you need to read
Chapters 2, 4, and 5. Because objects work together, as with any organization you would expect
that the entities have defined roles and responsibilities. The process of determining what the
object should know (state) and what it should do (behavior) is known as assigning the
responsibilities. What are object’s responsibilities? The key object responsibilities are:

1. Knowing something (memorization of data or object attributes)

2. Doing something on its own (computation programmed in a “method”)

3. Calling methods of other objects (communication by sending messages)

We will additionally distinguish a special type of doing/computation responsibilities:

2.a) Business rules for implementing business policies and procedures

Business rules are important to distinguish because, unlike algorithms for data processing and
calculating functions, they require knowledge of customer’s business context and they often
change. We will also distinguish communication responsibilities:

3.a) Calling constructor methods; this is special because the caller must know the
appropriate parameters for initialization of the new object.

Assigning responsibilities essentially means deciding what methods an object gets and who
invokes those methods. Large part of this book deals with assigning object responsibilities,
particularly Section 2.6 and Chapter 5.

The basic types of class relationships are inheritance, where a class inherits elements of a base
class, and composition, where a class contains a reference to another class. These relationships
can be further refined as:

 Is-a relationship (hollow triangle symbol ∆ in UML diagrams): A class “inherits” from
another class, known as base class, or parent class, or superclass

 Has-a relationship: A class “contains” another class

Base ClassBase Class

ContainerContainer

Ivan Marsic Rutgers University

48

- Composition relationship (filled diamond symbol ♦ in UML diagrams): The
contained item is an integral part of the containing item, such as a leg in a desk

- Aggregation relationship (hollow diamond symbol ◊): The contained item is an
element of a collection but it can also exist on its own, such as a desk in an office

 Uses-a relationship (arrow symbol ↓ in UML diagrams): A class “uses” another class

 Creates relationship: A class “creates” another class (calls a constructor method)

Has-a and Uses-a relationships can be seen as types of composition.

1.4.3 Reuse and Extension by Inheritance and
Composition

One of the most powerful characteristics of object-orientation is code reuse. Procedural
programming provides code reuse to a certain degree—you can write a procedure and then reuse
it many times. However, object-oriented programming goes an important step further, allowing
you to define relationships between classes that facilitate not only code reuse, but also better
overall design, by organizing classes and factoring in commonalities of various classes.

Two important types of relationships in the object model enable reuse and extension: inheritance
and composition. Inheritance relations are static—they are defined at the compile time and cannot
change for the object’s lifetime. Composition is dynamic, it is defined at run time, during the
participating objects’ lifetimes, and it can change.

When a message is sent to an object, the object must have a method defined to respond to that
message. The object may have its own method defined as part of its interface, or it may inherit a
method from its parent class. In an inheritance hierarchy, all subclasses inherit the interfaces from
their superclass. However, because each subclass is a separate entity, each might require a
separate response to the same message. For example, in Figure 1-31 subclasses Lock Controller
and Light Controller inherit the three public methods that constitute the interface of the superclass
Household Device Controller. The private method is private to the superclass and not available to
the derived subclasses. Light Controller overrides the method activate() that it inherits from
its superclass, because it needs to adjust the light intensity after turning on the light. The method
deactivate() is adopted unmodified. On the other hand, Lock Controller overrides both
methods activate() and deactivate() because it requires additional behavior. For
example, in addition to disarming the lock, Lock Controller’s method deactivate() needs to
start the timer that counts down how long time the lock has remained unlocked, so it can be
automatically locked. The method activate() needs to clear the timer, in addition to arming
the lock. This property that the same method behaves differently on different subclasses of the
same class is called polymorphism.

Inheritance applies if several objects have some responsibilities in common. The key idea is to
place the generic algorithms in a base class and inherit them into different detailed contexts of
derived classes. With inheritance, we can program by difference. Inheritance is a strong
relationship, in that the derivatives are inextricably bound to their base classes. Methods from the
base class can be used only in its own hierarchy and cannot be reused in other hierarchies.

Chapter 1 Introduction 49

1.5 Student Team Projects

“Knowledge must come through action; you can have no test which is not fanciful, save by trial.”
—Sophocles

“I have been impressed with the urgency of doing. Knowing is not enough; we must apply.
Being willing is not enough; we must do.” —Leonardo da Vinci

The book website, given in Preface, describes several student team projects. These projects are
selected so each can be accomplished by a team of undergraduate students in the course of one
semester. At the same time, the basic version can be extended so to be suitable for graduate
courses in software engineering and some of the projects can be extended even to graduate theses.
Here I describe only two projects and more projects along with additional information about the
projects described here is available at the book’s website, given in Preface.

Each project requires the student to learn one or more technologies specific for that project. In
addition, all student teams should obtain a UML diagramming tool.

1.5.1 Stock Market Investment Fantasy League

This project is fashioned after major sports fantasy leagues, but in the stock investment domain.
You are to build a website which will allow investor players to make virtual investments in real-
world stocks using fantasy money. The system and its context are illustrated in Figure 1-32. Each

LightController

– lightIntensity : int

+ activate()
+ getLightIntensity(value : int)
+ setLightIntensity() : int

LightController

– lightIntensity : int

+ activate()
+ getLightIntensity(value : int)
+ setLightIntensity() : int

Inheritance
relationship:
Base class
is extended
by two classes

LockController

– autoLockInterval : long

+ activate()
+ deactivate()
– startAutolockTimer()
– performAutoLock() : boolean

LockController

– autoLockInterval : long

+ activate()
+ deactivate()
– startAutolockTimer()
– performAutoLock() : boolean

HouseholdDeviceController

– deviceStatus : boolean

+ activate()
+ deactivate()
+ isActivated() : boolean
– sendCommandToUSBport(cmd : string)

HouseholdDeviceController

– deviceStatus : boolean

+ activate()
+ deactivate()
+ isActivated() : boolean
– sendCommandToUSBport(cmd : string)

Figure 1-31: Example of object inheritance.

Ivan Marsic Rutgers University

50

player has a personal account with fantasy money in it. Initially, the player is given a fixed
amount of startup funds. The player uses these funds to virtually buy the stocks. The system then
tracks the actual stock movement on real-world exchanges and periodically adjusts the value of
players’ investments. The actual stock prices are retrieved from a third-party source, such as
Yahoo! Finance, that monitors stock exchanges and maintains up-to-date stock prices. Given a
stock in a player’s portfolio, if the corresponding actual stock loses value on a real-world stock
exchange, the player’s virtual investment loses value equally. Likewise, if the corresponding
actual stock gains value, the player’s virtual investment grows in the same way.

The player can sell the existing stocks or buy new ones at any time. This system does not provide
any investment advice. When player sells a stock, his/her account is credited with fantasy money
in the amount that corresponds to the current stock price on a stock exchange. A small
commission fee is charged on all trading transactions (deducted from the player’s account).

Your business model calls for advertisement revenues to support financially your website.
Advertisers who wish to display their products on your website can sign-up at any time and create
their account. They can upload/cancel advertisements, check balance due, and make payments
(via a third party, e.g., a credit card company or PayPal.com). Every time a player navigates to a
new window (within this website), the system randomly selects an advertisement and displays the
advertisement banner in the window. At the same time, a small advertisement fee is charged on
the advertiser’s account. A more ambitious version of the system would fetch an advertisement
dynamically from the advertiser’s website, just prior to displaying it.

To motivate the players, we consider two mechanisms. One is to remunerate the best players, to
increase the incentive to win. For example, once a month you will award 10 % of advertisement
profits to the player of the month. The remuneration is conducted via a third party, such as
PayPal.com. In addition, the system may support learning by analyzing successful traders and
extracting information about their trading strategies. The simplest service may be in the form
stock buying recommendations: “players who bought this stock also bought these five others.”
More complex strategy analysis may be devised.

Stock Market Investment Fantasy League System

Players
System
admin

(e.g., Google/Yahoo! Finance)(e.g., PayPal)

Web
clients

Servers
and data
storage

Stock
reporting
website

Payment
system

Real-world
stock

exchanges

Advertisers

Figure 1-32: Stock market fantasy league system and the context within which it operates.

Chapter 1 Introduction 51

Statement of Requirements

Figure 1-33 shows logical grouping of functions requested from our system-to-be.

Player portfolio consists of positions—individual stocks owned by the player. Each position
should include company name, ticker symbol, the number of shares owned by this player, and
date and price when purchased. Player should be able to specify stocks to be tracked without
owning any of those stocks. Player should also be able to specify buy- and sell thresholds for
various stocks; the system should alert (via email) the player if the current price exceeds any of
these thresholds.

Stock prices should be retrieved periodically to valuate the portfolios and at the moment when the
user wishes to trade. Because price retrieval can be highly resource demanding, the developer
should consider smart strategies for retrieval. For example, cache management strategies could be
employed to prioritize the stocks based on the number of players that own it, the total number of
shares owned, etc.

Additional Information

I would strongly encourage the reader to look at Section 1.3.2 for an overview of financial
investment. Additional information about this project can be found at the book website, given in
Preface.

http://finance.yahoo.com/

Web Client for Advertisers

• Account management
• Banner uploading and removal
• Banner placement selection

Web Client for Players

• Registration
• Account/Portfolio management
• Trading execution & history
• Stock browsing/searching
• Viewing market prices & history

System Administration
Functions

• User management
• Selection of players for awards
• Dashboard for monitoring

the league activities

Player Management

• Account balance
• Trading support
• Transactions archiving
• Portfolio valuation
• Periodic reporting (email)

Advertiser Management

• Account balance
• Uploading new banners
• Banner placement selection

Real-World Market
Observation & Analysis

• Retrieval of stock prices
- On-demand vs. periodic

• Analysis
- Technical & fundamental

• ?

User Functions

Backend Operations

League Management

• Player ranking
• Awards disbursement control
• Trading performance analysis
• Coaching of underperformers

Figure 1-33: Logical grouping of required functions for Stock Market Fantasy League.

Ivan Marsic Rutgers University

52

http://www.marketwatch.com/

See also Problem 2.29 and Problem 2.32 at the end of Chapter 2, the solutions of which can be
found at the back of the text.

1.5.2 Web-based Stock Forecasters
“Business prophets tell what is going to happen, business profits tell what has happened.” —Anonymous

There are many tools available to investors but none of them removes entirely the element of
chance from investment decisions. Large trading organizations can employ sophisticated
computer systems and armies of analysts. Our goal is to help the individual investor make better
investment decisions. Our system will use the Delphi method,8 which is a systematic interactive
forecasting method for obtaining consensus expectation from a panel of independent experts.

The goal of this project is to have multiple student teams implement Web services (Chapter 8) for
stock-prediction. Each Web service (WS) will track different stocks and, when queried, issue a
forecast about the price movement for a given stock. The client module acts as a “facilitator”
which gathers information from multiple Web services (“independent experts”) and combines
their answers into a single recommendation. If different Web services offer conflicting answers,
the client may repeat the process of querying and combining the answers until it converges
towards the “correct” answer.

There are three aspects of this project that we need to decide on:

 What kind of information should be considered by each forecaster? (e.g., stock prices, trading
volumes, fundamental indicators, general economic indicators, latest news, etc. Stock prices
and trading volumes are fast-changing so must be sampled frequently and the fundamental
and general-economy indicators are slow-moving so could be sampled at a low frequency.)

 Who is the target customer? Organization or individual, their time horizon (day trader vs. long-
term investor)

 How the application will be architected? The user will run a client program which will poll the
WS-forecasters and present their predictions. Should the client be entirely Web-based vs.
locally-run application? A Web-based application would be downloaded over the Web every
time the user runs the client; it could be developed using AJAX or a similar technology.

As a start, here are some suggested answers:

 Our target customers are individuals who are trading moderately frequently (up to several times
per week), but not very frequently (several times per day).

 The following data should be gathered and stored locally. Given a list of about 50–100
companies, record their quoted prices and volumes at the maximum available sampling

8 An introductory description is available here: http://en.wikipedia.org/wiki/Delphi_method . An in-depth review

is available here: http://web.njit.edu/~turoff/Papers/delphi3.html (M. Turoff and S. R. Hiltz: “Computer Based
Delphi Processes,” in M. Adler and E. Ziglio (Editors), Gazing Into the Oracle: The Delphi Method and
Its Application to Social Policy and Public Health, London, UK: Kingsley Publishers, 1995.)

Chapter 1 Introduction 53

density (check http://finance.yahoo.com/); also record some broad market indices, such as DJIA
or S&P500.

 The gathered data should be used for developing the prediction model, which can be a simple
regression-curve fitting, artificial neural network, or some other statistical method. The model
should consider both the individual company’s data as well as the broad market data. Once
ready for use, the prediction model should be activated to look for trends and patterns in stock
prices as they are collected in real time.

Potential services that will be provided by the forecaster service include:

 Given a stock x, suggest an action, such as “buy,” “sell,” “hold,” or “sit-out;” we will
assume that the forecaster provides recommendation for one stock at a time

 Recommend a stock to buy, from all stocks that are being tracked, or from all in a given
industry/sector

A key step in specifying the forecaster service is to determine its Web service interface: what will
go in and what will come out of your planned Web service? Below I list all the possible
parameters that I could think of, which the client and the service could exchange. The
development team should use their judgment to decide what is reasonable and realistic for their
own team to achieve within the course of an academic semester, and select only some of these
parameters for their Web service interface.

Parameters sent by the facilitator to a forecaster (from the client to a Web service) in the
inquiry include:

 Stock(s) to consider: individual (specified by ticker symbol), select-one-for-sector (sector
specified by a standard category), any (select the best candidate)

 Trade to consider: buy, sell, hold, sit-out OR Position to consider: long, short, any

 Time horizon for the investment: integer number

 Funds available: integer number for the capital amount/range

 Current portfolio (if any) or current position for the specified symbol

Some of these parameters may not be necessary, particularly in the first instantiation of the
system. Also, there are privacy issues, particularly with the last two items above, that must be
taken into account. The forecaster Web-services are run by third parties and the trader may not
wish to disclose such information to third parties.

Results returned by a forecaster to the facilitator (for a single stock per inquiry):

 Selected stock (if the inquiry requested selection from “sector” or “any”)

 Prediction: price trend or numeric value at time t in the future

 Recommended action and position: buy, sell, hold, sit-out, go-short

 Recommended horizon for the recommended action: time duration

 Recommendation about placing a protective sell or buy Stop Order.

 Confidence level (how confident is the forecaster about the prediction): range 0 – 100 %

Ivan Marsic Rutgers University

54

The performance of each prediction service should be evaluated as follows. Once activated, each
predicted price value should be stored in a local database. At a future time when the actual value
becomes known, it should be recorded along with the previously predicted value. A large number
of samples should be collected, say over the period of tens of days. We use absolute mean error
and average relative error as indices for performance evaluation. The average relative error is
defined as

i ii ii yyy ˆ , where yi and ŷi are the actual and predicted prices at time i,

respectively.

Statement of Requirements

Extensions

Risk analysis to analyze “what if” scenarios.

Additional information about this project can be found at the book website, given in Preface.

1.5.3 Remarks about the Projects

My criteria in the selection of these projects was that they are sufficiently complex so to urge the
students to enrich their essential skills (creativity, teamwork, communication) and professional
skills (administration, leadership, decision, and management abilities when facing risk or
uncertainty). In addition, they expose the students to at least one discipline or problem domain in
addition to software engineering, as demanded by a labor market of growing complexity, change,
and interdisciplinarity.

The reader should observe that each project requires some knowledge of the problem domain.
Each of the domains has myriads of details and selecting the few that are relevant requires a
major effort. Creating a good model of any domain requires skills and expertise and this is
characteristic of almost all software engineering projects—in addition to software development
skills, you always must learn something else in order to build a software product.

The above projects are somewhat deceptive insofar as the reader may get impression that all
software engineering projects are well defined and the discovery of what needs to be developed is
done by someone else so the developer’s job is just software development. Unfortunately, that is
rarely the case. In most cases the customer has a very vague idea of what they would like to be
developed and the discovery process requires a major effort. That was the case for all of the
above projects—it took me a great deal of fieldwork and help from many people to arrive at the
project descriptions presented above. In the worst case you may not even know who will be your
customer, as is the case for traffic monitoring (described at the book website, given in Preface)
and the investment fantasy league (Section 1.5.1). In such cases, you need to invent your own
customers—you need to identify who might benefit from your product and try and interest them
in participating in the development.

Chapter 1 Introduction 55

Frederick Brooks, a pioneer of software
engineering, wrote that “the hardest
single part of building a software system
is deciding precisely what to build”
[Brooks, 1995: p. 199]. By this token,
the hardest work on these projects is
already done. The reader should not feel
short-changed, though, because
difficulties in deriving system
requirements will be illustrated.

Example 1.2 RFID tags in retail

The following example illustrates of
how a typical idea for a software
engineering project might evolve. The
management of a grocery supermarket
(our customer) contacted us with an idea
for a more effective product promotion.
Their plan is to use a computer system
to track and influence people’s buying
habits. A set of logical rules would
define the conditions for generating
promotional offers for customers, based
on the products the customer has already
chosen. For example, if customer
removed a product A from a shelf, then
she may be offered a discount coupon
on product B. Alternatively, the
customer may be asked if she may also
need product C. This last feature serves
as a reminder, rather than for offering
discount coupons. For example, if a
customer removes a soda bottle from a
shelf, she may be prompted to buy
potato chips, as well.

To implement this idea, the store will
use Radio Frequency Identification
(RFID) tags on all store items. Each tag carries a 96-bit EPC (Electronic Product Code). The RFID tag
readers will be installed on each shelf on the sales floor, as well as in the cashier registers at the sales
point. When a tag is removed from the region of a reader’s coverage, the reader will notify the
computer system that the given tag disappeared from its coverage area. In turn, the system will apply
the logical rules and show a promotional offer on a nearest display. We assume that each shelf will
have an “offers display” that will show promotional offers or reminders related to the last item that was
removed from this shelf.

As we consider the details of the idea, we realize that the system will not be able to identify individual
customers and tailor promotional offers based on the customer identity. In addition to privacy
concerns, identifying individual customers is a difficult technological problem and the store
management ruled out potential solutions as too expensive. We do not care as much to know who the
customer is; rather, we want to know the historic information about other items that this customer
placed in her cart previously during the current shopping episode to customize the offer. Otherwise, the
current offer must be based exclusively on the currently removed item and not on prior shopping

Ivan Marsic Rutgers University

56

history. Next, we come up with an idea of installing RFID tag readers in the shopping carts, so we can
track the current items in each shopping cart. However, the supermarket management decides against
this approach, because of a high price of the readers and concerns about their robustness to weather
and handling or vandalism.

As a result, we conclude that logical IF-THEN-ELSE rules for deciding about special offers will take
as input only a single product identity, based on the RFID tag of the item the customer has just
removed from the shelf. The discount coupon will be a “virtual coupon,” which means that the
customer is told about the discounted product, and the discount amount will be processed at the
cashier’s register during the checkout. The display will persist for a specified amount of time and then
automatically vanish. The next question is whether each display will be dedicated to a single product
or shared among several adjacently shelved products? If the display will be shared, we have a problem
if other items associated with this display are removed (nearly) simultaneously. How do we show
multiple offers, and how to target each to the appropriate customer? A simple but difficult question is,
when the displayed coupon should vanish? What if the next customer arrives and sees it before it
vanishes? Perhaps there is nothing bad with that, but now we realize that we have a difficulty targeting
the coupons. In addition, because the system does not know what is in the customer’s cart, it may be
that the customer already took the product that the system is suggesting. After doing some market
research, we determine that small displays are relatively cheap and an individual display can be
assigned to each product. We give up targeting customers, and just show a virtual coupon as specified
by the logical rules.

Given that the store already operates in the same way with physical, paper-based coupons, the question
is if it is worth to install electronic displays or use RFID tags? Is there any advantage of upgrading the
current system? If the RFID system input is used, then the coupon will appear when an item is
removed. We realize that this makes no sense and just show the product coupon all the time, same as
with paper-based coupons. An advantage of electronic displays is that they preclude having the store
staff go around and place new coupons or remove expired ones.

We started with the idea of introducing RFID tags and ended up with a solution that renders them
useless. An argument can be made that tags can be used to track product popularity and generate
promotional offers based on the current demand or lack thereof. A variation of this project, with a
different goal, will be considered in Problem 2.15 at the end of Chapter 2.

There are several lessons to be learned about software engineering from the above example:

 One cannot propose a solution without a deep understanding of the problem domain and
working closely with the customer

 Requirements change dynamically because of new insights that were not obvious initially

 Final solution may be quite different from the initial idea.

he project descriptions presented earlier in this chapter are relatively precise and include
more information than what is usually known as the customer statement of work, which is an

expression, from a potential customer, of what they require of a new software system. I expressed
the requirements more precisely to make them suitable for one-semester (undergraduate) student
projects. Our focus here will be on what could be called “core software engineering.”

On the other hand, the methods commonly found in software engineering textbooks would not
help you to arrive at the above descriptions. Software engineering usually takes from here—it
assumes a defined problem and focuses on finding a solution. Having defined a problem sets the

T

Chapter 1 Introduction 57

constraints within which to seek for the solution. If you want to broaden the problem or reframe
it, you must go back and do some fieldwork. Suppose you doubt my understanding of financial
markets or ability to extract the key aspects of the security trading process (Section 1.3.2) and you
want to redefine the problem statement. For that, software engineering methods (to be described
in Chapter 2) are not very useful. Rather, you need to employ ethnography or, as an engineer you
may prefer Jackson’s “problem frames” [Jackson 2001], see Chapter 3. Do I need to mention that
you better become informed about the subject domain? For example, in the case of the financial
assistant, the subject domain is finance.

1.6 Summary and Bibliographical Notes

Because software is pure invention, it does not have physical reality to keep it in check. That is,
we can build more and more complex systems, and pretend that they simply need a little added
debugging. Simple models are important that let us understand the main issues. The search for
simplicity is the search for a structure within which the complex becomes transparent. It is
important to constantly simplify the structure. Detail must be abstracted away and the underlying
structure exposed.

Although this text is meant as an introduction to software engineering, I focus on critical thinking
rather than prescriptions about structured development process. Software development can by no
means be successfully mastered from a single source of instruction. I expect that the reader is
already familiar with programming, algorithms, and basic computer architecture. The reader may
also wish to start with an introductory book on software engineering, such as [Larman, 2005;
Sommerville, 2004]. The Unified Modeling Language (UML) is used extensively in the
diagrams, and the reader unfamiliar with UML should consult a text such as [Fowler, 2004]. I
also assume solid knowledge of the Java programming language. I do offer a brief introduction-
to/refresher-of the Java programming language in Appendix A, but the reader lacking in Java
knowledge should consult an excellent source by Eckel [2003].

The problem of scheduling construction tasks (Section 1.1) is described in [Goodaire &
Parmenter, 2006], in Section 11.5, p. 361. One solution involves first setting posts, then cutting,
then nailing, and finally painting. This sequence is shown in Figure 1-2 and completes the job in
11 units of time. There is a second solution that also completes the job in 11 units of time: first
cut, then set posts, then nail, and finally paint.

Although I emphasized that complex software systems defy simple models, there is an interesting
view advocated by Stephen Wolfram in his NKS (New Kind of Science):
http://www.wolframscience.com/ , whereby some systems that appear extremely complex can be
captured by very simple models.

In a way, software development parallels the problem-solving strategies in the field of artificial
intelligence or means-ends analysis. First we need to determine what are our goals (“ends”); next,
represent the current state; then, consider how (“means” to employ) to minimize the difference
between the current state and the goal state. As with any design, software design can be seen as a

Ivan Marsic Rutgers University

58

difference-reduction activity, formulated in terms of a symbolic description of differences.
Finally, in autonomic computing, the goals are represented explicitly in the program that
implements the system.

There are many reasons why some systems succeed (e.g., the Web, the Internet, personal
computer) and others fail, including:

 They meet a real need

 They were first of their kind

 They coevolved as part of package with other successful technologies and were more
convenient or cheaper (think MS Word versus WordPerfect)

 Because of their technical excellence

Engineering excellence alone is not guarantee for success but a clear lack of it is a guarantee for
failure.

There are many excellent and/or curious websites related to software engineering, such as:

Teaching Software Engineering – Lessons from MIT, by Hal Abelson and Philip Greenspun:
http://philip.greenspun.com/teaching/teaching-software-engineering

Software Architecture – by Dewayne E. Perry: http://www.ece.utexas.edu/~perry/work/swa/

Software Engineering Academic Genealogy – by Tao Xie:
http://www.csc.ncsu.edu/faculty/xie/sefamily.htm

Section 1.2.1: Symbol Language

Most people agree that symbols are useful, even if some authors invent their own favorite
symbols. UML is the most widely accepted graphical notation for software design, although it is
sometimes criticized for not being consistent. Even in mathematics, the ultimate language of
symbols, there are controversies about symbols even for such established subjects as calculus (cf.,
Newton’s vs. Leibnitz’s symbols for calculus), lest to bring up more recent subjects. To sum up,
you can invent your own symbols if you feel it absolutely necessary, but before using them,
explain their meaning/semantics and ensure that it is always easy to look-up the meanings of your
symbols. UML is not ideal, but it is the best currently available and most widely adopted.

Arguably, symbol language has a greater importance than just being a way of describing one’s
designs. Every language comes with a theory behind it, and every theory comes with a language.
Symbol language (and its theory) helps you articulate your thoughts. Einstein knew about the
general relativity theory for a long time, but only when he employed tensors was he able to
articulate the theory (http://en.wikipedia.org/wiki/History_of_general_relativity).

Section 1.2.3: Object-Oriented Analysis and the Domain Model

I feel that this is a more gradual and intuitive approach than some existing approaches to domain
analysis. However, I want to emphasize that it is hard to sort out software engineering approaches
into right or wrong ones—the developer should settle on the approach that produces best results

Chapter 1 Introduction 59

for him or her. On the downside of this freedom of choice, choices ranging from the dumbest to
the smartest options can be defended on the basis of a number of situation-dependent
considerations.

Some authors consider object-oriented analysis (OOA) to be primarily the analysis of the existing
practice and object-oriented design (OOD) to be concerned with designing a new solution (the
system-to-be).

Modular design was first introduced by David Parnas in 1960s.

A brief history of object orientation [from Technomanifestos] and of UML, how it came together
from 3 amigos. A nice introduction to programming is available in [Boden, 1977, Ch. 1],
including the insightful parallels with knitting which demonstrates surprising complexity.

Also, from [Petzold] about ALGOL, LISP, PL/I.

Objects: http://java.sun.com/docs/books/tutorial/java/concepts/object.html

N. Wirth, “Good ideas, through the looking glass,” IEEE Computer, vol. 39, no. 1, pp. 28-39,
January 2006.

H. van Vliet, “Reflections on software engineering education,” IEEE Software, vol. 23, no. 3, pp.
55-61, May-June 2006.

[Ince, 1988] provides a popular account of the state-of-the-art of software engineering in mid
1980s. It is worth reading if only for the insight that not much has changed in the last 20 years.
The jargon is certainly different and the scale of the programs is significantly larger, but the
issues remain the same and the solutions are very similar. Then, the central issues were reuse,
end-user programming, promises and perils of formal methods, harnessing the power of hobbyist
programmers (today known as open source), and prototyping and unit testing (today’s equivalent:
agile methods).

Section 1.3.1: Case Study 1: From Home Access Control to
Adaptive Homes

The Case Study #1 Project (Section 1.3.1) – Literature about the home access problem domain:

A path to the future may lead this project to an “adaptive house” [Mozer, 2004]. See also:

Intel: Home sensors could monitor seniors, aid diagnosis (ComputerWorld)
http://www.computerworld.com/networkingtopics/networking/story/0,10801,98801,00.html

Another place to look is: University of Florida’s Gator Tech Smart House [Helal et al., 2005],
online at: http://www.harris.cise.ufl.edu/gt.htm

For the reader who would like to know more about home access control, a comprehensive, 1400-
pages two-volume set [Tobias, 2000] discusses all aspects of locks, protective devices, and the
methods used to overcome them. For those who like to tinker with electronic gadgets, a great
companion is [O’Sullivan & T. Igoe, 2004].

Biometrics:

Wired START: “Keystroke biometrics: That doesn’t even look like my typing,” Wired, p. 42,
June 2005. Online at: http://www.wired.com/wired/archive/13.06/start.html?pg=9

Ivan Marsic Rutgers University

60

Researchers snoop on keyboard sounds; Computer eavesdropping yields 96 percent accuracy rate.
Doug Tygar, a Berkeley computer science professor and the study's principal investigator
http://www.cnn.com/2005/TECH/internet/09/21/keyboard.sniffing.ap/index.html

Keystroke Biometric Password; Wednesday, March 28, 2007 2:27 PM/EST

BioPassword purchased the rights to keystroke biometric technology held by the Stanford
Research Institute. On March 26, 2007, the company announced BioPassword Enterprise Edition
3.0 now with optional knowledge-based authentication factors, integration with Citrix Access
Gateway Advanced Edition, OWA (Microsoft Outlook Web Access) and Windows XP embedded
thin clients.

http://blogs.eweek.com/permit_deny/content001/seen_and_heard/keystroke_biometric_password.
html?kc=EWPRDEMNL040407EOAD

See also [Chellappa et al., 2006] for a recent review on the state-of-the-art in biometrics.

Section 1.4: The Object Model

The concept of information hiding originates from David Parnas [1972].

D. Coppit, “Implementing large projects in software engineering courses,” Computer Science
Education, vol. 16, no. 1, pp. 53-73, March 2006. Publisher: Routledge, part of the Taylor &
Francis Group

J. S. Prichard, L. A. Bizo, and R. J. Stratford, “The educational impact of team-skills training:
Preparing students to work in groups,” British Journal of Educational Psychology, vol. 76, no. 1,
pp. 119-140, March 2006.

(downloaded: NIH/Randall/MATERIALS2/)

M. Murray and B. Lonne, “An innovative use of the web to build graduate team skills,” Teaching
in Higher Education, vol. 11, no. 1, pp. 63-77, January 2006. Publisher: Routledge, part of the
Taylor & Francis Group

61

Contents
2.1 Software Development Methods

2.1.1 Agile Development
2.1.2 Decisive Methodological Factors

2.2 Requirements Engineering
2.2.1 Requirements and User Stories
2.2.2 Requirements Gathering Strategies
2.2.3 Effort Estimation

2.3 Software Architecture
2.3.1 Problem Architecture
2.3.2 Software Architectural Styles
2.3.3 Recombination of Subsystems

2.4 Use Case Modeling
2.4.1 Actors, Goals, and Sketchy Use Cases
2.4.2 System Boundary and Subsystems
2.4.3 Detailed Use Case Specification
2.4.4 Security and Risk Management
2.4.5 Why Software Engineering Is Difficult (2)

2.5 Analysis: Building the Domain Model
2.5.1 Identifying Concepts
2.5.2 Concept Associations and Attributes
2.5.3 Domain Analysis
2.5.4 Contracts: Preconditions and

Postconditions

2.6 Design: Assigning Responsibilities
2.6.1 Design Principles for Assigning

Responsibilities
2.6.2 Class Diagram
2---3
2.6.3 Why Software Engineering Is Difficult (3)

2.7 Test-driven Implementation
2.7.1 Overview of Software Testing
2.7.2 Test Coverage and Code Coverage
2.7.3 Practical Aspects of Unit Testing
2.7.4 Integration and Security Testing
2.7.5 Test-driven Implementation
2.7.6 Refactoring: Improving the Design of

Existing Code

2.8 Summary and Bibliographical Notes

Problems

Chapter 2
Object-Oriented Software Engineering

“When a portrait painter sets out to create a likeness, he relies
above all upon the face and the expression of the eyes, and

pays less attention to the other parts of the body. In the same
way, it is my intention to dwell upon those actions which

illuminate the workings of the soul.” —Plutarch

This chapter describes concepts and techniques for object-
oriented software development. The first chapter introduced
the stages of software engineering lifecycle (Section 1.2).
Now, the tools and techniques for each stage are gradually
detailed and will be elaborated in later chapters.

We start with the methodology and project management
issues, which is a first concern faced with large-scale product
development. Next we review elements of requirements
engineering: how system requirements are gathered, analyzed,
and documented. Real-world projects rarely follow exclusive
“bottom-up” approach, from requirements through objects to
program code. Instead, high-level factors commonly
considered under “software architecture” influence the system
design in a top-down manner. The rest of this chapter takes a
bottom-up approach, with top-down forces shaping our design
choices.

A popular approach to requirements engineering is use case
modeling, which elaborates usage scenarios of the system-to-
be. A similar approach, common in agile methods, centers on
user stories. Requirements engineering is followed by domain
modeling, where we model the problem domain with the main
emphasis on modeling the internal elements (“objects”) of our
system-to-be. Following analysis, the design stage specifies
how objects interact to produce desired behaviors of the
system-to-be. This chapter concludes with the techniques for
software implementation and testing. While studying this
chapter, the reader may find it useful to check Appendix G
and see how the concepts are applied in an example project.

Ivan Marsic Rutgers University

62

2.1 Software Development Methods

“Plan, v.t. To bother about the best method of accomplishing an accidental result.”
—Ambrose Bierce, The Devil’s Dictionary

The goal of software methodologists is to understand how high quality software can be developed
efficiently. The hope is that new insights will emerge about effective product development, so
both students and experts might benefit from learning and applying methodology. Ideally, the
developer would adhere to the prescribed steps and a successful project would result—regardless
of the developer’s knowledge and expertise. Methodology development often works by observing
how expert developers work and deriving an abstract model of the development process. In
reality, life cycle methods are often not followed; when they are, it is usually because of
employer’s policy in place. Why is it so, if following a method should be a recipe for success?

There are several reasons why methodologies are ignored or resisted in practice. One reason is
that methodology is usually derived from past experience. But, what worked for one person may
not work for another. Both developers and projects have different characteristics and it is difficult
to generalize across either one. Software development is so complex that it is impossible to create
precise instructions for every scenario. In addition, method development takes relatively long
time to recognize and extract “best practices.” By the time a method is mature, the technologies it
is based on may become outdated. The method may simply be inappropriate for the new and
emerging technologies and market conditions.

A development method usually lays out a prescriptive process by mandating a sequence of
development tasks. Some methods devise very elaborate processes with a rigid, documentation-
heavy methodology. The idea is that even if key people leave the project or organization, the
project should go on as scheduled because everything is properly documented. This approach is
known as “Big Design Up Front” (BDUF). However, experience teaches us that it is impossible
to consider all potential scenarios just by thinking. And, regardless of how well the system is
documented, if key people leave, the project suffers. It is much more sensible to develop initial
versions of the system-to-be from a partial understanding of the problem, let users play with such
a prototype, and then redesign and develop a new iteration based on the gained understanding.

One difficulty with product development is that when thinking about a development plan,
engineer usually thinks in terms of methodology: what to do first, what next, etc. Naturally, first
comes discovery (studying the problem domain and finding out how the problem is solved now
and proposing how it can be solved better with the to-be-developed technology); then comes
development (designing and implementing the system); lastly, the system is deployed and
evaluated. This sequential thinking naturally leads to the “waterfall model” (Section 1.2) and
heavy documentation.

The customer does not see it that way. The customer would rather see some rudimentary
functionality soon, and then refinement and extension.

Recent methods, known as agile, attempt to deemphasize process-driven documentation and
detailed specifications. They also consider the number and experience of the people on the
development team.

Four major software development methodologies can be classified as:

Chapter 2 Object-Oriented Software Engineering 63

 Structured analysis and design (SAD), developed in late 1960s and 1970s

 Object-oriented analysis and design (OOAD), developed in 1980s and 1990s

 Agile software development (ASD), developed in late 1990s and 2000s

 Aspect-oriented software development (AOSD), developed in 2000s

The structured analysis and design (SAD) methodology emerged in the 1970s and introduced
functional decomposition and data-flow analysis as key modeling tools.

The object-oriented analysis and design (OOAD) methodology emerged in the late 1980s and was
widely adopted by the mid 1990s. It introduced use cases and the Unified Modeling Language
(UML) as key modeling tools.

The ideas of agile software development (ASD) emerged at the end of 1990s and rapidly gained
popularity in the software industry as a “lightweight” way to develop software. Agile
development is reviewed in Section 2.1.1.

The aspect-oriented software development (AOSD) methodology emerged in the late 1990s. It is
not a replacement for any of the other methodologies. Rather, it helps deal with scattered
crosscutting concerns. Functional features of a software system could be divided into two
categories: (1) core features that provide basic functionality and allow the end-user to achieve
specific business goals; and, (2) supplementary features that provide support for entitlements,
connectivity, concurrency, system interface, etc. Many of the complementary features can be
scattered across the application and tangled with core features, which is why they are called
crosscutting concerns. By “tangled” I mean that these crosscutting concerns are invoked in the
context of core features and are part of the affected core functionality. Aspect-oriented software
development helps deal with crosscutting concerns in a systematic manner.

2.1.1 Agile Development
“People forget how fast you did a job—but they remember how well you did it.” —An advertising executive

“Why do we never have time to do it right, but always have time to do it over?” —Anonymous

Agility is both a development philosophy and a collection of concepts embedded into
development methodologies. An agile approach to development is essentially a results-focused
method that iteratively manages changes and risks. It also actively engages customers in
providing feedback on successive implementations, in effect making them part of the
development team. Unlike process-driven documentation, it promotes outcome-driven
documentation. The emphasis of agile practices is on traveling lightweight, producing only those
artifacts (documentation) that are absolutely necessary. The philosophy of the agile approach is
formulated by the Manifesto for Agile Software Development (http://agilemanifesto.org/).

Agile development evangelists recommend that the development should be incremental and
iterative, with quick turnover, and light on documentation. They are believers in perfection being
the enemy of innovation. Agile methods are not meant to entirely replace methodologies such as
structured analysis and design, or object-oriented analysis and design. Rather, agile methods are
often focused on how to run the development process (“project management”), perhaps using the
tools for software development inherited from other methods, but in a different way. A popular

Ivan Marsic Rutgers University

64

agile-development tool is user stories, which are intended to represent the system requirements,
estimate effort and plan software releases (Section 2.2.3).

SIDEBAR 2.1: Agile vs. Sloppy

 I have had students complain that demanding readability, consistency, and completeness in
project reports runs against the spirit of agile development. Some software engineering
textbooks insist on showing snapshots of hand drawn UML diagrams, as opposed to neat
diagrams created electronically, to emphasize the evanescent nature of designs and the need for
dynamic and untidy artifacts. This may work for closely knit teams of professionals, working
in adjacent offices exclusively on their project. But, I found it not to be conducive for the
purpose of grading student reports: it is very difficult to discern sloppiness from agility and
assign grades fairly. Communication, after all, is the key ingredient of teamwork, and
communication is not improved if readability, consistency, and completeness of project reports
are compromised. I take it that agility means: reduce the amount of documentation but not at
the expense of the communicative value of project artifacts. Brevity is a virtue, but we also
know that redundancy is the most effective way to protect the message from noise effects. (Of
course, you need to know the right type of redundancy!)

Agile methodologists seem not to have much faith in visual representations, so one can find few
if any graphics and diagrams in agile software development books. Some authors take the agile
principles to the extreme and I would caution against this. I have seen claims that working code is
the best documentation of a software product. I can believe that there are people for whom
program code is the most comprehensible document, but I believe that most people would
disagree. Most people would find easiest to understand carefully designed diagrams with
accompanying narrative in a plain natural language. Of course, the tradeoff is that writing proper
documentation takes time, and it is difficult to maintain the documentation consistent with the
code as the project progresses.

Even greater problem is that the code documents only the result of developer’s design decisions,
but not the reasoning behind those decisions. Code is a solution to a problem. It is neither a
description of the problem, nor of the process by which the problem was solved. Much of the
rationale behind the solution is irretrievably lost or hidden in the heads of the people who chose
it, if they are still around. After a period of time, even the person who made a design decision
may have difficulty explaining it if the reasons for the choice are not explicitly documented.

However, although documentation is highly desirable it is also costly and difficult to maintain in
synchrony with the code as the lifecycle progresses. Outdated documentation may be source of
confusion. It is said that the code is the only unambiguous source of information. Such over-
generalizations are not helpful. It is like saying that the building itself is the only unambiguous
source of information and one need not be bothered with blueprints. You may not have blueprints
for your home or even not know where to find them, but blueprints for large public buildings are
carefully maintained as they better be. After all, it is unethical to leave a customer with working
code, but without any documentation. There is a spectrum of software projects, so there should be
a matching spectrum of documentation approaches, ranging from full documentation, through
partial and outdated one, to no documentation. I believe that even outdated documentation is
better than no documentation. Outdated documents may provide insight into the thinking and
evolution that went into the software development. On most projects, documentation should be
created with the understanding that it will not always be up to date with the code, resulting in

Chapter 2 Object-Oriented Software Engineering 65

“stale” parts. A discrepancy usually arises in subsequent iterations, so we may need to prioritize
and decide what to keep updated and what to mark as stale.

There are other issues with maintaining adequate documentation. The developer may even not be
aware of some choices that he made, because they appear to be “common sense.” Other decisions
may result from company’s policies that are documented separately and may be changed
independently of the program documentation. It is useful to consider again the exponential curve
in Figure 1-13, which can be modified for documentation instead of estimation. Again, a
relatively small effort yields significant gains in documentation accuracy. However, after a
certain point the law of diminishing returns triggers and any further improvement comes at a
great cost. It is practically impossible to achieve perfect documentation.

SIDEBAR 2.2: How Much Diagramming?

 I often hear inquiries and complaints that the amount of diagramming in this book is
excessive. This book is primarily intended for students learning software engineering and
therefore it insists on tidiness and comprehensiveness for instructive purposes. If I were doing
real projects, I would not diagram and document every detail, but only the most difficult and
important parts. Unfortunately, we often discover what is “difficult and important” only long
after the project is completed or after a problem arises. Experience teaches us that the more
effort you invest in advance, the more you will be thankful for it later. The developer will need
to use their experience and judgment as well as contextual constraints (budget, schedule, etc.)
to decide how much diagramming is appropriate.

Many books and software professionals place great emphasis on the management software
engineering projects. In other words, it is not about the engineering per se but it is more about
how you go about engineering software, in particular, knowing what are the appropriate steps to
take and how you put them together. Management is surely important, particularly because most
software projects are done by teams, but it should not be idolized at the detriment of product
quality. This book focuses on techniques for developing quality software.

2.1.2 Decisive Methodological Factors

Software quality can be greatly improved by paying attention to factors such as traceability,
testing, measurement, and security.

Traceability

Software development process starts with an initial artifact, such as customer statement of work,
and ends with source code. As the development progresses, being able to trace the links among
successive artifacts is key. If you do not make explicit how an entity in the current phase evolved
from a previous-phase entity, then it is unclear what was the purpose of doing all that previous
work. Lack of traceability renders the past creations irrelevant and we might as well have started
with this phase. It makes it difficult for testers to show that the system complies with its
requirements and maintainers to assess the impact of a change. Therefore, it is essential that a
precise link is made from use cases back to requirements, from design diagrams back to use
cases, and from source code back to design diagrams. Traceability refers to the property of a
software artifact, such as a use case or a class, of being traceable to the original requirement or

Ivan Marsic Rutgers University

66

rationale that motivated its existence. Traceability must be maintained across the lifecycle.
Maintaining traceability involves recording, structuring, linking, grouping, and maintaining
dependencies between requirements and other software artifacts. We will see how traceability
works on examples in this chapter.

Requirements
Engineering
(Section 2.2)

Req-1
UC-1

UC-2

Req-K UC-M

UC-N

Use Cases
(Section 2.3)

CO-1

CO-2

CO-3

CO-S

CO-T

OOA/OOD
(Sections 2.4 & 2.5)

Implementation
(Section (2.7)

Requirements Use Cases Concepts/Objects Source Code

Code-1

Code-2

Code-3

Code-W

Code-X

Testing

The key idea of Test-Driven Development (TDD) is that every step in the development process
must start with a plan of how to verify that the result meets some goal. The developer should not
create a software artifact (such as a system requirement, a UML diagram, or source code) unless
he has a plan of how it will be tested. For example, a requirement is not well-specified if an
automated computer program cannot be written to test it for compliance. Such a requirement is
vague, subjective, or contradictory and should be reworked.

The testing process is not simply confined to coding. Testing the system design with
walkthroughs and other design review techniques is very helpful. Agile TDD methodology
prescribes to make progress just enough to pass a test and avoid detailed analysis. When a
problem is discovered, fix it. This approach may not be universally appropriate, e.g., for mission
critical applications. Therein, when a problem is discovered, it might have led to a major human
or economic loss. Discovering that you missed something only when system failed in actual use
may prove very costly. Instead, a thorough analysis is needed in advance of implementation.
However, the philosophy of thinking while creating a software artifact about how it will be tested
and designing for testability applies more broadly than agile TDD.

Software defects (or, bugs) are typically not found by looking at source code. Rather, defects are
found by mistreating software and observing how it fails, by reverse engineering it (approach
used by people who want to exploit its security vulnerabilities), and by a user simply going about
his business until discovering that a program has done something like delete all of the previous
hour’s work. Test plans and test results are important software artifacts and should be preserved
along with the rest of software documentation. More about testing in Section 2.7.

Chapter 2 Object-Oriented Software Engineering 67

Agile TDD claims to improve the code, and detect design brittleness and lack of focus. It may
well do that, but that is not the main purpose of testing, which is to test the correctness, not
quality of software. Even a Rube-Goldberg design can pass tests under the right circumstances.
And we cannot ever check all circumstances for complex software systems. Therefore, it would
be helpful to know if our system works correctly (testing) and if it is of high quality, not a Rube-
Goldberg machine. This is why we need software measurement.

Measurement

While testing is universally practiced and TDD widely adopted, metrics and measurement are
relatively rarely used, particularly for assessing software product quality. Agile methods have
emphasized using metrics for project estimation, to track progress and plan the future iterations
and deliverables. Software product metrics are intended to assess program quality, not its
correctness (which is assessed by testing and verification). Metrics do not uncover errors; they
uncover poor design.

More about software measurement in Chapter 4.

Security

Most computers, telephones, and other computing devices are nowadays connected to the public
Internet. Publicly accessible Web applications and services can be abused and twisted to
nefarious ends. Even if the computer does not contain any “sensitive” information, its computing
and communication resources may be abused to send out spam and malware as part of a
distributed botnet. Such hijacked systems provide a “safe” means of distribution of illicit goods or
services on someone else’s server without that person’s knowledge. Because of ubiquitous
connectivity, anyone’s security problems impact everyone else, with only rare exceptions.

There are two kinds of technology-based security threats in software systems. One arises because
of bad software, where the attacker exploits software defects. The other arises because of network
interconnectedness, when the attacker exploits other infected systems to poison the traffic to or
from targeted computers. Hence, even if software is designed with security features to prevent
unauthorized use of system resources, it may be denied data or services from other computers.
Attackers rely on exploitable software defects as well as continuing to develop their own
infrastructure. An experienced developer must understand both the principles of software design
and the principles of network security. Otherwise, he will be prone to making naïve mistakes
when assessing the security benefits of a particular approach to software development. This book
focuses on better software design and does not cover network security.

The Security Development Lifecycle (SDL), promoted by Microsoft and other software
organizations, combines the existing approaches to software development with security-focused
activities throughout the development lifecycle. Security risk management focuses on minimizing
design flaws (architectural and design-level problems) and code bugs (simple implementation
errors in program code). Identifying security flaws is more difficult than looking for bugs,
because it requires deep understanding of the business context and software architecture and
design. We work to avoid design flaws while building secure software systems. Techniques
include risk analysis, abuse cases (trying to misuse the system while thinking like an attacker),
and code quality auditing.

Ivan Marsic Rutgers University

68

Functional security features should not be confused with software security. Software security is
about developing high quality, problem-free software. Functional security features include
cryptography, key distribution, firewalls, default security configuration, privilege separation
architecture, and patch quality and response time. Poorly designed software is prone to security
threats regardless of built-in security functionality. Security functionality design is detailed in
Section 5.5.

2.2 Requirements Engineering

“The hardest single part of building a software system is deciding what to build. No part of the work so
cripples the resulting system if done wrong. No other part is more difficult to rectify later.”—Fred Brooks

“You start coding. I’ll go find out what they want.” —Computer analyst to programmer

Requirements engineering helps software engineers understand the problem they are to solve. It
involves activities that lead to understanding the business context, what the customer wants, how
end-users will interact with the software, and what the business impact will be. Requirements
engineering starts with the problem definition: customer statement of work (also known as
customer statement of requirements). This is an informal description of what the customers think
they need from a software system to do for them. The problem could be identified by
management personnel, through market research, by ingenious observation, or some other means.
The statement of work captures the perceived needs and, because it is opinion-based, it usually
evolves over time, with changing market conditions or better understanding of the problem.
Defining the requirements for the system-to-be includes both fact-finding about how the problem
is solved in the current practice as well as envisioning how the planned system might work. The
final outcome of requirements engineering is a requirements specification document.

The key task of requirements engineering is formulating a well-defined problem to solve. A well-
defined problem includes

 A set of criteria (“requirements”) according to which proposed solutions either definitely
solve the problem or fail to solve it

 The description of the resources and components at disposal to solve the problem.

Requirements engineering involves different stakeholders in defining the problem and specifying
the solution. A stakeholder is an individual, team, or organization with interests in, or concerns
related to, the system-to-be. Generally, the system-to-be has several types of stakeholders:
customers, end users, business analysts, systems architects and developers, testing and quality
assurance engineers, project managers, the future maintenance organization, owners of other
systems that will interact with the system-to-be, etc. The stakeholders all have a stake, but the
stakes may differ. End users will be interested in the requested functionality. Architects and
developers will be interested in how to effectively implement this functionality. Customers will
be interested in costs and timelines. Often compromises and tradeoffs need to be made to satisfy
different stakeholders.

Chapter 2 Object-Oriented Software Engineering 69

Although different methodologies provide different techniques for requirements engineering, all
of them follow the same requirements process: requirements gathering, requirements analysis,
and requirements specification (Figure 2-1). The process starts with customer’s requirements or
surveying the potential market and ends with a specification document that details how the
system-to-be will behave. This is simply a logical ordering of requirements engineering activities,
regardless of the methodology that is used. Of course, the logical order does not imply that each
step must be perfectly completed before the next is taken.

Requirements gathering (also known as “requirements elicitation”) helps the developer
understand the business context. The customer needs to define what is required: what is to be
accomplished, how the system will fit into the needs of the business, and how the system will be
used on a day-to-day basis. This turns out to be very hard to achieve, as discussed in Section
2.2.2. The statement of work is rarely precise and complete enough for the development team to
start working on the software product.

Requirements analysis involves refining of and reasoning about the requirements received from
the customer during requirements gathering. Analysis is driven by the creation and elaboration of
user scenarios that describe how the end-user will interact with the system. Negotiation with the
customer will be needed to determine the priorities, what is essential, and what is realistic. A
popular tool is the use cases (Section 2.4). It is important to ensure that the developer’s
understanding of the problem coincides with the customer’s understanding of the problem.

Requirements specification represents the problem statement in a semiformal or formal manner to
ensure clarity, consistency, and completeness. It describes the function and quality of the
software-to-be and the constraints that will govern its development. A specification can be a
written document, a set of graphical models, a formal mathematical model, a collection of usage
scenarios (or, “use cases”), a prototype, or any combination of these. The developers could use
UML or another symbol language for this purpose.

Requirements
analysis

Requirements
gathering

Requirements
specification

Agile Development
User Stories

Aspect-Oriented
Requirements

Object-Oriented
Analysis & Design

Structured
Analysis & Design

Figure 2-1: Requirements process in different methodologies.

Ivan Marsic Rutgers University

70

As mentioned, logical ordering of the development lifecycle does not imply that we must achieve
perfection in one stage before we progress to the next one. Quite opposite, the best results are
achieved by incremental and iterative attention to different stages of the requirements engineering
process. This is an important lesson of the agile development philosophy. Traditional prescriptive
processes are characterized by their heavy emphasis on getting all the requirements right and
written early in the project. Agile projects, on the other hand, acknowledge that it is impossible to
identify all the requirements in one pass. Agile software development introduced a light way to
model requirements in the form of user stories, which are intended to capture customer needs,
and are used to estimate effort and plan releases. User stories are described in Section 2.2.3.

Section 2.3.1 introduces different problem types and indicates that different tools for
requirements engineering work best with different types of problems. In addition to problem
types, the effectiveness of requirements tools depends on the intended stakeholders. Different
requirements documents may be needed for different stakeholders. For example, the requirements
may be documented using customer’s terminology so that customers unfamiliar with software
engineering jargon may review and approve the specification of the system-to-be. A
complementary document may be prepared for developers and testing engineers in a semi-formal
or formal language to avoid ambiguities of natural languages.

2.2.1 Requirements and User Stories
“The best performance improvement is the transition from the nonworking state to the working state.”

—John Ousterhout

The statement of requirements is intended to precisely state the capabilities of the system that the
customer needs developed. Software system requirements are usually written in the form of
statements “The system shall …” or “The system should …” The “shall” form is used for features
that must be implemented and the “should” form for desirable but not mandatory features. IEEE
has published a set of guidelines on how to write software requirements. This document is known
as IEEE Standard 830.

Statement of Requirements, Case Study 1: Secure Home Access

Table 2-1 enumerates initial requirements for the home access control system extracted
from the problem description in Section 1.3.1. Each requirement is assigned a unique
identifier. The middle column shows the priority weight (PW) of each requirement, with a
greater number indicating a higher priority. The priority weight may be assigned by the
customer or derived from the urgency-to-deliver the requested capabilities to the customer.
The range of priority weights is decided arbitrarily, in our example it is 1–5. It is preferable
to have a small range (10 or less), because the priorities are assigned subjectively and it is
difficult to discern finely-grained priorities. Larger projects with numerous requirements
may need larger range of priorities.

An important issue is the granularity of requirements. Some of the requirements in Table
2-1 are relatively complex or compound requirements. Test-Driven Development (TDD)
stipulates writing requirements so that they are individually testable. In a software lifecycle,
requirements eventually result in source code, which is then Verified and Validated by running a
test set that exercises each requirement individually (Section 2.7.1). In the end, a report is created

Chapter 2 Object-Oriented Software Engineering 71

that says what requirements passed and what requirements failed. For this purpose, no
requirement should be written such that there are several “tests” or things to verify
simultaneously. If there is a compound requirement that failed, it may not be clear what part of
the requirement has failed. For example, if we were to test requirement REQ1 in Table 2-1, and
the door was found unlocked when it should have been locked, the entire requirement would fail
Verification. It would be impossible to tell from the report if the system accidentally disarmed the
lock, or the autolock feature failed. Therefore, when we group several “elemental” requirements
which apply to one functional unit into one compound requirement, we have a problem of not
being able to individually test requirements in this group. By splitting up REQ1 we obtain:

REQ1a: The system shall keep the doors locked at all times, unless commanded otherwise by
authorized user.

REQ1b: When the lock is disarmed, a countdown shall be initiated at the end of which the lock
shall be automatically armed (if still disarmed).

However, requirements fragmentation accommodates only the testing needs. Other considerations
may favor compounding of “elemental” requirements which apply to one functional unit. A
problem with elemental requirements is that none of them describes a stand-alone, meaningful
unit of functionality—only together they make sense. From customer’s viewpoint, good
requirements should describe the smallest possible meaningful units of functionality.

Although the choice of requirements granularity is subject to judgment and experience and there
is no clear metrics, the best approach is to organize one’s requirements hierarchically.

Table 2-1: Requirements for the first case study, safe home access system (see Section 1.3.1).

Identifier Priority Requirement

REQ1 5 The system shall keep the door locked at all times, unless commanded otherwise by
authorized user. When the lock is disarmed, a countdown shall be initiated at the
end of which the lock shall be automatically armed (if still disarmed).

REQ2 2 The system shall lock the door when commanded by pressing a dedicated button.

REQ3 5 The system shall, given a valid key code, unlock the door and activate other devices.

REQ4 4 The system should allow mistakes while entering the key code. However, to resist
“dictionary attacks,” the number of allowed failed attempts shall be small, say three,
after which the system will block and the alarm bell shall be sounded.

REQ5 2 The system shall maintain a history log of all attempted accesses for later review.

REQ6 2 The system should allow adding new authorized persons at runtime or removing
existing ones.

REQ7 2 The system shall allow configuring the preferences for device activation when the
user provides a valid key code, as well as when a burglary attempt is detected.

REQ8 1 The system should allow searching the history log by specifying one or more of
these parameters: the time frame, the actor role, the door location, or the event type
(unlock, lock, power failure, etc.). This function shall be available over the Web by
pointing a browser to a specified URL.

REQ9 1 The system should allow filing inquiries about “suspicious” accesses. This function
shall be available over the Web.

Ivan Marsic Rutgers University

72

Note that Table 2-1 contains two types of requirement prioritization. There is an implicit priority
in “shall” vs. “should” wording, as well as explicit Priority Weight column. We need to ensure
that they are consistent. In principle, all features that must be implemented (“shall” type) should
be of higher priority then any feature that is not mandatory. Any inconsistency between the
prioritizations must be resolved with the customer. To avoid potential inconsistencies and
ambiguities, agile methods adopt a work backlog (Figure 1-14) that simply lists the work items in
the order in which they should be done.

Following the Test-Driven Development paradigm, we write tests for the requirements during the
requirements analysis. These tests are known as user acceptance tests (UATs) and they are
specified by the customer (Section 2.7.1). The system-to-be will be created to fulfill the
customer’s vision, so the customer decides that a requirement has been correctly implemented
and therefore the implementation is “accepted.” Acceptance tests capture the customer’s
assumptions about how the functionality specified with the requirement will work, under what
circumstances it may behave differently, and what could go wrong. The customer can work with
a programmer or tester to write the actual test cases. A test case is a particular choice of input
values to be used in testing a program and expected output values. A test is a finite collection of
test cases. For example, for the requirement REQ3, the customer may suggest these test cases:

 Test with the valid key of a current tenant on his or her apartment (pass)

 Test with the valid key of a current tenant on someone else’s apartment (fail)

 Test with an invalid key on any apartment (fail)

 Test with the key of a removed tenant on his or her previous apartment (fail)

 Test with the valid key of a just-added tenant on his or her apartment (pass)

These test cases provide only a coarse description of how a requirement will be tested. It is
insufficient to specify only input data and expected outcomes for testing functions that involve
multi-step interaction. Use case acceptance tests in Section 2.4.3 will provide step-by-step
description of acceptance tests.

The table includes the requirement REQ7 that allows the user to configure the preferences for
activating various household devices in response to different events. The preferences would be set
up using a user interface (sketched in Figure 2-2). This is not to advocate user interface design at
this early stage of project development. However, the developer should use all reasonable means
to try and understand the customer’s needs as early as possible. Drawing sketches of user
interfaces is a useful tool for eliciting what the customer needs and how he would like to interact
with the system.

Table 2-1 contains only a few requirements that appear to be clear at the outset of the project.
Some of the requirements are somewhat imprecise and will be enhanced later, as we learn more
about the problem and about the tools used in solving it. Other requirements may be discovered
or the existing ones altered as the development lifecycle iteratively progresses. Refining and
modifying the initial requirements is the goal of requirements analysis.

Chapter 2 Object-Oriented Software Engineering 73

Statement of Requirements, Case Study 2: Investment Assistant

Here we extract initial requirements for the personal investment assistant system based on the
description given in Section 1.3.2. The requirements are shown in Table 2-2.

The statement of requirements is only a digest, and the reader should keep in mind that it must be
accompanied with a detailed description of customer’s business practices and rules, such as the
market functioning described earlier.

The stock trading ticket in REQ2 is a form containing the client’s instructions to the broker or
dealer. A stock trading ticket contains four parts: the client’s information, the security
information, the order information and any special instructions. The ticket specifies the action
(buy/sell), the order type (market/limit/stop), the symbol of the stock to trade, the number of
shares, and additional parameters in case of limit and stop orders. If the action is to buy, the
system shall check that the investor has sufficient funds in his/her account.

The order management window lists working, filled, cancelled, and parked orders, as well as
exceptions and all orders. In the working window, an order can be cancelled, replaced, and
designed as “go to market” for immediate execution, as well as be chained for order-cancels-
order status.

Similar to Table 2-1, Table 2-2 contains only a few requirements that appear to be clear at the
outset of the project. Other requirements may be discovered or the existing ones enhanced or
altered as the development lifecycle progresses.

Device Preferences
File Configure Help

CloseApply

Activate for burglary attemptActivate for burglary attempt

Alarm bellAlarm bell

PolicePolice ……

Activate for valid keyActivate for valid key

LightsLights

MusicMusic

AirAir--conditioningconditioning

HeatingHeating

Send SMSSend SMS

Figure 2-2: Envisioning the preference configuration for the control of household devices.

Ivan Marsic Rutgers University

74

User Stories

Agile development methods have promoted “user stories” as an alternative to traditional
requirements. A user story is a brief description of a piece of system functionality as viewed by a
user. It represents something a user would be likely to do in a single sitting at the computer
terminal. User stories are written in a free-form, with no mandatory syntax, but generally they are
fitting the form:

user-role + capability + business-value

Here is an example of a user story for our case study of secure home access:

Table 2-2: Requirements for the second case study, investment assistant (see Section 1.3.2).

Identifier PW Requirement

REQ1 5 The system shall support registering new investors by providing a real-world email,
which shall be external to our website. Required information shall include a unique login
ID and a password that conforms to guidelines, as well as investor’s first and last name
and other demographic information. Upon successful registration, the system shall set up
an account with a zero balance for the investor.

REQ2 5 The system shall support placing orders by filling out a form known as “order ticket,”
which contains the client’s information, the stock information, the order information, and
any special instructions. The ticket shall be emailed to the client and enqueued for
execution when the specified conditions are satisfied.

REQ3 5 The system shall periodically review the enqueued orders and for each order ticket in the
queue take one of the following actions:
(i) If the order type is Market Order, the system shall execute the trade instantly;
(ii) Else, if the order conditions are matched, convert it to a Market Order at the current
stock price;
(iii) Else, if the order has expired or been cancelled, remove it from the queue, declare it a
Failed Order and archive as such;
(iv) Else, leave the order untouched.

If either of actions (i), (ii), or (iii) is executed, the system shall archive the transaction and
notify the trader by sending a “brokerage trade confirmation.”

REQ4 2 The system shall allow the trader to manage his or her pending orders, for example to
view the status of each order or modify the order, where applicable.

REQ5 2 The system shall continuously gather the time-series of market data (stock prices, trading
volumes, etc.) for a set of companies or sectors (the list to be decided).

REQ6 3 The system shall process the market data for two types of information:
(i) on-demand user inquiries about technical indicators and company fundamentals (both
to be decided), comparisons, future predictions, risk analysis, etc.
(ii) in-vigilance watch for trading opportunities or imminent collapses and notify the
trader when such events are detected

REQ6 3 The system shall record the history of user’s actions for later review.

As a tenant, I can unlock the doors to enter my apartment.

user-role capability business-value

Chapter 2 Object-Oriented Software Engineering 75

The business-value part is often omitted to maintain the clarity and conciseness of user stories.

Table 2-3 shows the user stories for our first case study of home access control (Section 1.3.1). If
we compare these stories to the requirements derived earlier (Table 2-1), we will find that stories
ST-1 and ST-2 roughly correspond to requirement REQ1, story ST-3 corresponds to REQ2, story
ST-4 corresponds to REQ3 and REQ4, and story ST-6 corresponds to REQ8, etc. Note, however,
that unlike the IEEE-830 statements “The system shall …,” user stories put the user at the center.

Types of Requirements

System requirements make explicit the characteristics of the system-to-be. Requirements are
usually divided into functional and non-functional. Functional requirements determine the
system’s expected behavior and the effects it should produce in the problem domain. These
requirements generally represent the main product features.

Non-functional requirements describe some quality characteristic that the system-to-be shall
exhibit. They are also known as “quality” or “emergent” requirements, or the “-ilities” of the
system-to-be. An example non-functional requirement is: Maintain a persistent data backup, for
the cases of power outages.

The term FURPS+ refers to the non-functional system properties:

 Functionality lists additional functional requirements that might be considered, such as
security, which refers to ensuring data integrity and authorized access to information

 Usability refers to the ease of use, esthetics, consistency, and documentation—a system
that is difficult and confusing to use will likely fail to accomplish its intended purpose

 Reliability specifies the expected frequency of system failure under certain operating
conditions, as well as recoverability, predictability, accuracy, and mean time to failure

 Performance details the computing speed, efficiency, resource consumption, throughput,
and response time

Table 2-3: User stories for the first case study, safe home access. (Compare to Table 2-1.)
The last column shows the estimated effort size for each story (described in Section 2.2.3).

Identifier User Story Size

ST-1 As an authorized person (tenant or landlord), I can keep the doors locked at
all times.

4
points

ST-2 As an authorized person (tenant or landlord), I can lock the doors on demand. 3 pts

ST-3 The lock should be automatically locked after a defined period of time. 6 pts

ST-4 As an authorized person (tenant or landlord), I can unlock the doors.
(Test: Allow a small number of mistakes, say three.)

9
points

ST-5 As a landlord, I can at runtime manage authorized persons. 10 pts

ST-6 As an authorized person (tenant or landlord), I can view past accesses. 6 pts

ST-7 As a tenant, I can configure the preferences for activation of various devices. 6 pts

ST-8 As a tenant, I can file complaint about “suspicious” accesses. 6 pts

Ivan Marsic Rutgers University

76

 Supportability characterizes testability, adaptability, maintainability, compatibility,
configurability, installability, scalability, and localizability

For example, in terms of usability of our safe home access case study, we may assume a low-
budget customer, so the system will be installed and configured by the developer, instead of
“plug-and-play” operation.

All requirements must be written so that they are testable in that it should be obvious how to
write acceptance tests that would demonstrate that the product meets the requirement. We have
seen earlier example of acceptance tests for functional requirements in Table 2-1. Non-functional
requirements are more susceptible for vague formulations. For example, we often hear that a
system should be “easy to use.” It is difficult to design tests to verify such a claim. There is little
value in writing requirements that are not testable.

For example, for our case study of safe home access system, we envisioned three types of
computing devices. Users will use these devices in different contexts and for different tasks, so
we can expect that they have different usability requirements. We should consider the time
constraints of user type and produce order-of-magnitude time limits for computer interaction
required to accomplish a certain activity. For example, the user interacting with the door device
expects that the number of keystrokes, clicks, or touches will be minimized for quick task
completion. The property manager interacting with the desktop computer is less concerned with
efficiency and more with rich features to review the data and examine trends. Similarly, the
reliability requirements for different devices are likely to be different. The door device must be
highly reliable (e.g., system failure rate of 4 in a year or less), while the desktop application can
tolerate much lower reliability level.

Although at first it may appear easy, the distinction between functional and non-functional
requirements is often difficult to make. More often than not, these requirements are intertwined
and satisfying a non-functional requirement usually necessitates modifications in the system
function. For example, if performance objectives cannot be met, some functional features may
need to be left out.

The reader should be cautioned against regarding non-functional requirements as secondary to
functional requirements. The satisfaction of non-functional requirements must be as thoroughly
and rigorously ensured as that of functional requirements. In either case, satisfaction of a
requirement results in visible properties of the system-to-be, which means they will affect
customer or user satisfaction with the product.

n most cases, not all requirements can be realized because of budgetary or time constraints.
Therefore, it is necessary to prioritize the requirements. We have seen examples of assigning

priority weights to requirements in Table 2-1 and Table 2-2, where the weights were guessed by
the customer. A systematic method for prioritizing software product requirements is the cost-
value approach. The basic idea is to determine for each candidate requirement its cost of
implementing and how much value the requirement would have. It is critical that the customer is
involved in requirements prioritization, assisted by tools that help highlight the tradeoffs.
Requirements prioritization is not helpful if all or most requirements are assigned high priority.

We distinguish four types of requirements:

I

Chapter 2 Object-Oriented Software Engineering 77

1. Essential: have to be realized to make the system acceptable to the customer.

2. Desirable: highly desirable, but not mandatory requirements

3. Optional: might be realized if time and resources permit

4. Future: will not be realized in the current version of the system-to-be, but should be
recorded for consideration in future versions

The priority of requirements determines the order in which they will be implemented.

2.2.2 Requirements Gathering Strategies
“Everything true is based on need.” —George Bernard Shaw

“Well, as the new Hummer H2 ads observe, ‘need’ is a highly subjective word.” —Peter Coffee (in 2003)

If the developer is lucky, the customer will arrive with a clear statement of work that needs to be
done (“customer statement of requirements”). In reality, this rarely happens. Requirements for the
system-to-be should be devised based on observing the current practice and interviewing the
stakeholders, such as end users, managers, etc. To put it simply, you can’t fix it if you don’t know
what’s broken. Structured interviews help in understanding what stakeholders do, how they might
interact with the planned system, and the difficulties they are facing with the existing technology.
Agile methodologists recommend that the customers or users stay continuously involved
throughout the project duration, instead of only providing the requirements initially and
disappearing until the system is completed. (The reader may wish to check again Section 1.2.5
about the benefits of continuous customer involvement.)

How to precisely specify what system needs to do is a problem, but sometimes it is even more
difficult is to get the customer to say what he or she expects from the system. Gathering domain
knowledge by interviews is difficult because domain experts use terminology and jargon specific
to their domain that is unfamiliar and hard for an outsider to grasp. While listening to a domain
expert talk, a software engineer may find herself thinking “These all are words that I know, but
together they mean nothing to me.” Some things may be so fundamental or seem too obvious to a
person doing them habitually, that he thinks those are not worth mentioning.

In addition, it is often difficult for the user to imagine the work with a yet-to-be-built system.
People can relatively easily offer suggestions on how to improve the work practices in small
ways, but very rarely can they think of great leaps, such as, to change their way of doing business
on the Internet before it was around, or to change their way of writing from pen-and-paper when
word processors were not around. So, they often cannot tell you what they need or expect from
the system. What often happens is that the customer is paralyzed by not knowing what technology
could do and the developer is stuck by not knowing what the customer needs to have. Of great
help in such situation is having a working instance, a prototype, or performing a so called
Wizard-of-Oz experiment with a mock-up system.

See also Ch. 2 of “Wicked Problems”—problems that cannot be fully defined.

A popular technique for functional requirements engineering is the use case modeling, which is
described in Section 2.4.

Ivan Marsic Rutgers University

78

e should keep in mind that we are trying to achieve several goals in requirements
engineering. As Figure 2-1 illustrates, we are trying to understand the problem in the

context of current practice (requirements gathering), then envision, elaborate, and negotiate
potential solutions (requirements analysis), and finally write down an engineering description of
what needs to be developed (requirements specification). Different tools have been proposed for
requirements engineering. As one would expect, none of these tools works best for all tasks of
requirements engineering and for all types of problems. Some tools work great for requirements
gathering, but may not be suitable for requirements analysis or specification. For example, user
stories (Section 2.2.1) work well in requirements gathering and analysis, but may be less suitable
for specification. Other tools work well on all three tasks, but not for all problem types. For
example, use case modeling (Section 2.4) works well on all three tasks, but only for certain
problem types. Further details are provided in the sections that follow. More tools that are better
suited for different problem types will be described in Chapter 3.

2.2.3 Effort Estimation

Requirements and user stories can be used to estimate effort and plan software
releases. The estimation process works very similarly to the example described
in Section 1.2.5. Similar to “hedge pruning points” described in Section 1.2.5,
to measure the relative size of the user stories we assign user-story points to
each user story. My preliminary estimates of the relative sizes of the user
stories on the scale 1–10 are shown in the rightmost column of Table 2-3.

I have to admit that, as I am making these estimates, I do not have much confidence in them. I am
very familiar with the home access case study and went many times over the solutions in
subsequent chapters. While making the estimates in Table 2-3, I am trying to make a holistic
guess, which requires a great deal of subjectivity. It is impossible to hold all those experiences in
one’s head at once and combine them in a systematic manner. The resulting estimates simply
reflect a general feeling about the size of each user story. This may be sufficient to start the
project, but I prefer using more structured methods for software size estimation. One such method
is based on use case points, described later in Chapter 4. However, more structured methods
come at a cost—they require time to derive the design details. I recommend that the reader should
always be mindful about which part of the exponential curve in Figure 1-13 he is operating on.
The desired accuracy of the estimate is acceptable only if the effort to achieve it (or, cost) is
acceptable, as well.

To apply equation (1.1) and estimate the effort (duration) needed to develop the system, we also
need to know the development team’s velocity. In physics, velocity is defined as the distance an
object travels during a unit of time. If in software project estimation size is measured in story
points, then the development team’s velocity is defined as the number of user-story points that the
team can complete per single iteration (the unit of time). That is, the velocity represent’s the
team’s productivity.

In software projects linear sum of sizes for individual user stories is rarely appropriate because of
reuse or shared code. Some functionality will be shared by several stories, so adding up sizes for
individual stories when estimated independently is not appropriate. Let me illustrate on an
analogy. Consider you are charged to build highways from city A to cities B and C (Figure 2-3).

W

Chapter 2 Object-Oriented Software Engineering 79

You eyeball a geographic map of the area and you estimate that the highway A–C will be twice
longer than the highway A–B. So, you estimate the size for the entire effort as 1s + 2s = 3s,
where s is a scaling constant. However, upon more careful inspection you realize that parts of
highways to cities B and C can be shared (reused), as illustrated in Figure 2-3(c). If you choose
this option, you cannot estimate the total size just by adding the individual sizes (AB AC).
Instead, you need to consider them together. The total effort will be considerably smaller.

Reuse is common in software objects (consider how ubiquitous subroutines and libraries are!).
Therefore, my concern is that simply adding the story sizes introduces a gross inaccuracy in the
overall effort estimation. Recall the exponential relationship of cost and accuracy (Figure 1-13).

The reader would be mistaken to assume that reuse always means less work. Considering again
the highway analogy, the solution in Figure 2-3(c) may require more effort or cost than the one in
Figure 2-3(b). The infrastructure-sharing solution in Figure 2-3(c) requires building highway
interchanges and erecting traffic signs. You may wonder, why should anyone bother with reuse if
it increases the effort? The reason may be to preserve resources (conserve the land and protect
nature), or to make it easier to connect all three cities, or for esthetic reasons, etc. Reducing the
developer’s effort is not always the most important criterion for choosing problem solutions. The
customer who is sponsoring the project decides about the priorities.

Agile methodologists recommend avoiding dependencies between user stories.
High dependencies between stories make story size estimation difficult. (Note that
the assumption is as follows. The individual story sizes are still combined in a linear
sum, but the dependencies are tackled by adjusting the individual size estimations.)
When dependencies are detected, the developer can try these ways around it:

 Combine the dependent user stories into one larger but independent story

 Find a different way of splitting the stories

An expert developer might easily do this. But then, the expert might as well get an accurate effort
estimate by pure guessing. The problem is with beginner developers, who need the most a

City A

City C

City B

A
B

C

A
B

C

A

B

CA

B

C
(a)

(b)

(c)

Figure 2-3: Combining the part sizes illustrated on a highway building example (a). Cities
may be connected independently (b), or parts of the product may be “reused” (c).

Ivan Marsic Rutgers University

80

systematic way of estimating the project effort. The beginner may find it difficult to detect and
tackle dependencies between user stories.

2.3 Software Architecture

“Conceptual integrity is the most important consideration in system design.”
—Fred Brooks, The Mythical Man-Month

A simplest manifestation of a system-level design is the familiar “block diagram,” which shows
the subsystems or modules (as rectangular boxes) and their relations (lines connecting the boxes).
However, software architecture is much more than decomposing the system into subsystems.
Software architecture is a set of high-level decisions made during the development and
evolution of a software system. A decision is “architectural” if, given the current level of system
scope (Figure 2-4), the decision must be made by considering the current scope level. Such
decision could not be made from a more narrowly-scoped, local perspective.

Figure 2-5

System or product

Subsystems/Modules

Packages

Classes/Objects

Methods

highest abstraction level

lowest level

Product line (or product family)

Figure 2-4: Hierarchy of software system scope levels. At the highest scope level is a
product line—a family of products.

Chapter 2 Object-Oriented Software Engineering 81

Architectural decisions should focus on high impact, high priority areas that are in strong
alignment with the business strategy. We already discussed some architectural decisions for our
case study system for safe home access in Section 1.3.1 (footnote 5). It might have looked as a
simple decision with a self-evident choice to have a central computer and embedded computers at
each door.

Some key questions that we are faced with include:

Q1: How to decompose the system (into parts)?

Q2: How the parts relate to one another?

Q3: How to document the system’s software architecture?

One way to start is by considering an abstraction hierarchy of different parts of the system (Figure
2-4). Such diagrams show only the parts of the system and their inclusion hierarchy. They do not
convey the dependencies in terms of mutual service uses: which part uses the services of what
other parts?

A good path to designing software architecture (i.e., solution architecture) starts by considering
the problem architecture (Section 2.3.1). That is, we start with the requirements (i.e., the problem
statement), which define how the system will interact with its environment.

Objects through their relationships form confederations, which are composed of potentially many
objects and often have complex behavior. The synergy of the cooperative efforts among the
members creates a new, higher-level conceptual entity.

Organizations are partitioned into departments—design, manufacturing, human resources,
marketing, etc. Of course, partitioning makes sense for certain size of the organization;
partitioning a small organization into departments and divisions does not make much sense.
Similarly, software systems should be partitioned into subsystems or modules where each
subsystem performs a set of logically related functions.

Product/system A scope Product B scope

Product line scope

Subsystem scope

product or system
architecture decisions

product line
architecture decisions

systemic impact

local impact
Class scope

Figure 2-5: Architectural decisions are made at certain scope levels and cannot be made at
lower hierarchical levels.

Ivan Marsic Rutgers University

82

Figure 2-6

Assume we have an embedded processor with a keypad, wired to other hardware components of
the system, as shown in Figure 2-7. The embedded processor accepts “commands” from the
computer via a RS-232 serial port and simply passes them on the corresponding device. The
many intricacies of serial communication are omitted and the interested reader is directed to the
bibliography review at the end of this chapter. The embedded processor may in an advanced
design become a full-featured computer, communicating with the main computer via a local area
network (LAN).

System architects may decompose an application into subsystems early in design. But subsystems
can be also discovered later, as the complexity of the system unfolds.

2.3.1 Problem Architecture

The most powerful ways of dealing with complex problems include recognizing and exploiting
regularities (or, patterns), and dividing the problem into smaller subproblems and solving each
individually (known as divide-and-conquer approach). When faced with a difficult software
engineering problem, it helps to recognize if it resembles to known typical problems. If it does,
we employ known solutions.

Computer

RS-232
Interface cable

Keypad and
Embedded processor

Light bulb

Switch

Alarm bell

Photosensor

Figure 2-7: Hardware components for the system implementation.

Subsystem
for device

control

Subsystem
for

administration

Subsystem
for remote

data access

On embedded
computer

On office
desktop

On tenant’s
smartphone

Safe Home Access System

Decision on software-to-
hardware mapping

Decision on system
decomposition

Figure 2-6: Architectural decisions for safe home access system.

Chapter 2 Object-Oriented Software Engineering 83

Problem can be decomposed in different ways, such as “projection” vs. “partition” (Figure 2-8).
There are significant differences between them. Partition isolates the parts from one another—it
simplifies by removing the relationships. Projection just simplifies the representation (by
removing some dimensions), while preserving the relationships between the parts. It allows any
kind of overlap between the elements of one subproblem and the elements of another. We favor
problem projection for its relationship-preserving trait.

For example, consider our first case study of safe home access. Figure 2-9 shows the elements of
the problem domain and how they relate to the system-to-be. There are eleven sub-domains of the
problem domain. The key sub-domains are the tenant (1), landlord (2), and the lock (3). Some
sub-domains are people or physical objects and some sub-domains are digital artifacts, such as
the list of valid keys (4), tenant accounts (10), and log of accesses (11). The system-to-be is
shown as composed of subsystems (shown as smaller boxes inside the system’s box) that
implement different requirements from Table 2-1. As seen, the concerns of different requirements
overlap and the system-to-be cannot be partitioned neatly into isolated subsystems. Initially, we
consider different requirements as subproblems of the entire problem and describe the subsystems
that solve different subproblems. Then we consider how the subsystems are integrated and how
they interact to satisfy all the requirements.

We start by identifying some typical elementary problems encountered by software engineers.
This classification of problems is empirical, not deduced by logical reasoning. Of course, there is
no proof that it is complete, unique, non-overlapping, etc.

There are three key players in software engineering problems: the user who uses the system to
achieve a goal, the software system (to be developed, i.e., the system-to-be), and the

(a) (b)

Figure 2-8: Contrasting decomposition types: (a) projection; (b) partition.

Ivan Marsic Rutgers University

84

environment—the rest of the world that may include other systems, considered as “black boxes”
because we either do not know or do not care about their structure. Figure 2-10 illustrates some
typical elementary software engineering problems. In problems of type 1.a) the user feeds the
system with a document and the system transforms the input document to an output document.
An example is a compiler that transforms source code written in a computer language (the source
language) into another computer language (the target language, often having a binary form known
as “object code”). Another example is a PDF writer, which takes a Web page or a word-processor
document and generates a PDF document.

In problems of type 1.b) the system helps the user edit and maintain a richly structured body of
information (Figure 2-10). The information must typically be manipulated in many different
ways. The data is long-lived and its integrity is important. Example applications include word-
processing, graphics authoring, or relational database systems.

In problems of type 2 the system is programmed to control the environment (Figure 2-10, second
row). The system continuously observes the environment and reacts to predefined events. For
example, a thermostat monitors the room temperature and regulates it by switching heating or
cooling devices on or off to maintain the temperature near a desired setpoint value.

PROBLEM DOMAIN

Software-to-be

(1) Tenant
(4) List of
valid keys

(3) Lock

(6) Photosensor

(7) Light

(8) Alarm bell

(9) Desktop computer

Subsystem-2

Subsystem-1

Subsystem-3

Subsystem-4

(2) Landlord

(3) Key

(5) Device
preferences

(10) Tenant
accounts

(11) Log of
accesses

REQ1, REQ2,
REQ3, REQ4REQ3

REQ5, REQ7,
REQ8, REQ9

REQ4

Figure 2-9: Components of the problem domain for safe home access. Requirements from
Table 2-1 specify what the software-to-be should accomplish in the problem domain. We
can decompose the software-to-be into subsystems related to the requirements satisfaction.

Chapter 2 Object-Oriented Software Engineering 85

In problems of type 3.a) the system monitors the environment and displays the information for the
user. The display may be continuous or filtered to notify the user only of predefined events. For
example, a patient-monitoring system measures physiological signals and displays them
continuously on a computer screen. Additionally, the system may be programmed to look for
trends, or sudden changes, or anomalous values and alert the clinician (user) by audio signals.

In problems of type 3.b) the system helps the user control the environment. The system receives
and executes the user’s commands. An example is controlling industrial processes. In our first
case study of safe home access (Section 1.3.1), the user commands the system to disarm the door
lock (and possibly activate other household devices).

Complex software engineering problems may combine several elementary problems from Figure
2-10. Consider our case study of safe home access (Figure 2-9). We already mentioned that it
includes the type 3.b) problem of commanding the system to disarm the lock. The requirements
(Table 2-1) also include managing the database of current tenant accounts (REQ5), which is a
problem of type 1.b). The system should also monitor if the door is unlocked for an extended
period of time and lock it automatically (REQ1), which is a problem of type 2.

1. User works with computer system
(environment irrelevant/ignored)

2. Computer system controls the environment
(user not involved)

3. Computer system intermediates between
the user and the environment

User System

System Environment

User System Environment

User

System

Repository

User System Environment

User System Environment

SystemIN doc OUT doc

1.a) System transforms input document to output document

1.b) User edits information stored in a repository

3.a) System observes the environment and displays information

3.b) System controls the environment as commanded by the user

Figure 2-10: Some of the typical elementary problems encountered in software engineering.

Ivan Marsic Rutgers University

86

To deal with complex problems that involve several subproblems, we apply the divide-and-
conquer approach. We decompose the problem into simpler problems, design computer
subsystems to solve each subproblem individually, and then compose the subsystems into an
integrated system that solves the original complex problem.

Figure 2-11 illustrates the elementary “building bricks” that correspond to different subproblem
types in Figure 2-10. We continue the discussion of problem decomposition and subsystem
specification in Section 2.4.2. More details will be provided later, in Section 3.3, when we
introduce problem frames.

2.3.2 Software Architectural Styles

So far the development process was presented as a systematic derivation of a software design
from system requirements. Although this process is iterative, every iteration presumably starts
with (possibly revised) requirements and progresses towards an implementation. However, in
reality such “bottom-up” design approaches at the local level of objects are insufficient to achieve
optimal designs, particularly for large systems. There are many contextual constraints and
influences other than requirements that determine the software architecture. For example, the
development team may prefer certain designs based on their expertise; their actual progress
compared to the plan; currently prevailing practices; available assets, such as lack of expertise in
certain areas, such as databases or visualization; hardware and networking constraints; etc. Most
problems do not start completely new development, but rather reuse existing designs, software
packages, libraries, etc. For example, many contemporary systems are based on Web architecture,
using a browser to access a database or Web services (see Appendix D). Complementary to

Controlling
subsystem

Controlled
subsystem3.b) Commanded behavior:

Operator

Monitoring
subsystem

Monitored
subsystem3.a) Information display:

Display

2. Required behavior:
Controlling
subsystem

Controlled
subsystem

Feeding
subsystem

Transformation
subsystem

Receiving
subsystem1.a) Transformation:

Data
editor

Data repository

1.b) Simple workpieces:

User

Figure 2-11: Problem architectures of typical software engineering problems.

Chapter 2 Object-Oriented Software Engineering 87

bottom-up approach are system-level (macro-level), global design approaches which help us to
“see the forest for the trees.” These “top-down” approaches decompose the system into logical
units or follow some global organizational patterns.

Program Flow Control

One can also set up “daemons” that spend their lifetime on the lookout for a certain type of event,
and do what they have to do whenever a happening of that type occurs. A more flexible IF-
THEN-ELSE is to say, “If this happens, use that method to choose an appropriate procedure from
this list of procedures,” where the contents of the list in question can vary as the program runs.

IF-THEN-ELSE partitions the set of all possible situations in two or more cases. The partition
may turn out to be too rigid, there may be some exception cases that were not anticipated and
now need to be accounted for. Possibly even by the user! A key issue is, How to let the user to
“rewire” the paths/flows within the program if a need arises?

The program code that implements software classes and subsystems is usually organized into
software packages. Each package contains a set of logically related classes (Figure 2-12).

2.3.3 Recombination of Subsystems

After decomposition, different subsystems are usually developed and tested independently. At
some point, all subsystems need to be recombined and integrated into the whole system-to-be.
The recombination (or composition) problem is unsolved and very tricky. Key issues:

 Cross-platform compatibility, particularly trust and privilege issues

 Concurrent data access in multithreaded systems

The key problem of recombination of subsystems or frames into the system-to-be is the diversity
of infrastructures and platforms used for development. Modern software applications are rarely
written as a single monolithic program. Instead, they are built on top of complex middleware
frameworks such as .NET and Java technology, using multiple programming languages, and run

User Interface Layer

User Interaction User Authentication

Management of
Sensors and Devices

Archiving

Communication w.
Police Station

Domain Layer
(Application Logic)

Technical Services
Layer

Figure 2-12: Software packages for the case study system. The system has a layered
architecture, with the three layers as indicated.

Ivan Marsic Rutgers University

88

on several computers with different operating systems. Developers rely on outside libraries,
frameworks, COTS (Commercial-Off-The-Shelf) components, etc. The subsystems are usually
distributed over different computers. This diversity of platforms introduces many unknowns that
are hard or impossible to control by the developer.

Even most secure components can be assembled into an unsecure mess.

2.4 Use Case Modeling

A use case is a description of how a user will use the planned system to accomplish business
goals. As any description, it can be sketchy or it can be very detailed. Both versions (and many
degrees of detail in between) have important uses in requirements engineering. It is natural to
start with summary descriptions of use cases and gradually progress towards detailed descriptions
that thoroughly specify the planned system.

Use cases were already introduced in Section 1.2.2 and the current section presents details of use
case modeling. We start with summary descriptions of use cases and end with detailed
descriptions that represent the specification of the planned system.

2.4.1 Actors, Goals, and Sketchy Use Cases

In system development, we are mainly concerned with the actors that interact directly with the
system-to-be, including end users and other systems. However, all stakeholders have certain goals
for the system-to-be and occasionally it may be appropriate to list those goals. The consideration
of system requirements starts with identifying the actors for the system-to-be.

Actors and Their Goals

An actor is any entity (human, physical object, or another system) external to the system-to-be
that interacts with the system-to-be. Actors have their responsibilities and seek the system’s
assistance in managing those responsibilities. In our case-study example of secure home access,
resident’s responsibilities are to maintain the home secured and in proper order, as well as seek
comfortable living. The property manager’s responsibilities include keeping track of current and
departed residents. Maintenance personnel’s responsibilities include checks and repairs. There are
also some physical devices depicted in Figure 1-16 that are not part of the system-to-be but
interact with it. They also count as actors for our system, as will be seen later.

To carry out its responsibilities, an actor sets goals, which are time and context-dependent. For
example, a resident leaving the apartment for work has a goal of locking the door; when coming
back, the resident’s goal is to open the door and enter the apartment.

To achieve its goals, an actor performs some actions. An action is the triggering of an interaction
with the system-to-be. While preparing a response to the actor’s action, the system-to-be may
need assistance from external entities other than the actor who initiated the process. Recall how in

Chapter 2 Object-Oriented Software Engineering 89

Figure 1-9 the system-to-be (ATM machine) needed assistance from a remote datacenter to
successfully complete the use case “Withdraw Cash.” This is why we will distinguish initiating
actors and participating actors. If a participating actor delivers, then the initiating actor is closer
to reaching the goal. All actors should have defined responsibilities. The system-to-be itself is an
actor and its responsibility is to assist the (initiating) actors in achieving their goals. In this
process, system-to-be may seek help from other systems or (participating) actors.

To this point we have identified the following actors:

 Tenant is the home occupant

 Landlord is the property owner or manager

 Device is a physical device to be controlled by the system-to-be, such as lock-mechanism
and light-switch, that are controlled by our system (see Figure 1-16)

 Other potential actors: Maintenance, Police, etc. (some will be introduced later)

When deciding about introducing new actors, the key question is: “Does the system provide
different service(s) to the new actor?” It is important to keep in mind that an actor is associated
with a role rather than with a person. Hence, a single actor should be created per role, but a
person can have multiple roles, which means that a single person can appear as different actors.
Also, different persons may play the same actor role, perhaps at different times.

In addition, our system may receive assistance from other systems in the course of fulfilling the
actor’s goal. In this case, the other systems will become different actors if they offer different
type of service to the system-to-be. Examples will be seen later.

Table 2-4 summarizes preliminary use cases for our case-study example.

Table 2-4: Actors, goals, and the associated use cases for the home access control system.

Actor Actor’s Goal (what the actor intends to accomplish) Use Case Name

Landlord To disarm the lock and enter, and get space lighted up. Unlock (UC-1)

Landlord To lock the door & shut the lights (sometimes?). Lock (UC-2)

Landlord To create a new user account and allow access to home. AddUser (UC-3)

Landlord To retire an existing user account and disable access. RemoveUser (UC-4)

Tenant To find out who accessed the home in a given interval of
time and potentially file complaints.

InspectAccessHistory
(UC-5)

Tenant To disarm the lock and enter, and get space lighted up. Unlock (UC-1)

Tenant To lock the door & shut the lights (sometimes?). Lock (UC-2)

Tenant To configure the device activation preferences. SetDevicePrefs (UC-6)

LockDevice To control the physical lock mechanism. UC-1, UC-2

LightSwitch To control the lightbulb. UC-1, UC-2

[to be
identified]

To auto-lock the door if it is left unlocked for a given
interval of time.

AutoLock (UC-2)

Because the Tenant and Landlord actors have different responsibilities and goals, they will utilize
different use cases and thus they should be seen differently by the system. The new actor can use
more (or less, subset or different) use cases than the existing actor(s), as seen in Table 2-4. We

Ivan Marsic Rutgers University

90

Resident

Tenant Landlord

Actor generalization.

could distinguish the Maintenance actor who can do everything as the Landlord, except to
manage users. If we want to include the Maintenance but the same use cases apply for this actor
as for the Tenant, this means that there is no reason to distinguish them—we just must come up
with an actor name that covers both.

Note that the last row contains a yet-to-be-identified actor, whose goal is to
automatically arm the lock after a certain period of time expires, to account for
forgetful persons. Obviously, this is not a person’s goal, but neither is it the
system’s goal because system-to-be does nothing on its own—it must receive an
external stimulus to take action. We will see later how this can be solved.

An actor can be a person or another system which interacts with our system-to-be.
There are two main categories of actors, defined relative to a particular use case:

1. Initiating actor (also called primary actor or simply user): initiates the use
case to realize a goal, which depends on the actor’s responsibilities and the
current context

2. Participating actor (also called secondary actor): participates in the use
case but does not initiate it; there are two subcategories:

(a) Supporting actor: helps the system-to-be to complete the use
case—that is, our system-to-be initiates the supporting actor

(b) Offstage actor: passively participates in the use case, i.e.,
neither initiates nor helps complete the use case, but may be
notified about some aspect of it

Actors may be defined in generalization hierarchies, in which an abstract actor
description is shared and augmented by one or more specific actor descriptions.

Table 2-4 implies that a software system is developed with a purpose/responsibility—this purpose
is assisting its users (actors) to achieve their goals. Use cases are usage scenarios and therefore
there must be an actor intentionally using this system. The issue of developer’s intentions vs.
possible usage scenarios is an important one and can be tricky to resolve. There is a tacit but
important assumption made by individual developers and large organizations alike, and that is
that they are able to control the types of applications in which their products will ultimately be
used. Even a very focused tool is designed not without potential to do other things—a clever user
may come up with unintended uses, whether serendipitously or intentionally.

Summary Use Cases

A use case is a usage scenario for an external entity, known as actor, and the system-to-be. A use
case represents an activity that an actor can perform on the system and what the system does in
response. It describes what happens when an actor disturbs our system from its “stationary state”
as the system goes through its motions until it reaches a new stationary state. It is important to
keep in mind that the system is reactive, not proactive; that is, if left undisturbed, the system
would remain forever in the equilibrium state.

Table 2-4 names the preliminary use cases for our case-study example. The reader may observe
that the summary use cases are similar to user stories (Table 2-3). Like user stories, summary use

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

Chapter 2 Object-Oriented Software Engineering 91

cases do not describe details of the business process. They just identify the user’s role (actor type)
and the capability that the system-to-be will provide (to assist in achieving the actor’s goals).

The same technique for effort estimation that works for user stories (Section 2.2.3) can be applied
to summary use cases. We can use again user story points and the development velocity to
estimate the project duration by applying equation (1.1), given in Section 1.2.5. Later, in Section
4.2.2, we will describe use case points for software size measurement and effort estimation.
However, use case points cannot be applied on summary use cases, because they require detailed
use case descriptions. Detailed use case descriptions require time and effort to obtain, so they will
become available only at a later stage in the project lifecycle (see Section 2.4.3).

Casual Description of Use Cases

SIDEBAR 2.3: The Task-Artifact Cycle

 Use case analysis as well as task analysis (Kirwan & Ainsworth, 1992) emerged in the
tradition of mechanization of work and the division of labor pioneered by F. W. Taylor
(Kanigel, 2005), which assumes that detailed procedure can be defined for every task. So far
we aimed to define the use cases in a technology-independent manner—the system usage
procedure should be independent of the device/artifact that currently implements the use case.
However, this is not easy or perhaps even possible to achieve, because the user activities will
depend on what steps are assumed to have been automated. For example, the details of the use
case UC-1 (Unlock) depend on the user identification technology. If a face-recognition
technology were available that automatically recognizes authorized from unauthorized users,
then UC-1 becomes trivial and requires no explicit user activities.

Consider a simple example of developing a digital wristwatch. For a
regular watch, the owner needs to manually adjust time or date when
traveling to a different time zone or at the end of a month. Therefore, we
need to define the use cases for these activities. On the other hand, if the
watch is programmed to know about the owner’s current GPS location,
time zones, calendar, leap years, daylight-saving schedule, etc., and it
has high quality hardware, then it needs no buttons at all. Some of this
information could be automatically updated if the watch is wirelessly
connected to a remote server. This watch would always show the correct
time because everything is automated. It has no use cases that are
initiated by the human owner, unlike a manually-operated watch. The
interested reader should consult (Vicente, 1999: p. 71, 100-106) for
further critique of how tasks affect artifacts and vice versa.

Ivan Marsic Rutgers University

92

Use Case Diagram

Figure 2-13 sums up the actors, use cases, and their relationships in a so-called use case
diagram. There are two use-case categories distinguished: “first-” vs. “second tier.” The “first
tier” use cases represent meaningful services provided by the system to an actor. The “second
tier” use cases represent elaborations or sub-services of the main services. In a sense, they are
equivalent of subroutines in programs because they capture some repetitive activity and can be
reused in multiple locations. The figure also shows the relationship of use cases in different tiers.
The two stereotypical- or cliché types of relationship are:

 «extend» – optional extensions of the main case

 «include» – required subtasks of the main case

The developer can introduce new stereotypes or clichés for representing the use case
relationships. Note also that the labels on communication lines («initiate» and «participate») are
often omitted to avoid cluttering.

The AuthenticateUser use case is not a good candidate for first tier use cases, because it does not
represent a meaningful stand-alone goal for an initiating actor. It is, however, useful to show it
explicitly as a second tier use case, particularly because it reveals which use cases require user
authentication. For example, one could argue that Lock does not need authentication, because
performing it without authentication does not represent a security threat. Similarly, Disable
should not require authentication because that would defeat the purpose of this case. It is of note
that these design decisions, such as which use case does or does not require authentication, may
need further consideration and justification. The reader should not take these lightly, because
each one of them can have serious consequences, and the reader is well advised to try to come up
with scenarios where the above design decisions may not be appropriate.

SIDEBAR 2.4: Is Login a Use Case?

«participate»

«initiate + participate»

«participate»

«participate»

«participate»

«participate»

First tier use cases Second tier use cases
system

boundary

communication

«include»

use case

«initiate»

«initiate»

Timer

LightSwitch

LockDevice

«initia
te»

Tenant

Landlord

actor

«initiate»

UC1: Unlock

UC2: Lock

UC7: AuthenticateUser

Figure 2-13: UML use case diagram for the device-control subsystem of the home access
system. Compare with Table 2-4.

Chapter 2 Object-Oriented Software Engineering 93

 A novice developer frequently identifies user login as a use case. On the other hand, expert
developers argue that login is not a use case. Recall that use case is motivated by user’s goal;
The user initiates interaction with the system to achieve a certain goal. You are not logging in
for the sake of logging in—you are logging in to do some work, and this work is your use case.

AddUser

SetDevicePrefsLandlord

«include»

«include»

Login
Landlord

AddUser

SetDevicePrefs

Login

BAD: GOOD:

The reader should not mistake the use case diagram for use cases. The diagram serves only to
capture an overview of the system services in a concise visual form. It summarizes the system
features and their relationships, without detailing how each feature should operate. Unlike this,
use cases are text stories that detail exactly what happens when an actor attempts to obtain a
service from the system. A helpful analogy is a book’s index vs. contents: a table-of-contents or
index is certainly useful, but the actual content represents the book’s main value. Similarly, a use
case diagram provides a useful overview index, but you need the actual use cases (contents) to
understand what the system does or is supposed to do.

Figure 2-14 shows the use cases for the second subsystem of the safe home access system, which
supports various account management activities. The diagrams in Figure 2-13 and Figure 2-14
form the use case diagram of the entire system.

Account Management Subsystem

«initiate»

Tenant

Landlord
«include»

«include»«p
ar

tic
ipa

te
»

«initiate»
«in

clu
de

»

«include»

«initiate»

«initiate»

UC8: Login

UC4: RemoveUser

UC6: SetDevicePrefs

UC3: AddUser

UC5: InspectAccessHistory

Figure 2-14: Use cases for the account-management subsystem of the home access system.

Ivan Marsic Rutgers University

94

Figure 2-15 shows additional relationships among use cases that can be used to improve the
informativeness of use case diagrams. For example, use cases that share common functionality
can be abstracted in a more general, “base” use case (Figure 2-15(a)). If a user’s goal has several
subgoals, some of which are optional, we can indicate this information in a use case diagram
using the «extend» stereotype. For example, we may design a use case to allow the user to
manage his account. As part of account management, optional activities that may or may not take
place are the inspection of access history and configuring the device-activation preferences
(Figure 2-15(b)).

2.4.2 System Boundary and Subsystems

Determining the System Boundary

Unfortunately, there are no firm guidelines of delineating the boundary of the system under
development. Drawing the system boundary is a matter of choice. However, once the boundary is
drawn, the interactions for all the actors must be shown in use cases in which they interact with
the system-to-be.

ManageUsers

UC4: RemoveUserUC3: AddUser

ManageUsers

UC4: RemoveUserUC3: AddUser

«extend»

«extend»

UC6: SetDevicePrefs

UC5: InspectAccessHistory

ManageAccount

«extend»

«extend»

UC6: SetDevicePrefs

UC5: InspectAccessHistory

ManageAccount

(a) (b)

Figure 2-15: More relationships among use cases: (a) Use case generalization; (b) Optional
use cases, denoted with the «extend» stereotype.

Chapter 2 Object-Oriented Software Engineering 95

Consider a variation of the home access control system which will be used for an apartment
building, or a community of apartment buildings, rather than a single-family home. The
management demands user identification based on face recognition, instead of alphanumeric
password keys. Roughly speaking, a face recognition system works by taking an image of a
person’s face (“mug shot”), compares it with the known faces, and outputs a Boolean result:
“authorized” or “unauthorized” user. Here are two variations (see Figure 2-16):

(a) You procure face recognition software, install it on your local computer, and link it up
with a standard relational/SQL database for memorizing the faces of legitimate users.

(b) After a preliminary study, you find that maintaining the database of legitimate faces,
along with training the recognition system on new faces and unlearning the faces of
departed residents, are overly complex and costly. You decide that the face recognition
processing should be outsourced to a specialized security company, FaceReco, Ltd. This
company specializes in user authentication, but they do not provide any application-
specific services. Thus, you still need to develop the rest of the access control system.

The first task is to identify the actors, so the issue is: Are the new tools (face recognition software
and relational database) new actors or they are part of the system and should not be distinguished
from the system? In case (a), they are not worth distinguishing, so they are part of the planned
system. Although each of these is a complex software system developed by a large organization,
as far as we (the developer) are concerned, they are just modules that provide data-storage and
user-authentication. Most importantly, they are under our control, so there is nothing special
about them as opposed to any other module of the planned system.

Therefore, for case (a), everything remains the same as in the original design. The use case
diagram is shown in Figure 2-13 and Figure 2-14.

Apartment building

Security
camera

Local
computer

Case (a):

Local face recognition

Case (b):

Remote face recognition FaceReco, Ltd.FaceReco, Ltd.

NetworkNetwork

Face
image

Figure 2-16: Alternative cases of face recognition the for secure home access system.

Ivan Marsic Rutgers University

96

For case (b), a part of the new use case diagram is shown in Figure 2-17 (the rest remains the
same as in Figure 2-13 and Figure 2-14). Now we need to distinguish a new actor, the FaceReco
Company which provides authentication services. There is a need-to-know that they are part of
the process of fulfilling some goal(s) of initiating actors.

Subsystems and Software Architecture

Figure 2-18 shows the traceability matrix that maps the system requirements to use cases. Its
purpose is to check that all requirements are covered by the use cases and none of the use cases is
created without a reason (i.e., without a requirement from which it was derived). If a use case is
derived from a requirement, then the corresponding entry in the matrix is checked. The Max PW
(priority weight) row shows the maximum priority of any checked requirement in the column
above. The bottom row shows the Total PW of each use case obtained by summing up the
priorities of the checked requirements in the column above. The Max PW and Total PW values
are used to schedule the work on implementing the sue cases. The highest-priority use cases will
be elaborated, implemented, and delivered the first.

2.4.3 Detailed Use Case Specification

A detailed use case description represents a use case of the system as a sequence of interactions
between external entities (actors) and the system-to-be. Detailed use cases are usually written as
usage scenarios or scripts, listing a specific sequence of actions and interactions between the
actors and the system. For use case scenarios, we will use a stepwise, “recipe-like” description. A
scenario describes in a step-by-step manner activities that an actor does and how the system
responds. A scenario is also called a use case instance, in the sense that it represents only one of

«initiate»

Landlord

Tenant

«include»

«participate»

«include»

«initiate»

UC8: Login

UC4: RemoveUser

UC3: AddUser

UC2: Lock

«include»

UC1: Unlock

UC7: AuthenticateUser

FaceReco, Ltd.

LockDevice

«participate»
«participate»

«participate»

Figure 2-17: Part of the modified use case diagram for that includes a new actor: FaceReco.
See text for details.

Chapter 2 Object-Oriented Software Engineering 97

several possible courses of action for a given use case. Use cases specify what information must
pass the boundary of a system when a user or another system interacts with it.

We usually first elaborate the “normal” scenario, also called main success scenario, which
assumes that everything goes perfect. Because everything flows straightforward, this scenario
usually does not include any conditions or branching—it flows linearly. It is just a causal
sequence of action/reaction or stimulus/response pairs. Figure 2-19 shows the use case schema.9

Alternate scenarios or extensions in a use case can result from:

 Inappropriate data entry, such as the actor making a wrong menu-item choice (other than
the one he/she originally intended), or the actor supplies an invalid identification.

 System’s inability to respond as desired, which can be a temporary condition or the
information necessary to formulate the response may never become available.

For each of the alternate cases we must create an event flow that describes what exactly happens
in such a case and lists the participating actors. Alternate scenarios are even more important than
the main success scenario, because they often deal with security issues.

Although we do not know what new uses the user will invent for the system, purposeful
development is what governs the system design. For example, attempt to burglarize a home may
be a self-contained and meaningful goal for certain types of system users, but this is not what we
are designing the system for—this is not a legal use case; rather, this must be anticipated and
treated as an exception to a legal use case. We will consider such “abuse cases” as part of security
and risk management (Section 2.4.4).

9 The UML standard does not specify a use case schema, so the format for use cases varies across different

textbooks. Additional fields may be used to show other important information, such as non-functional
requirements associated with the use case.

5 2 2 2 1 5 2 1

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

REQ1

REQ2

REQ3

REQ4

REQ5

REQ6

REQ7

REQ8

REQ9

5

2

5

4

2

1

2

1

1

Req’t PW

Max PW

15 3 2 2 3 9 2 3Total PW

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

Figure 2-18: Requirements-to-use-cases traceability matrix for the safe home access case
study. Priority weight (PW) given in Table 2-1. (Traceability continued in Figure 2-28.)

Ivan Marsic Rutgers University

98

A note in passing, the reader should observe that use cases are not specific to the object-oriented
approach to software engineering. In fact, they are decidedly process-oriented rather than object-
oriented, for they focus on the description of activities. As illustrated in Figure 1-9(a), at this
stage we are not seeing any objects; we see the system as a “black box” and focus on the
interaction protocol between the actor(s) and the black box. Only at the stage of building the
domain model we encounter objects, which populate the black box.

Detailed Use Cases

Detailed use cases elaborate the summary use cases (Table 2-4). For example, for the use case
Unlock, the main success scenario in an abbreviated form may look something like this:

Use Case UC-1: Unlock

Related Requirem’ts: REQ1, REQ3, REQ4, and REQ5 stated in Table 2-1

Initiating Actor: Any of: Tenant, Landlord

Actor’s Goal: To disarm the lock and enter, and get space lighted up automatically.

Participating Actors: LockDevice, LightSwitch, Timer

Preconditions: • The set of valid keys stored in the system database is non-empty.

• The system displays the menu of available functions; at the door

Use Case UC-#: Name / Identifier [verb phrase]

Related Require’ts: List of the requirements that are addressed by this use case

Initiating Actor: Actor who initiates interaction with the system to accomplish a goal

Actor’s Goal: Informal description of the initiating actor’s goal

Participating Actors: Actors that will help achieve the goal or need to know about the outcome

Preconditions: What is assumed about the state of the system before the interaction starts

Postconditions: What are the results after the goal is achieved or abandoned; i.e., what
must be true about the system at the time the execution of this use case is
completed

Flow of Events for Main Success Scenario:
 1. The initiating actor delivers an action or stimulus to the system (the arrow indicates

the direction of interaction, to- or from the system)
 2. The system’s reaction or response to the stimulus; the system can also send a message

to a participating actor, if any
 3. …
Flow of Events for Extensions (Alternate Scenarios):
What could go wrong? List the exceptions to the routine and describe how they are handled
 1a. For example, actor enters invalid data
 2a. For example, power outage, network failure, or requested data unavailable
 …

The arrows on the left indicate the direction of communication: Actor’s action; System’s reaction

 Figure 2-19: A general schema for UML use cases.

Chapter 2 Object-Oriented Software Engineering 99

keypad the menu choices are “Lock” and “Unlock.”

Postconditions: The auto-lock timer has started countdown from autoLockInterval.

Flow of Events for Main Success Scenario:
 1. Tenant/Landlord arrives at the door and selects the menu item “Unlock”
 2. include::AuthenticateUser (UC-7)
 3. System (a) signals to the Tenant/Landlord the lock status, e.g., “disarmed,” (b) signals

to LockDevice to disarm the lock, and (c) signals to LightSwitch to turn the light on
 4. System signals to the Timer to start the auto-lock timer countdown
 5. Tenant/Landlord opens the door, enters the home [and shuts the door and locks]

In step 5 above, the activity of locking the
door is in brackets, because this is covered
under the use case Lock, and does not concern
this use case. Of course, we want to ensure
that this indeed happens, which is the role of
an auto-lock timer, as explained later. An
extension scenario for the above use case may
specify how the system-to-be will behave
should the door be unlocked manually, using a
physical key.

Although extensions or alternate scenarios are
not listed in the description of UC-1, for each
of the steps in the main success scenario we must consider what could go wrong. For example,

 In Step 1, the actor may make a wrong menu selection

 Exceptions during the actor authentication are considered related to UC-7

 In Step 5, the actor may be held outside for a while, e.g., greeting a neighbor

For instance, to address the exceptions in Step 5, we may consider installing an infrared beam in
the doorway that detects when the person crosses it. Example alternate scenarios are given next
for the AuthenticateUser and Lock use cases.

In step 2 of UC-1, I reuse a “subroutine” use case, AuthenticateUser, by keyword “include,”
because I anticipate this will occur in other use cases, as well. Here is the main scenario for
AuthenticateUser as well as the exceptions, in case something goes wrong:

Use Case UC-7: AuthenticateUser (sub-use case)

Related Requirements: REQ3, REQ4 stated in Table 2-1

Initiating Actor: Any of: Tenant, Landlord

Actor’s Goal: To be positively identified by the system (at the door interface).

Participating Actors: AlarmBell, Police

Preconditions: • The set of valid keys stored in the system database is non-empty.

• The counter of authentication attempts equals zero.

Postconditions: None worth mentioning.

Flow of Events for Main Success Scenario:

Ivan Marsic Rutgers University

100

 1. System prompts the actor for identification, e.g., alphanumeric key
 2. Tenant/Landlord supplies a valid identification key
 3. System (a) verifies that the key is valid, and (b) signals to the actor the key validity

Flow of Events for Extensions (Alternate Scenarios):
2a. Tenant/Landlord enters an invalid identification key
 1. System (a) detects error, (b) marks a failed attempt, and (c) signals to the actor
 1a. System (a) detects that the count of failed attempts exceeds the maximum

allowed number, (b) signals to sound AlarmBell, and (c) notifies the Police actor
of a possible break-in

 2. Tenant/Landlord supplies a valid identification key
 3. Same as in Step 3 above

When writing a usage scenario, you should focus on what is essential to achieve
the initiating actor’s goal and avoid the details of how this actually happens. Focus
on the “what” and leave out the “how” for the subsequent stages of the
development lifecycle. For example, in Step 2 of the use case AuthenticateUser, I
just state that the user should provide identification; I do not detail whether this is
done by typing on a keypad, by scanning an RFID tag, or by some biometric
technology.

At the time of writing detailed use cases, we also write the corresponding user acceptance tests. In
the context of use cases, a user acceptance test case is a detailed procedure that fully tests a use
case or one of its flows of events. Recall that use cases are part of requirements engineering, and
the customer should help with specifying the acceptance tests. The focus is on what the user does,
not what the system does. This means that the test cases must be designed around the actual tasks
that the user will need to perform. Use-case-based acceptance tests are similar to acceptance tests
described in Section 2.2.1. As mentioned, testing functions that involve multi-step interaction
requires more than just specifying the input data and expected outcomes. Here we are able to
provide detailed steps for pass and fail conditions, because by now we have elaborated step-by-
step scenarios for use cases. Here is an example test case for testing the use case UC-1.

Test-case Identifier: TC-1.01

Use Case Tested: UC-1, main success scenario, and UC-7

Pass/fail Criteria: The test passes if the user enters a key that is contained in the database,
with less than a maximum allowed number of unsuccessful attempts

Input Data: Numeric keycode, door identifier

Test Procedure: Expected Result:

Step 1. Type in an incorrect keycode and a
valid door identifier

System beeps to indicate failure;
records unsuccessful attempt in the database;
prompts the user to try again

Step 2. Type in the correct keycode and door
identifier

System flashes a green light to indicate success;
records successful access in the database;
disarms the lock device

An acceptance test needs to convince the customer that the system works as expected.

Latch
bolt

Dead
bolt

Strike
plate

Chapter 2 Object-Oriented Software Engineering 101

We continue the elaboration of use cases with the main success scenario for the Lock use case:

Use Case UC-2: Lock

Related Requirements: REQ1, REQ2, and REQ5 stated in Table 2-1

Initiating Actor: Any of: Tenant, Landlord, or Timer

Actor’s Goal: To lock the door & get the lights shut automatically (?)

Participating Actors: LockDevice, LightSwitch, Timer

Preconditions: The system always displays the menu of available functions.

Postconditions: The door is closed and lock armed & the auto-lock timer is reset.

Flow of Events for Main Success Scenario:
 1. Tenant/Landlord selects the menu item “Lock”
 2. System (a) signals affirmation, e.g., “lock armed,” (b) signals to LockDevice to arm

the lock (if not already armed), (c) signal to Timer to reset the auto-lock counter, and
(d) signals to LightSwitch to turn the light off (?)

Flow of Events for Extensions (Alternate Scenarios):
2a. System senses that the door is not closed, so the lock cannot be armed
 1. System (a) signals a warning that the door is open, and (b) signal to Timer to start the

alarm counter
 2. Tenant/Landlord closes the door
 3. System (a) senses the closure, (b) signals affirmation to the Tenant/Landlord, (c)

signals to LockDevice to arm the lock, (d) signal to Timer to reset the auto-lock
counter, and (e) signal to Timer to reset the alarm counter

Note that in this case, the auto-lock timer appears as both the initiating and participating actor for
this use case. (This is also indicated in the use case diagram in Figure 2-13.) This is because if the
timeout time expires before the timer is reset, Timer automatically initiates the Lock use case, so
it is an initiating actor. Alternatively, if the user locks the door before the timeout expires, the
timer will be reset, so it is an offstage actor, as well.

I also assume that a single Timer system can handle multiple concurrent requests. In the Lock use
case, the timer may be counting down the time since the lock has been disarmed. At the same
time, the system may sense that the door is not closed, so it may start the alarm timer. If the door
is not shut within a given interval, the system activates the AlarmBell actor and may notify the
Police actor.

You may wonder why not just say that the system will somehow handle the auto-lock
functionality rather than going into the details of how it works. Technically, the timer is part of
the system-to-be, so why should it be declared an external actor?! Recall that the system is always
passive—it reacts to an external stimulus but does nothing on its own initiative. Thus, to get the
system perform auto-lock, somebody or something must trigger it to do so. This is the
responsibility of Timer. Timer is an external stimulus source relative to the software under
development, although it will be part of the end hardware-plus-software system.

Next follows the description of the ManageUsers use case:

Use Case UC-3: AddUser

Related Requirements: REQ6 stated in Table 2-1

Ivan Marsic Rutgers University

102

Initiating Actor: Landlord

Actor’s Goal: To register new or remove departed residents at runtime.

Participating Actors: Tenant

Preconditions: None worth mentioning. (But note that this use case is only available
on the main computer and not at the door keypad.)

Postconditions: The modified data is stored into the database.

Flow of Events for Main Success Scenario:
 1. Landlord selects the menu item “ManageUsers”
 2. Landlord identification: Include Login (UC-8)
 3. System (a) displays the options of activities available to the Landlord (including “Add

User” and “Remove User”), and (b) prompts the Landlord to make selection
 4. Landlord selects the activity, such as “Add User,” and enters the new data
 5. System (a) stores the new data on a persistent storage, and (b) signals completion

Flow of Events for Extensions (Alternate Scenarios):
4a. Selected activity entails adding new users: Include AddUser (UC-3)
4b. Selected activity entails removing users: Include RemoveUser (UC-4)

The Tenant is a supporting actor for this use case, because the tenant will input his identification
(password or a biometric print) during the registration process. Note that in UC-3 we include the
subordinate use case Login (UC-8), which is not the same as AuthenticateUser, numbered UC-7.
The reason is that UC-7 is designed to authenticate persons at the entrance(s). Conversely, user
management is always done from the central computer, so we need to design an entirely different
use case. The detailed description of the use case AddUser will be given in Problem 2.19 and
RemoveUser is similar to it.

In Table 2-4 we introduced UC-5: Inspect Access History, which roughly addresses REQ8 and
REQ9 in Table 2-1. I will keep it as a single use case, although it is relatively complex and the
reader may wish to split it into two simpler use cases. Here is the description of use case UC-5:

Use Case UC-5: Inspect Access History

Related Requirements: REQ8 and REQ9 stated in Table 2-1

Initiating Actor: Any of: Tenant, Landlord

Actor’s Goal: To examine the access history for a particular door.

Participating Actors: Database, Landlord

Preconditions: Tenant/Landlord is currently logged in the system and is shown a
hyperlink “View Access History.”

Postconditions: None.

Flow of Events for Main Success Scenario:
 1. Tenant/Landlord clicks the hyperlink “View Access History”
 2. System prompts for the search criteria (e.g., time frame, door location, actor role, event

type, etc.) or “Show all”
 3. Tenant/Landlord specifies the search criteria and submits
 4. System prepares a database query that best matches the actor’s search criteria and

Chapter 2 Object-Oriented Software Engineering 103

retrieves the records from the Database
 5. Database returns the matching records

6. System (a) additionally filters the retrieved records to match the actor’s search criteria;
(b) renders the remaining records for display; and (c) shows the result for
Tenant/Landlord’s consideration

 7. Tenant/Landlord browses, selects “interesting” records (if any), and requests further
investigation (with an accompanying complaint description)

8. System (a) displays only the selected records and confirms the request; (b) archives the
request in the Database and assigns it a tracking number; (c) notifies Landlord about
the request; and (d) informs Tenant/Landlord about the tracking number

The following example illustrates deriving a use case in a different domain. The main point of
this example is that use cases serve as a vehicle to understand the business context and identify
the business rules that need to be implemented by the system-to-be.

Example 2.1 Restaurant Automation, terminating a worker employment

Consider the restaurant automation project described on the book website (given in Preface). One of
the requirements states that the restaurant manager will be able to manage the employment status:

REQ8: The manager shall be able to manage employee records for newly hired employees, job
reassignments and promotions, and employment termination.

Based on the requirement, a student team derived a use case for employment termination, as shown:

Use Case UC-10: Terminate Employee (FIRST VERSION)
Related Requirem’ts: REQ8
Initiating Actor: Manager
Actor’s Goal: To fire or layoff an employee.
Participating Actors:
Preconditions:
Postconditions:
Failed End Condition:

 System successfully updated Employee List.
 Employee List failed to update

Flow of Events for Main Success Scenario:
 1. Manager selects Delete option next to employee’s name
 2. System asks Manager to confirm that the selected employee should be deleted from list
 3. Manager confirms action to delete the employee
 4. (a) System removes the employee from Employee List; (b) updates Employee List
Flow of Events for Extensions (Alternate Scenarios):
3a. Manager selects Cancel option
 1. System does not delete the employee

So then, dismissing an employee is as simple as deleting a list item! I pointed out that in real world
nothing works so simple. We are not talking about some arbitrary database entries that can be edited as
someone pleases. These entries have certain meaning and business significance and there must be
some rules on how they can be edited. This is why the developer must talk to the customer to learn the
business rules and local laws. Even a student team doing an academic project (and not having a real
customer) should visit a local restaurant and learn how it operates. As a minimum, they could do some
Web research. For example, employee rights in the state of New York are available here:
http://www.ag.ny.gov/bureaus/labor/rights.html. The manager must ensure that the employee received any
remaining pay; that the employee returned all company belongings, such as a personal computer, or
whatever; the manager may also need to provide some justification for the termination; etc. As a result,
it is helpful to refine our requirement:

Ivan Marsic Rutgers University

104

REQ8: The manager shall be able to manage employee records for newly hired employees, job
reassignments and promotions, and employment termination in accord with local laws.

Back to the drawing board, and the second version looked like this:

Use Case UC-10: Terminate Employee (SECOND VERSION)
Related Requirem’ts: REQ8
Initiating Actor: Manager
Actor’s Goal: To fire or layoff an employee.
Participating Actors:
Preconditions: Removed employee is not currently logged into the system.

 Removed employee is has already clocked out.
 Removed employee has returned all company belongings.

Postconditions:
Failed End Condition:

 System successfully updated Employee List.
 Employee List failed to update.

Flow of Events for Main Success Scenario:
 1. Manager selects Delete option next to employee’s name
 2. System asks Manager to confirm that the selected employee should be deleted from list
 3. Manager confirms action to delete the employee
 4. (a) System confirms the employee has been paid; (b) removes the employee from

Employee List; (c) updates Employee List
Flow of Events for Extensions (Alternate Scenarios):
3a. Manager selects Cancel option
 1. System does not delete the employee
4a. System alerts Manager that the employee has not been paid
 1. System does not remove the employee from employee roster and aborts this use case
 2. System opens Payroll <<include>> ManagePayroll (UC-13)

I thought this is an amazing trick: whatever you find difficult to solve in your use case, just state it in
the preconditions, so that the initiating actor ensures that the system can do its work smoothly! The
user serves the system instead the system serving the user. Compared to the first version, almost
nothing was changed except that all the hard issues are now resolved as preconditions. Also, in step
4(a), it is not clear how can System confirm that the employee has been paid? And if the employee has
not been paid, the alternative scenario throws the user into another use case, ManagePayroll (UC-13),
where he will again just update some database record. However, updating a database record does not
ensure that the employee has actually received his payment!

In the age of automation, we should strive to have computer systems do more work and human users
do less work. A professionally prepared use case for restaurant employment termination should look
something like this:

Use Case UC-10: Terminate Employee (THIRD VERSION)
Related Requirem’ts: REQ8
Initiating Actor: Manager
Actor’s Goal: To fire or layoff an employee.
Participating Actors:
Preconditions:
Postconditions:

Failed End Condition:

Employee’s record is moved to a table of past employees for auditing
purposes.

Flow of Events for Main Success Scenario:
 1. Manager enters the employee’s name or identifier
 2. System displays the employee’s current record
 3. Manager reviews the record and requests termination of employment
 4. System asks the manager to select the reason for termination, such as layoff, firing, etc.

and the date when the termination will take effect

Chapter 2 Object-Oriented Software Engineering 105

 5. Manager selects the reason for termination and the effective date
 6. (a) System checks that in case of firing the decision is justified with past written warnings

documenting poor performance, irresponsibility or breaches of policy.
(b) System informs the Manager about the benefits the employee will receive upon
departure, such as severance pay or unused vacation days, and asks the Manager to
confirm after informing the employee (in person or by email)

 7. Manager confirms that the employee has been informed.
 8. (a) System makes a record of any outstanding wages and the date by which they should

be mailed to the employee as required by the local laws. A new record is created in a
table of pending actions.
(b) System checks if the employee is currently logged in into the company’s computer
system; if yes, it automatically logs off and blocks the employee’s account
(c) System checks the employee record and informs the Manager the employee before
leaving should return any restaurant-owned uniforms, keys or property that was issued to
the employee

 9. Manager confirms that the employee has returned all company belongings
 10. System moves the employee record to a table of past employees, informs the Manager,

and queries the Manager if he or she wishes to post a classifieds advertisement for a new
employee

 11. Manager declines the offer and quits this use case
Flow of Events for Extensions (Alternate Scenarios):
6a. System determines that the decision firing has not been justified with past written warnings
 1. System informs the Manager that because of a lack of justification, the company may be

liable to legal action, and asks the Manager to decide whether to continue or cancel
 2. Manager selects one option and the System continues from Step 6(b) in Main Scenario
9a. Manager selects the items currently with the employee
 1. System (a) asks the Manager whether to continue or suspend the process until the

employee has returned all company belongings; (b) saves the current unfinished
transaction in a work-in-progress table and sets a period to send reminders for completion

Note that preconditions are not indicated because I could not think of any condition that, if not met,
would make impossible the execution of this use case. Similarly, no postconditions are indicated. One
may think that an appropriate precondition is that this employee should exist in the database. However,
it is conceivable that in Step 2 of the main success scenario the system cannot find any record of this
employee, in which case this should be handled as an alternate scenario.

An additional feature to consider may be that the system initiates a classifieds advertisement to fill the
vacant position created by terminating this employee. It is great to invent new features, but the
developer must make it clear that adding new features will likely postpone the delivery date and
increase project costs. Only our customer can make such decisions.

System Sequence Diagrams

A system sequence diagram represents in a visual form a usage scenario that an actor experiences
while trying to obtain a service from the system. In a way, they summarize textual description of
the use case scenarios. As noted, a use case may have different scenarios, the main success
scenario and the alternate ones. A system sequence diagram may represent one of those scenarios
in entirety, or a subpart of a scenario. Figure 2-20 shows two examples for the Unlock use case.

Ivan Marsic Rutgers University

106

The key purpose of system sequence diagrams (as is the case with use cases) is to represent what
information must pass the system boundary and in what sequence. Therefore, a system sequence
diagram can contain only a single box, named System, in the top row, which is our system-to-be.
All other entities must be actors. At this stage of the development cycle, the system is still
considered atomic and must not be decomposed into its constituent parts.

It may appear that we are “peering inside” the black box when stating what system does internally
during the actor system exchanges. But, note that we are specifying the “what” that the black
box does, not “how” this gets done.

Activity Diagrams

(a)

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open

open the lock

LightSwitch
«supporting actor»

turn on the light

LockDevice
«supporting actor»

Timer
«offstage actor»

start ("duration“)

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open

open the lock

LightSwitch
«supporting actor»

turn on the light

LockDevice
«supporting actor»

Timer
«offstage actor»

start ("duration“)

(b)

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: invalid key
prompt to try again

AlarmBell
«supporting actor»

loop

sound alarm

Police
«offstage actor»

notify intrusion

Figure 2-20: UML System sequence diagrams for the Unlock use case: (a) main success
scenario; (b) burglary attempt scenario. The diagram in (b) shows UML “loop” interaction
frame, which delineates a fragment that may execute multiple times.

Chapter 2 Object-Oriented Software Engineering 107

Use Cases for Requirements Engineering

Use cases are a popular tool for gathering requirements and specifying system behavior.
However, I do not want to leave the reader with an illusion that use cases are the ultimate solution
for requirements analysis. As any other tool, they have both virtues and shortcomings. I hope that
the reader experienced some virtues from the preceding presentation. On the shortcomings side,
the suitability of use cases for gathering requirements may be questioned because you start
writing the use cases given the requirements. Also, use cases are not equally suitable for all
problems. Considering the projects defined in Section 1.5 and the book website (given in
Preface), use cases seem to be suitable for the restaurant automation project. In general, the use
case approach is best suited for the reactive and interactive systems. However, they do not
adequately capture activities for systems that are heavily algorithm-driven, such as the virtual
biology lab and financial markets simulation (both described at the book website, given in
Preface), or data-intensive, such as databases or large data collections. Some alternative or
complementary techniques are described in Chapter 3.

2.4.4 Security and Risk Management

A business process risk is the chance of something happening that will have an impact on the
process objectives, such as financial or reputational damage, and is measured in terms of
likelihood and consequence. Identifying and preempting the serious risks that will be faced by the
system is important for any software system, not only for the ones that work in critical settings,
such as hospitals, etc. Potential risks depend on the environment in which the system is to be
used. The root causes and potential consequences of the risks should be analyzed, and reduction
or elimination strategies devised. Some risks are intolerable while others may be acceptable and
should be reduced only if economically viable. Between these extremes are risks that have to be
tolerated only because their reduction is impractical or grossly expensive. In such cases the
probability of an accident arising because of the hazard should be made as low as reasonably
practical (ALARP).

Risk Identification Risk Type Risk Reduction Strategy

Lock left disarmed (when it should be armed) Intolerable Auto-lock after autoLockInterval
Lock does not disarm (faulty mechanism) ALARP Allow physical key use as alternative

To address the intolerable risk, we can design an automatic locking system which observes the
lock state and auto-locks it after autoLockInterval seconds elapses. The auto-locking system
could be made stand-alone, so its failure probability is independent of the main system. For
example, it could run in a different runtime environment, such as separate Java virtual machines,
or even on a separate hardware and energy source.

The probability of a risk occurrence is usually computed based on historical data.

a risk condition capturing the situation upon which the risk of a given fault may occur. a fault in a
business process is an undesired state of a process instance which may lead to a process failure
(e.g. the violation of a policy may lead to a process instance being interrupted). Identifying a fault
in a process requires determining the condition upon which the fault occurs. If a risk is detected

Ivan Marsic Rutgers University

108

Idea

Disciplined development

Product
SOFTWARE ENGINEERING

during requirements analysis, remedial actions should be taken to rectify the use case design and
prevent an undesired state of the business process (fault for short), from occurring.

Risk Identification phase, where risk analysis is carried out to identify risks in the process model
to be designed. Traditional risk analysis methods such as IEC 61025 Fault Tree Analysis (FTA)
and Root Cause Analysis can be employed in this phase. The output of this phase is a set of risks,
each expressed as a risk condition.

M. Soldal Lund, B. Solhaug, and K. Stolen. Model-Driven Risk Analysis. Springer, 2011.

Risk analysis involves more than just considering “what could go wrong” in different steps of
use-case scenarios. It is possible that each step is executed correctly, but system as a whole fails.
Such scenarios represent misuse cases. For example, an important requirement for our safe-
home-access system is to prevent dictionary attacks (REQ4 in Table 2-1). As described later in
Section 2.5.2, we need to count the unsuccessful attempts, but also need to reset the counter if the
user leaves before providing a valid key or reaching the maximum allowed number of
unsuccessful attempts. To detect such situations, the system may run a timer for
maxAttemptPeriod duration and then reset the counter of unsuccessful attempts.
Assume that an intruder somehow learned the maximum of allowed unsuccessful
attempts and maxAttemptPeriod. The intruder can try a dictionary attack with the
following misuse case:

invalid-key, invalid, … maxNumOfAttempts ; wait maxAttemptPeriod ; invalid, invalid, …

To ensure fault tolerance, a stand-alone system should monitor the state-variable values and
prohibit the values out of the safe range, e.g., by overwriting the illegal value. Ideally, a different
backup system should be designed for each state variable. This mechanism can work even if it is
unknown which part of the main program is faulty and causes the illegal value to occur.

A positive aspect of a stand-alone, one-task-only system is its simplicity and lack of
dependencies, inherent in the main system, which makes it resilient; a negative aspect is that the
lack of dependencies makes it myopic, not much aware of its environment and unable to respond
in sophisticated manner.

2.4.5 Why Software Engineering Is Difficult (2)
“It’s really hard to design products by focus groups. A lot of times, people don’t know what they want until

you show it to them.” —Steve Jobs, BusinessWeek, May 25 1998

A key reason, probably the most important one, is that
we usually know only approximately what we are to
do. But, a general understanding of the problem is not
enough for success. We must know exactly what to do
because programming does not admit vagueness—it is
a very explicit and precise activity.

History shows that projects succeed more often when requirements are well managed.
Requirements provide the basis for agreement with the users and the customer, and they serve as
the foundation for the work of the development team. Software defects often result from

Chapter 2 Object-Oriented Software Engineering 109

misunderstanding the requirements, not only because of inadequate developmental skills. This
means that requirements provide a vital linkage to ensure that teams deliver systems that solve
real business problems. You need to ensure that you “do the right thing the right way.”

When faced with a difficult decision, it is a good idea to ask the customer for help. After all, the
customer can judge best what solution will work best for him and he will easier accept
compromises if they were involved in making them. However, this is not always simple. Consider
the projects described at the book website (given in Preface). Asking the customer works fine in
the restaurant automation project. Even in the virtual biology lab, we can interview a biology
course instructor to help with clarifying the important aspects of cell biology. However, who is
your customer in the cases of vehicle traffic monitoring and stock investment fantasy league
(Section 1.5.1)? As discussed in the description of the traffic-monitoring project, we are not even
sure whom the system should be targeted to.

More about requirements engineering and system specification can be found in Chapter 3.

2.5 Analysis: Building the Domain Model

“I am never content until I have constructed a mechanical model of the subject I am studying.
If I succeed in making one, I understand; otherwise I do not.” —Lord Kelvin (Sir William Thomson)

Use cases looked at the system’s environment (actors) and the system’s external behavior. Now
we turn to consider the inside of the system. This shift of focus is contrasted in Figure 2-21. In
Section 1.2.3 I likened object-oriented analysis to setting up an enterprise. The analysis phase is
concerned with the “what” aspect—identifying what workers need to be hired and what things
acquired. Design (Section 2.6) deals with the “how” aspect—how these workers interact with
each other and with the things at their workplace to accomplish their share in the process of
fulfilling a service request. Of course, as any manager would tell you, it is difficult to make a

1
2

34
5

67
8

90

1
2

34
5

67
8

90
Concept 2

Concept 1

Actor
(Bank

customer)

Actor

System

(b)(a)

Concept 3

Concept n

Domain Model

Actor
(Remote

datacenter)
Actor(ATM machine)

Figure 2-21: (a) Use case model sees the system as a “black box.” (b) Domain model peers
inside the box to uncover the constituent entities and their (static) relations that make the
black box behave as described by its use cases.

Ivan Marsic Rutgers University

110

clear boundary between the “what” and the “how.” We should not be purists about this—the
distinction between Analysis and Design is primarily to indicate where the emphasis should be
during each stage of development.

We already encountered concepts and their relations in Section 1.3 when describing concept
maps as a diagrammatic representation of knowledge about problem domains. Domain model
described here is similar to a concept map, although somewhat more complex, as will become
apparent soon.

2.5.1 Identifying Concepts

Back to our setting-up-an-enterprise approach, we need to hire workers with appropriate expertise
and acquire things they will work with. To announce the openings under a classifieds section, we
start by listing the positions or, better, responsibilities, for which we are hiring. We identify the
responsibilities by examining the use case scenarios and system sequence diagrams. For example,
we need a worker to verify whether or not the key entered by the user is valid, so we title this
position KeyChecker. We also need a worker to know (memorize, or keep track of) the collection
of valid keys, so we advertise an opening for KeyStorage. Further, to operate the lock and the
light/switch, we come up with LockOperator and LightOperator positions, respectively. Note that
concept name is always a noun phrase.

In building the domain model, a useful strategy is to start from the “periphery” (or “boundary”) of
the system, as illustrated in Figure 2-22. That is, we start by assigning concepts that handle
interactions between the organization and the outside world, that is, between the actors and the
system. Each actor interacts with at least one boundary object. The boundary object collects the
information from the actor and translates it into a form that can be used by “internal” objects. As
well, the boundary object may translate the information in the other direction, from “internal”
objects to a format suitable for an actor.

Organizations are often fronted by a point-of-contact person. A common pattern is to have a
specialized worker to take orders from the clients and orchestrate the workings of the workers

Actor A

Actor B Actor D

Actor C

Boundary concepts

Step 1: Identifying the boundary concepts

Actor A

Actor B

Actor C

Step 2: Identifying the internal concepts

Actor D

Concept 1Concept 1

Concept 2Concept 2

Internal
conceptsConcept 2Concept 2

Concept 3Concept 3

Concept 4Concept 4

Concept 1Concept 1

Concept 3Concept 3

Concept 5Concept 5

Concept 4Concept 4

Concept 6Concept 6

Figure 2-22: A useful strategy for building a domain model is to start with the “boundary”
concepts that interact directly with the actors (Step 1), and then identify the internal
concepts (Step 2).

Chapter 2 Object-Oriented Software Engineering 111

inside the system. This type of object is known as Controller. For a complex system, each use
case or a logical group of use cases may be assigned a different Controller object.

When identifying positions, remember that no task is too small—if it needs to be done, it must be
mentioned explicitly and somebody should be given the task responsibility. Table 2-5 lists the
responsibilities and the worker titles (concept names) to whom the responsibilities are assigned.
In this case, it happens that a single responsibility is assigned to a single worker, but this is not
necessarily the case. Complex responsibilities may be assigned to multiple workers and vice versa
a single worker may be assigned multiple simple responsibilities. Further discussion of this issue
is available in the solution of Problem 2.29 at the end of this chapter.

Table 2-5: Responsibility descriptions for the home access case study used to identify the
concepts for the domain model. Types “D” and “K” denote doing vs. knowing
responsibilities, respectively.

Responsibility Description Typ Concept Name
Coordinate actions of all concepts associated with a use case, a logical
grouping of use cases, or the entire system and delegate the work to other
concepts.

D Controller

Container for user’s authentication data, such as pass-code, timestamp,
door identification, etc.

K Key

Verify whether or not the key-code entered by the user is valid. D KeyChecker
Container for the collection of valid keys associated with doors and users. K KeyStorage
Operate the lock device to armed/disarmed positions. D LockOperator
Operate the light switch to turn the light on/off. D LightOperator
Operate the alarm bell to signal possible break-ins. D AlarmOperator
Block the input to deny more attempts if too many unsuccessful attempts. D Controller
Log all interactions with the system in persistent storage. D Logger

Based on Table 2-5 we draw a draft domain model for our case-study #1 in Figure 2-23. During
analysis, objects are used only to represent possible system state; no effort is made to describe
how they behave. It is the task of design (Section 2.6) to determine how the behavior of the
system is to be realized in terms of the behavior of objects. For this reason, objects at analysis
time have no methods/operations (as seen in Figure 2-23).

UML does not have designated symbols for domain concepts, so it is usual to adopt the symbols
that are used for software classes. I added a smiley face or a document symbol to distinguish
“worker” vs. “thing” concepts. Workers get assigned mainly doing responsibilities, while things
get assigned mainly knowing responsibilities. This labeling serves only as a “scaffolding,” to aid
the analyst in the process of identifying concepts. The distinction may not always be clear cut,
because some concepts may combine both knowing- and doing types of responsibilities. In such
cases, the concepts should be left unlabeled. This is the case for KeycodeEntry and StatusDisplay
in Figure 2-23. Like a real-world scaffolding, which is discarded once construction is completed,
this scaffolding is also temporary in nature.

Another useful kind of scaffolding is classifying concepts into the following three categories:
«boundary», «control», and «entity». This is also shown in Figure 2-23. At first, Key may be
considered a «boundary» because keys are exchanged between the actors and the system. On the
other hand, keys are also stored in KeyStorage. This particular concept corresponds to neither one
of those, because it contains other information, such as timestamp and the door identifier. Only

Ivan Marsic Rutgers University

112

pass-codes identifying the actors are exchanged between the actors and the system (concept:
KeycodeEntry) and this information is transferred to the Key concept.

Figure 2-23 shows a single concept for operating household devices. This concept is obtained by
abstracting common properties of different device-operating concepts in Table 2-5. We show
such generalization diagrammatically as in Figure 2-24. Currently, the single concept appears
sufficient and, given that we prefer parsimonious designs, we leave Figure 2-23 unmodified.
Later, more detailed consideration will reveal the need for distinguishing different device
operators (see Figure 2-25(b)).

Responsibilities for use case UC-5: Inspect Access History can be derived based on the detailed
description of UC-5 (Section 2.4.3). We can gather the doing (D) and knowing (K)
responsibilities as given in Table 2-6.

Table 2-6: Responsibility descriptions for UC-5: Inspect Access History of the home access
case study.

Responsibility Description Type Concept Name
Rs1. Coordinate actions of concepts associated with this use case and
delegate the work to other concepts.

D Controller

Rs2. Form specifying the search parameters for database log retrieval K Search Request

«entity»
KeyChecker

«control»
Controller

«entity»
Key

«entity»
KeyStorage

Symbolizes
“worker”-type
concept.

«boundary»
KeycodeEntry

«boundary»
StatusDisplay

Resident

Symbolizes
“thing”-type
concept.

Symbolizes
“thing”-type
concept.

LockDevice

LightSwitch

«boundary»
HouseholdDeviceOperator

Figure 2-23: Partial domain model for the case study #1, home access control.

«boundary»
LockOperator

«boundary»
HouseholdDeviceOperator

«boundary»
MusicPlayerOperator

«boundary»
LightOperator

«boundary»
AlarmOperator

Figure 2-24: Generalization of the concept HouseholdDeviceOperator (Figure 2-23) as a
conceptual superclass obtained by identifying commonality among the concepts that operate
different household devices.

Chapter 2 Object-Oriented Software Engineering 113

(from UC-5, Step 2).
Rs3. Render the retrieved records into an HTML document for sending
to actor’s Web browser for display.

D Page Maker

Rs4. HTML document that shows the actor the current context, what
actions can be done, and outcomes of the previous actions.

K Interface Page

Rs5. Prepare a database query that best matches the actor’s search
criteria and retrieve the records from the database (from UC-5, Step 4).

D
Database
Connection

Rs6. Filter the retrieved records to match the actor’s search criteria (from
UC-5, Step 6).

D Postprocessor

Rs7. List of “interesting” records for further investigation, complaint
description, and the tracking number.

K
Investigation
Request

Rs8. Archive the request in the database and assign it a tracking number
(from UC-5, Step 8).

D Archiver

Rs9. Notify Landlord about the request (from UC-5, Step 8). D Notifier

Note that upon careful examination we may conclude that responsibility Rs6 is relatively simple
and it should be assigned to the Page Maker (Postprocessor concept would be rejected). Similarly,
responsibilities Rs8 and Rs9 may be deemed relatively simple and assigned to a single concept
Archiver (Notifier concept would be rejected).

Let us assume that we reject Postprocessor and keep Notifier because it may need to send follow-
up notifications.

The partial domain model corresponding to the subsystem that implements UC-5 is shown later in
Figure 2-26, completed with attributes and associations.

t is worth noting at this point how an artifact from one phase directly feeds into the subsequent
phase. We have use case scenarios feed into the system sequence diagrams, which in turn feed

into the domain model. This traceability property is critical for a good development method
(process), because the design elaboration progresses systematically, without great leaps that are
difficult to grasp and/or follow.

Domain model is similar to a concept map (described in Section 1.3)—it also represents concepts
and their relations, here called associations—but domain model is a bit more complex. It can
indicate the concept’s stereotype as well as its attributes (described in the next section).

Note that we construct a single domain model for the whole system. The domain model is
obtained by examining different use case scenarios, but they all end up contributing concepts to
the single domain model.

2.5.2 Concept Associations and Attributes

Associations

Associations (describe who needs to work together and why, not how they work together).
Associations for use case UC-5: Inspect Access History can be derived based on the detailed
description of UC-5 (Section 2.4.3).

Table 2-7: Identifying associations for use case UC-5: Inspect Access History.

Concept pair Association description Association name

I

Ivan Marsic Rutgers University

114

Controller Page
Maker

Controller passes requests to Page Maker and
receives back pages prepared for displaying

conveys requests

Page Maker
Database Connection

Database Connection passes the retrieved data to
Page Maker to render them for display

provides data

Page Maker
Interface Page

Page Maker prepares the Interface Page prepares

Controller
Database Connection

Controller passes search requests to Database
Connection

conveys requests

Controller
Archiver

Controller passes a list of “interesting” records and
complaint description to Archiver, which assigns the
tracking number and creates Investigation Request

conveys requests

Archiver
Investigation Request

Archiver generates Investigation Request generates

Archiver Database
Connection

Archiver requests Database Connection to store
investigation requests into the database

requests save

Archiver Notifier
Archiver requests Notifier to notify Landlord about
investigation requests

requests notify

Figure 2-25(a) (completed from Figure 2-23) and Figure 2-26 also show the associations between
the concepts, represented as lines connecting the concepts. Each line also has the name of the
association and sometimes an optional “reading direction arrow” is shown as ►. The labels on
the association links do not signify the function calls; you could think of these as just indicating
that there is some collaboration anticipated between the linked concepts. It is as if to know
whether person X and person Y collaborate, so they can be seated in adjacent cubicles/offices.
Similarly, if objects are associated, they logically belong to the same “package.”

The reader should keep in mind that it is more important to identify the domain concepts than
their associations (and attributes, described next). Every concept that the designer can discover
should be mentioned. Conversely, for an association (or attribute), in order to be shown it should
pass the “does it need to be mentioned?” test. If the association in question is obvious, it should
be omitted from the domain model. For example, in Figure 2-25(a), the association Controller–
obtains–Key is fairly redundant. Several other associations could as well be omitted, because the
reader can easily infer them, and this should be done particularly in schematics that are about to
become cluttered. Remember, clarity should be preferred to accurateness, and, if the designer is
not sure, some of these can be mentioned in the text accompanying the schematic, rather than
drawn in the schematic itself.

Chapter 2 Object-Oriented Software Engineering 115

Attributes

The domain model may also include concept attributes, as is for example shown in Figure 2-25.
Example attributes are deviceStatuses (with valid values “activated” and “stopped”)
that record the current state of the physical devices operated by HouseholdDeviceOperator.
Careful consideration reveals that a single household-device-operator concept is not sufficient.
Although all physical devices share a common attribute (deviceStatus), they also have
specific needs (Figure 2-25(b)). The lock device needs to be armed after an auto-lock interval, so
the corresponding concept needs an extra attribute autoLockInterval. We also discussed allowing
the user to explicitly set the interval to hold open the lock open, which requires another attribute.
The LightOperator needs to check the room illumination before activating the light bulb, so it is
associated with the illumination detector concept. The MusicPlayerOperator needs the playlist of
tracks, so it is associated with the Playlist concept. Even the deviceStatus attribute may have

«control»
Controller

numOfAttempts
maxNumOfAttempts

«control»
Controller

numOfAttempts
maxNumOfAttempts

«entity»
KeyChecker

«entity»
KeyChecker

«entity»
Key

userIdentityCode
timestamp
doorLocation

«entity»
KeyStorage

«entity»
KeyStorage

co
nv

e
ys

 r
eq

ue
st

s

verifies

retrieves valid keys

“Reading direction arrow.”
Has no meaning; it only helps reading
the association label, and is often left out.

“Reading direction arrow.”
Has no meaning; it only helps reading
the association label, and is often left out.

«boundary»
KeycodeEntry

«boundary»
StatusDisplay

Resident

LockDevice

LightSwitch

Association
name

conveys requests «boundary»
HouseholdDeviceOperator

deviceStatuses

obtains Attributes

(a)

asks-illumination provides-play-
schedule

«boundary»
LockOperator

autoLockInterval
holdOpenInterval
acceptingInterval

«boundary»
MusicPlayerOperator

«boundary»
LightOperator

«boundary»
AlarmOperator

«boundary»
IlluminationDetector

«entity»
PlayList

«boundary»
HouseholdDeviceOperator

deviceStatus

notifies-members

«entity»
NotificationList

(b)

asks-illumination provides-play-
schedule

«boundary»
LockOperator

autoLockInterval
holdOpenInterval
acceptingInterval

«boundary»
MusicPlayerOperator

«boundary»
LightOperator

«boundary»
AlarmOperator

«boundary»
IlluminationDetector

«entity»
PlayList

«boundary»
HouseholdDeviceOperator

deviceStatus

«boundary»
HouseholdDeviceOperator

deviceStatus

notifies-members

«entity»
NotificationList

(b)

Figure 2-25: (a) Domain model from Figure 2-23 completed with attributes and
associations. (b) Concepts derived from HouseholdDeviceOperator in Figure 2-24

Ivan Marsic Rutgers University

116

different values for different devices, such as “disarmed” and “armed” for LockOperator;
“unlit” and “lit” for LightOperator; etc., which are more descriptive than the generic ones
“activated” and “stopped”. Although device operators differ from one another, they also
share common properties, so it is useful to indicate in the domain model diagram that they are
related through the common base concept HouseholdDeviceOperator (Figure 2-25(b)).

Table 2-8 shows how the subset of attributes related to use case UC-5: Inspect Access History is
systematically derived based on the detailed description of UC-5 (Section 2.4.3).

Table 2-8: Attributes for use case UC-5: Inspect Access History.

Concept Attributes Attribute Description

Search
Request

user’s
identity

Used to determine the actor’s credentials, which in turn specify
what kind of data this actor is authorized to view.

search
parameters

Time frame, actor role, door location, event type (unlock, lock,
power failure, etc.).

Postprocessor
search
parameters

Copied from search request; needed to Filter the retrieved records
to match the actor’s search criteria.

Investigation
Request

records list List of “interesting” records selected for further investigation.
complaint
description

Describes the actor’s suspicions about the selected access records.

tracking
number

Allows tracking of the investigation status.

Archiver
current
tracking
number

Needed to assign a tracking number to complaints and requests.

Notifier
contact
information

Contact information of the Landlord who accepts complaints and
requests for further investigation.

One more attribute that could be considered is for the Page Maker to store the data received from
Database Connection. Recall that earlier we merged the Postprocessor concept with Page Maker,
which now also has the responsibility to filter the retrieved records to match the actor’s search
criteria.

«control»
Controller

«entity»
InvestigationRequest

recordsList
complaintDescr
trackingNum

«boundary»
DatabaseConnection

«boundary»
Notifier

contactInfo

«entity»
PageMaker

co
nv

e
ys

 r
eq

ue
st

s

pr
ep

a
re

s

provides-data
Database

Landlord

«boundary»
SearchRequest

userID
searchParams

«boundary»
InterfacePage

Resident

«entity»
Archiver

currentTrackNum

posts

conveys-requests

conveys-requests generates

saves-data-to

uses

receives

Figure 2-26: The domain model for UC-5: Inspect Access History of home access control.

Chapter 2 Object-Oriented Software Engineering 117

In Figure 2-25(a), another possible candidate attribute is numOfKeys in the KeyStorage.
However, this is a kind of trivial attribute not worth mentioning, because it is self-evident that the
storage should know how many keys it holds inside.

An attribute numOfAttempts counts the number of failed attempts for the user before sounding
the alarm bell, to tolerate inadvertent errors when entering the key code. In addition, there should
be defined the maxNumOfAttempts constant. At issue here is which concept should possess
these attributes? Because a correct key is needed to identify the user, the system cannot track a
user over time if it does not know user’s identity (a chicken and egg problem!). One option is to
introduce real-world constraints, such as temporal continuity, which can be stated as follows. It is
unlikely that a different user would attempt to open the doors within a very short period of time.
Thus, all attempts within, say, two minutes can be ascribed to the same user10. For this we need to
introduce an additional attribute maxAttemptPeriod or, alternatively, we can specify the
maximum interval between two consecutive attempts, maxInterAttemptInterval.

The knowledge or expertise required for the attempts-counting worker comprises the knowledge
of elapsed time and the validity of the last key typed in within a time window. The
responsibilities of this worker are:

1. If numOfAttempts maxNumOfAttempts, sound the alarm bell and reset
numOfAttempts = 0

2. Reset numOfAttempts = 0 after a specified amount of time (if the user discontinues
the attempts before reaching maxNumOfAttempts)

3. Reset numOfAttempts = 0 after a valid key is presented

A likely candidate concept to contain these attributes is the KeyChecker, because it is the first to
know the validity of a presented key. On the other hand, if we introduce the AlarmOperator
concept (Figure 2-24), then one may argue that AlarmOperator should contain all the knowledge
about the conditions for activating the alarm bell. However, we should remember that, once the
threshold of allowed attempts is exceeded, the system should activate the alarm, but also deny
further attempts (recall the detailed description of UC-7: AuthenticateUser in Section 2.4.3). In
Table 2-5, the responsibility for blocking the input to deny more attempts was assigned to the
Controller. Therefore, we decide that the best concept to place the attributes related to counting
unsuccessful attempts is the Controller, as shown in Figure 2-25(a).

10 Of course, this assumption is only an approximation. We already considered a misuse case in Section

2.4.4. We could imagine, for instance, the following scenario. An intruder makes numOfAttempts =
maxNumOfAttempts - 1 failed attempts at opening the lock. At this time, a tenant arrives and the
intruder sneaks away unnoticed. If the tenant makes a mistake on the first attempt, the alarm will be
activated, and the tenant might assume that the system is malfunctioning. Whether the developer should
try to address this scenario depends on the expected damages, as well as the time and budget constraints.

Ivan Marsic Rutgers University

118

As already said, during the analysis we should make every effort to stay with what needs to be
done and avoid considering how things are done. Unfortunately, as seen, this is not always
possible. The requirement of tolerating inadvertent typing errors (“unsuccessful attempts”) has
led us into considerable design detail and, worse, we are now committed to a specific technical
solution of the problem.

2.5.3 Domain Analysis
“Scientists should always state the opinions upon which their facts are based.”—Author unknown

Figure 2-27

When developing a software-based system, we are modeling the user and environment in the
software system. The model incorporates internal structures representing the problem domain.
These structures include data representing entities and relations in the domain, and a program
prescribing how these data may be manipulated. Modeling necessarily involves simplification and
abstraction. The purpose of simplification is to make the development manageable: The system
should solve one problem, not all problems.

As discussed in Section 1.2.3, the analyst needs to consider not only what needs to be done, but
also how it can be done—what are feasible ways of doing it. We cannot limit the domain analysis
to the inside of the system-to-be, because all useful systems operate by interacting with their
environment. We need to know what is at our disposal in the external world …

Potential user
Speaks Klingon
Curiosity-driven
Expected commands:

nIH, Suq, naw‘, Degh

Professional user
Speaks Esperanto
Conformity-driven
Expected commands:

Ekzemplero, Alglui,
Redakti, Viŝi

CURRENT USER Accidental user
Does not speak
Chance-driven
Expected commands:
<meaningless - ignore>

C

Potential user
Speaks Klingon
Curiosity-driven
Expected commands:

nIH, Suq, naw‘, Degh

Professional user
Speaks Esperanto
Conformity-driven
Expected commands:

Ekzemplero, Alglui,
Redakti, Viŝi

CURRENT USER Accidental user
Does not speak
Chance-driven
Expected commands:
<meaningless - ignore>

C

Figure 2-27: In domain analysis, we look at the external world from inside out and specify
only what the system-to-be needs to know to function as required.

Chapter 2 Object-Oriented Software Engineering 119

he traceability matrix of the domain model is shown in Figure 2-28. This matrix traces the
domain concepts to the use cases from which they were derived. This mapping continues the

development lifecycle traceability from Figure 2-18. Note that we have two Controller concepts,
Controller-SS1 for the first subsystem that controls the devices (Figure 2-25(a)) and Controller-
SS2 for the second subsystem that supports desktop interaction with the system (Figure 2-26).

A more detailed traceability may be maintained for critical projects including risk analysis
traceability (Section 2.4.4) that traces potential hazards to their specific cause; identified
mitigations to the potential hazards; and specific causes of software-related hazards to their
location in the software.

2.5.4 Contracts: Preconditions and Postconditions

Contracts express any important conditions about the attributes in the domain model. In addition
to attributes, contract may include facts about forming or breaking relations between concepts,
and the time-points at which instances of concepts are created or destroyed. You can think of a
software contract as equivalent to a rental contract, which spells out the condition of an item prior
to renting, and will spell out its condition subsequent to renting. For example, for the operations
Unlock and Lock, the possible contracts are:
Operation

Unlock

T

UC1

UC2

UC3

UC4

UC5

UC6

UC7

UC8

15

3

2

2

3

9

2

3

Use
Case

PW

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

C
on

tr
ol

le
r-

S
S

2

S
ea

rc
hR

eq
ue

st

In
te

rf
ac

eP
ag

e

P
ag

eM
ak

er

A
rc

hi
ve

r

D
at

ab
as

eC
on

ne
ct

io
n

N
ot

ifi
er

In
ve

st
ig

at
io

nR
eq

ue
st

C
on

tr
ol

le
r-

S
S

1

K
e

y

K
e

yS
to

ra
ge

K
e

yC
he

ck
er

K
e

yc
od

eE
nt

ry

S
ta

tu
sD

is
pl

a
y

H
ou

se
ho

ld
D

ev
ic

eO
pe

ra
to

r
X

X

X XX

X

X

X

XX

X X

X

X

X

X

X

X

X

Domain Concepts

X X X

Figure 2-28: Use-cases-to-domain-model traceability matrix for the safe home access case
study. (PW = priority weight) (Continued from Figure 2-18 and continues in Figure 2-36.)

Ivan Marsic Rutgers University

120

Preconditions
• set of valid keys known to the system is not empty

• numOfAttempts maxNumOfAttempts

• numOfAttempts = 0, for the first attempt of the current user
Postconditions

• numOfAttempts = 0, if the entered Key Valid keys

• current instance of the Key object is archived and destroyed

The system should be fair, so each user should be allowed the same number of retries
(maxNumOfAttempts). Thus, the precondition about the system for a new user is that
numOfAttempts starts at zero value. (I already discussed the issue of detecting a new user and
left it open, but let us ignore it for now.) The postcondition for the system is that, after the current
user ends the interaction with the system, numOfAttempts is reset to zero.

Operation

Lock
Preconditions

None (that is, none worth mentioning)
Postconditions

• lockStatus = “armed”, and

• lightStatus remains unchanged (see text for discussion)

In the postconditions for Lock, we explicitly state that lightStatus remains unchanged
because this issue may need further design attention before fully solved. For example, we may
want to somehow detect the last person leaving the home and turn off the light behind them.

The operation postconditions specify the guarantees of what the system will do, given that the
actor fulfilled the preconditions for this operation. The postconditions must specify the outcomes
for worst-case vs. average-case vs. best-case scenarios, if such are possible.

2.6 Design: Assigning Responsibilities

“A designer knows he has achieved perfection not when there is nothing left to add, but when there is
nothing left to take away.” —Antoine De Saint-Exupéry

“… with proper design, the features come cheaply. This approach is arduous, but continues to succeed.”
—Dennis Ritchie

Analysis (Section 2.5) dealt with what is needed for our system; we determined how the customer
interacts with the system to obtain services and what workers (concepts) need to be acquired to
make this possible. Analysis is in a way the acquisition phase of the enterprise establishment.
Design (this section), on the other hand, deals with organization, how the elements of the system
work and interact. Therefore, design is mainly focused on the dynamics of the system. Unlike
analysis, where we deal with abstract concepts, here we deal with concrete software objects.

O
B

JE
C

T-
O

R
IE

N
T

ED
 D

E
S

IG
N

O
B

JE
C

T-
O

R
IE

N
T

ED
 D

E
S

IG
N

Chapter 2 Object-Oriented Software Engineering 121

We already encountered system sequence diagrams in Section 2.4.3. As Figure 2-29 illustrates, in
the design phase we are zooming-in inside the system and specifying how its software objects
interact to produce the behaviors observed by the actors. One way to think about the design
problem is illustrated in Figure 2-30. Imagine that you draw a map showing the actors and objects
as “stations” to be visited in the course of executing a use case scenario. The goal of design is to
“connect the dots/stations” in a way that is in some sense “optimal.” Initially, we know that the
path starts with the initiating actor, because the purpose of the system is to assist the initiating
actor in achieving a goal. The path also ends with the initiating actor after the system returns the
computation results. In between, the path should visit the participating actors. So, we know the
entry and exit point(s), and we know the computing responsibilities of concepts (Section 2.5).
Objects need to be called (by sending messages) to fulfill their computing (or, “doing”)
responsibility, and we need to decide how to “connect the dots.” That is, we need is to assign the
messaging responsibilities—who calls each “worker” object, and for “thing” objects we need to
decide who creates them, who uses them, and who updates them. Software designer’s key activity
is assigning responsibilities to the software objects acquired in domain analysis (Section 2.5).

Initially, we start designing the object interactions using the concepts from the domain model. As
we progress and elaborate our design and get a better understanding of what can be implemented
and how (having in mind the capabilities and peculiarities of our chosen programming language),
we will need to substitute some concepts with one or more actual classes. It is important to trace
the evolution from the abstract domain model to specific classes (see Section 2.6.2).

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open
open the lock,
turn on the light

Timer
«offstage actor»

start ("duration“)

checkKey()
sk := getNext()

setOpen(true)

: Checker : KeyStorage

val == null : setLit(true)

alt val != null

[else]

ystemystem

Controller : LockCtrl

System Sequence Diagram

Design
Sequence Diagram

Figure 2-29: Designing object interactions: from system sequence diagrams to interaction
diagrams. The magnifier glass symbolizes looking at interactions inside the system.

Ivan Marsic Rutgers University

122

Consider, for example, use case UC-5: Inspect Access History for which the doing (D) and
knowing (K) responsibilities are given in Table 2-6 (Section 2.5.1). Suppose that we want to
design the interactions only for Steps 4 – 6 of use case UC-5. Start at the point when the system
receives the search criteria from the actor and stop at the point when an HTML page is prepared
and sent to actor’s browser for viewing. Dynamic object interactions can be represented using
UML sequence diagrams (Sidebar 2.5).

Figure 2-31(a) shows the dilemma of responsibility assignment for the example of use case UC-5.
First, we observe that among the objects in Table 2-6 Archiver, Notifier, and Investigation
Request do not participate in Steps 4–6 of UC-5. Hence, we need to consider only Database
Connection and Page Maker. (Controller participates in every interaction with the initiating
actor.) Second, because this is a Web-based solution, the design will need to be adjusted for the
Web context. For example, Interface Page will not be a class, but an HTML document (with no
class specified). The Search-Request will be sent from the browser to the server as plain text
embedded in an HTTP message.

List of the responsibilities to be assigned (illustrated in Figure 2-31(a)):

R1. Call Database Connection (to fulfill Rs5, defined in Table 2-6 as: retrieve the records
from the database that match the search criteria)

R2. Call Page Maker (to fulfill Rs3, defined in Table 2-6 as: render the retrieved records into
an HTML document)

There is also the responsibility (R3) to check if the list of records retrieved from the database is
empty (because there are no records that match the given search criteria). Based on the outcome,
a different page will be shown to the actor.

:Notifier:DatabaseConn
DatabaseDatabase LandlordLandlordResidentResident

:Archiver:Controller:SearchRequest:InterfacePage :PageMaker :InvestigRequest

Figure 2-30: The design problem seen as “connecting the dots” on the “map” of
participating objects.

Chapter 2 Object-Oriented Software Engineering 123

SIDEBAR 2.5: Interaction Diagrams

 Interaction diagrams display protocols—permitted dynamic relations among objects in the
course of a given activity. This sidebar highlights the main points and the reader should check
the details in a UML reference. You read a UML sequence diagram from the top down:

 At the top, each box represents an object, which may be named or not. If an object is
named, the name is shown in the box to the left of the colon. The class to which the
object belongs is shown to the right of the colon.

 Each timeline (dashed vertical line) describes the world from the vantage point of the
object depicted at the top of the timeline. As a convention, time proceeds downward,
although in a concurrent program the activities at the same level in the diagram do not
necessarily occur at the same time (see Section 5.3).

 Thin elongated boxes on a timeline represent the activities of the particular object (the
boxes/bars are optional and can be omitted)

 Links (solid horizontal lines with arrows) between the timelines indicate the followed-
by relation (not necessarily the immediately-followed-by relation). The link is
annotated with a message being sent from one object to another or to itself.

 Normally, all “messages” are method calls and, as such, must return. The return action
is denoted by a dashed horizontal link at the bottom of an activity box, oriented
opposite of the message arrow. Although this link is often omitted if the method has no
return value, the call returns nonetheless. Some novices just keep drawing message
arrows in one direction and forget that these must return at some point and the caller
cannot proceed (send new messages) before the callee returns.

Another example is shown in Figure 2-31(a) for use case UC-1: Unlock. Here the dilemma is,
who should invoke the method activate("lock") on the DeviceCtrl to disarm the lock once
the key validity is established? One option is the Checker because it is the first to acquire the
information about the key validity. (Note that the KeyChecker is abbreviated to Checker to save
space in the diagram.) Another option is the Controller, because the Controller would need to
know this information anyway—to signal to the user the outcome of the key validation. An
advantage of the latter choice is that it maintains the Checker focused on its specialty (key

(a) (b)

: PageMaker: DatabaseConn

accessList := retrieve(params : string)

interfacePage :=
render(accessList : string)

? ?

R1.

R2.

checkKey()

: Checker : DeviceCtrl

?

: Controller

activate("lock")

Figure 2-31: Example of assigning responsibilities. (a) Which objects should be assigned
responsibilities R1 and R2? (b) Once the Key Checker decides the key is valid, the
DeviceCtrl should be notified to unlock the lock. Whose responsibility should this be?

Ivan Marsic Rutgers University

124

checking) and avoids assigning other responsibilities to it. Recall that in Figure 2-25 the
Controller has an association with the HouseholdDeviceOperator named “conveysRequests.”
Domain model concept associations provide only a useful hint for assigning communication
responsibilities in the design, but more is needed for making design decisions. Before I present
solutions to problems in Figure 2-31, I first describe some criteria that guide our design decisions.

Our goal is to derive a “good” design or, ideally, an optimal design. Unfortunately, at present
software engineering discipline is unable to precisely specify the quantitative criteria for
evaluating designs. Some criteria are commonly accepted, but there is no systematic framework.
For example, good software designs are characterized with:

 Short communication chains between the objects

 Balanced workload across the objects

 Low degree of connectivity (associations) among the objects

While optimizing these parameters we must ensure that messages are sent in the correct order and
other important constraints are satisfied. As already stated, there are no automated methods for
software design; software engineers rely on design heuristics. The design heuristics used to
achieve “optimal” designs can be roughly divided as:

1. Bottom-up (inductive) approaches that are applying design principles and design patterns
locally at the level of software objects (micro-level design). Design principles are
described in the next section and design patterns are presented in Chapter 5.

2. Top-down (deductive) approaches that are applying architectural styles globally, at the
system level, in decomposing the system into subsystems (macro-level design). Software
architectures are reviewed in Section 2.3.

Software engineer normally combines both approaches opportunistically. While doing design
optimization, it is also important to enforce the contracts (Section 2.5.4) and other constraints,
such as non-functional requirements. Object constraint specification is reviewed in Section 3.2.3.

2.6.1 Design Principles for Assigning Responsibilities

A popular approach to micro-level design is known as responsibility-driven design (RDD). We
know the types of responsibilities that objects can have (Section 1.4.2):

 Type 1 responsibility (knowing): Memorizing data or references, such as data values,
data collections, or references to other objects, represented as a property

 Type 2 responsibility (doing): Performing computations, such as data processing, control
of physical devices, etc., represented as a method

 Type 3 responsibility (communicating): Communicating with other objects, represented
as message sending (method invocation)

Hence, we need to decide what properties and methods belong to what object and what messages
are sent by objects. We have already performed responsibility assigning in the analysis phase
(Section 2.5). There, we “hired workers” to perform certain tasks, which in effect covers the first
two types of responsibility: assigning attributes, associations, and methods for performing

Chapter 2 Object-Oriented Software Engineering 125

computations. In the design stage of software lifecycle, we are dealing mainly with the third
responsibility type: sending messages to (invoking methods on) other objects.

Low cohesion

High cohesion

Tight coupling Loose coupling

Important design principles at the local, objects level include:

 Expert Doer Principle: that who knows should do the task

 High Cohesion Principle: do not take on too many responsibilities of Type 2
(computation)

 Low Coupling Principle: do not take on too many responsibilities of Type 3
(communication)

Expert Doer Principle helps shorten the communication chains between the objects. It essentially
states that, when assigning a responsibility for message sending, select the object which first

Ivan Marsic Rutgers University

126

learns the information needed to send the message. High Cohesion Principle helps in balancing
the workload across the objects and keeping them focused. Object’s functional cohesion is
inversely proportional to the number of computing responsibilities assigned to it. Low Coupling
Principle helps to reduce the number of associations among the objects. Object’s coupling is
directly proportional to the number of different messages the object sends to other objects.

Consider how to employ these design principles to the example of Figure 2-31(b). For example,
because the Checker is the first to acquire the information about the key validity, by the Expert
Doer Principle it is considered a good candidate to send a message to the DeviceCtrl to disarm the
lock. However, the High Cohesion Principle favors maintaining the Checker functionally focused
on its specialty (key checking) and opposes assigning other responsibilities to it. Ideally, High
Cohesion allows a single non-trivial responsibility per object. Suppose we let High Cohesion
override Expert Doer. A reasonable compromise is to assign the responsibility of notifying the
DeviceCtrl to the Controller. Note that this solution violates the Low Coupling Principle, because
Controller acquires relatively large number of associations. We will revisit this issue later.

As seen, design principles are not always in agreement with each other. Enforcing any particular
design principle to the extreme would lead to absurd designs. Often, the designer is faced with
conflicting demands and must use judgment and experience to select a compromise solution that
he feels is “optimal” in the current context. Another problem is that cohesion and coupling are
defined only qualitatively: “do not take on too many responsibilities.” Chapter 4 describes
attempts to quantify the cohesion and coupling.

Because precise rules are lacking and so much depends on the developer’s judgment, it is critical
to record all the decisions and reasoning behind them. It is essential to document the alternative
solutions that were considered in the design process, identify all the tradeoffs encountered, and
explain why the alternatives were abandoned. The process may be summarized as follows:

1. Identify the responsibilities; domain modeling (Section 2.5) provides a starting point;
some will be missed at first and identified in subsequent iterations

2. For each responsibility, identify the alternative assignments; if the choice appears to be
unique then move to the next responsibility

3. Consider the merits and tradeoffs of each alternative by applying the design principles;
select what you consider the “optimal” choice

4. Document the process by which you arrived to each responsibility assignment.

Some responsibility assignments will be straightforward and only few may require extensive
deliberation. The developer will use his experience and judgment to decide.

Example of Assigning Responsibilities

Let us go back to the problem of assigning responsibilities for UC-1 and UC-5 of the safe home
access case study, presented in Figure 2-31. We first consider use case UC-5: Inspect Access
History, and design the interactions only for its Steps 4 – 6. We first identify and describe
alternative options for assigning responsibilities identified above with Figure 2-31(a).

Assigning responsibility R1 for retrieving records from the Database Connection is relatively
straightforward. The object making the call must know the query parameters; this information is

Chapter 2 Object-Oriented Software Engineering 127

first given to the Controller, so by Expert Doer design principle, the Controller should be
assigned responsibility R1.

As for R2 (rendering the retrieved list), there are alternative options. The object making the call
must know the access list as retrieved from the Database. The feasible alternatives are:

1. Database Connection is the first to get hold of the access list records
2. Controller will probably be posting the Interface Page rendered by Page Maker, so it

would be convenient if Controller receives directly the return value from Page Maker

Finally, responsibility R3 to check if the list of records is empty could be assigned to:
1. The object that will be assigned responsibility R2, which can call different methods on

Page Maker
2. Page Maker, which will simply generate a different page for different list contents.

Next, let us employ the design principles, such as Expert Doer, High Cohesion, or Low Coupling
to decide on which object should be given which responsibility.

Consider first assigning responsibility R2. By the Expert Doer principle, the Database Connection
should make the call. However, this choice would lower the cohesion and increase coupling of
the Database Connection, which would need to pass the retrieved list to the rendering object
(Page Maker); in addition, it would need to know what to do with the rendered page returned by
the Page Maker. If we assign R2 to the Database Connection then Database Connection should
probably return the rendered page that it obtains from Page Maker, rather than the retrieved list
(as shown in Figure 2-31(a)). In other words, the method signature should be modified.

Alternatively, the Controller generally has the responsibility to delegate tasks, so the High
Cohesion design principle favors assigning R2 to the Controller. Both options (Database
Connection vs. Controller) contribute the same amount of coupling.

Therefore, we have a conflict among the design principles: Expert Doer favors assigning R2 to
the Database Connection while High Cohesion favors assigning R2 to the Controller). In this

: DatabaseConnection: Controller : PageMaker

get(queryRequest : string)

DatabaseDatabase

retrieve records

result

interfacePage := render(accessList : string)

ResidentResident

«html»
interfacePage :

specify
query

request

accessList := retrieve(params : string)

accessList != NULL

[else]

alt

result
displayed

page :=
renderList()
page :=
renderList()

page :=
warning()
page :=
warning()

«post page»

Figure 2-32: Sequence diagram for part of use case UC-5: Inspect Access History.

Ivan Marsic Rutgers University

128

case, one may argue that maintaining high cohesion is more valuable than satisfying Expert Doer.
Database Connection already has a relatively complex responsibility and adding new
responsibilities will only make things worse. Therefore, we opt for assigning R2 to the Controller.

Responsibility R3 should be assigned to Page Maker because this choice yields highest cohesion.
Figure 2-32 shows the resulting UML sequence diagram. Note that in Figure 2-32 the system is
not ensuring that only authorized users access the database. This omission will be corrected later
in Section 5.2.4 where it is used as an example for the Protection Proxy design pattern.

ext consider the use case UC-1: Unlock. Table 2-9 lists the communication (message
sending / method invocation) responsibilities for the system function “enter key” (shown in

the system sequence diagram in Figure 2-20).

Table 2-9: Communicating responsibilities identified for the system function “enter key.”
Compare to Table 2-5.

Responsibility Description
Send message to Key Checker to validate the key entered by the user.
Send message to DeviceCtrl to disarm the lock device.
Send message to DeviceCtrl to switch the light bulb on.
Send message to PhotoObserver to report whether daylight is sensed.
Send message to DeviceCtrl to sound the alarm bell.

Based on the responsibilities in Table 2-9, Figure 2-33 shows an example design for the system
function “enter key.” The Controller object orchestrates all the processing logic related to this
system function. The rationale for this choice was discussed earlier, related to Figure 2-31(b). We
also have the Logger to maintain the history log of accesses.

Note that there is a data-processing rule (also known as “business rule” because it specifies the
business policy for dealing with a given situation) hidden in our design:

 IF key ValidKeys THEN disarm lock and turn lights on

 ELSE

 increment failed-attempts-counter

 IF failed-attempts-counter equals maximum number allowed

 THEN block further attempts and raise alarm

By implementing this rule, the object possesses the knowledge of conditions under which a
method can or cannot be invoked. Hence, the question is which object is responsible to know this
rule? The needs-to-know responsibility has implications for the future upgrades or modifications.
Changes to the business rules require changes in the code of the corresponding objects.
(Techniques for anticipating and dealing with change are described in Chapter 5.)

Apparently, we have built an undue complexity into the Controller while striving to preserve high
degree of specialization (i.e., cohesion) for all other objects. This implies low cohesion in the
design; poor cohesion is equivalent to low degree of specialization of (some) objects.

N

Chapter 2 Object-Oriented Software Engineering 129

The reader should not think that the design in Figure 2-33 is the only one possible. Example
variations are shown in Figure 2-34. In variation (a) the Checker sets the key validity as a flag in
the Key object, rather than reporting it as the method call return value. The Key is now passed on
and DeviceCtrl obtains the key validity flag and decides what to do. The result: business logic is
moved from the Controller into the object that operates the devices. Such solution where the
correct functioning of the system depends on a flag in the Key object is fragile—data can become
corrupted as it is moves around the system. A more elegant solution is presented in Chapter 5,
where we will see how Publish/Subscribe design pattern protects critical decisions by
implementing them as operations, rather than arguments of operations. It is harder to make a
mistake of calling a wrong operation, than to pass a wrong argument value.

«destroy»

opt

«create»

sk := getNext()

logTransaction(k, val)

activate("lock")

: Controller : Checker : KeyStorage : DeviceCtrl : Logger: PhotoObsrv

dl := isDaylight()

alt

[else]

enterKey()

k : Key

val := checkKey(k)
loop

activate("bulb")

val == true

dl == false

compare(k, sk)

[for all stored keys]

numOfAttempts++

alt numOfAttempts == maxNumOfAttempts

activate("alarm")

denyMoreAttempts()

[else]

prompt: "try again"

Figure 2-33: Sequence diagram for the system function “enter key” (Figure 2-20). Several
UML interaction frames are shown, such as “loop,” “alt” (alternative fragments, of which
only the one with a condition true will execute), and “opt” (optional, the fragment executes
if the condition is true).

Ivan Marsic Rutgers University

130

Although the variation in Figure 2-34(b) is exaggerated, I have seen similar designs. It not only
assigns an awkward method name, checkIfDaylightAndIfNotThenSetLit(), but
worse, it imparts the knowledge encoded in the name onto the caller. Anyone examining this
diagram can infer that the caller rigidly controls the callee’s work. The caller is tightly coupled to
the callee because it knows the business logic of the callee. A better solution is in Figure 2-34(c).

Note that the graphical user interface (GUI) design is missing, but that is acceptable because the
GUI can be designed independently of the system’s business logic.

2.6.2 Class Diagram

Class diagram is created simply by reading the class names and their operations off of the
interaction diagrams. The class diagram of our case-study system is shown in Figure 2-35. Note
the similarities and differences with the domain model (Figure 2-25). Unlike domain models, the
class diagram notation is standardized by UML.

Because class diagram gathers class operations and attributes in one place, it is easier to size up
the relative complexity of classes in the system. The number of operations in a class correlates
with the amount of responsibility handled by the class. Good object-oriented designs distribute
expertise and workload among many cooperating objects. If you observe that some classes have
considerably greater number of operations than others, you should examine the possibility that
there may be undiscovered class(es) or misplaced responsibilities. Look carefully at operation
names and ask yourself questions such as: Is this something I would expect this class to do? Or, Is
there a less obvious class that has not been defined?

«destroy»

prompt:
"try again"

opt

k := create()

sk := getNext()

logTransaction(k, val)

activate(“lock”)

: Controller : Checker : KeyStorage : DeviceCtrl : Logger: PhotoObsrv

dl := isDaylight()

alt

[else]

enterKey()

k : Key

val := checkKey(k)
loop

activate(“bulb”)

val == true

dl == false

compare()

[for all stored keys]

numOfTrials++

opt numOfTrials == maxNumOfTrials activate(“alarm”)

: DeviceCtrl : PhotoSObs

dl := isDaylight()

activate("light")

opt dl == false

setLit(true)

: DeviceCtrl : PhotoSObs

dl := isDaylight()

activate("light")

opt dl == false

setLit(true)

c

a

checkIfDaylightAndIfNotThenSetLit()

: DeviceCtrl : PhotoSObs

dl := isDaylight()

opt dl == false

setLit(true)

The caller
could be
Controller or
Checker

checkIfDaylightAndIfNotThenSetLit()

: DeviceCtrl : PhotoSObs

dl := isDaylight()

opt dl == false

setLit(true)

The caller
could be
Controller or
Checker

b

k := create()

sk := getNext()

: Controller : Checker : KeyStorage : DeviceCtrlk : Key

checkKey(k) loop

setValid(ok)

controlLock(k)

ok := isValid()

opt ok == true

setOpen(true)

k := create()

sk := getNext()

: Controller : Checker : KeyStorage : DeviceCtrlk : Key

checkKey(k) loop

setValid(ok)

controlLock(k)

ok := isValid()

opt ok == true

setOpen(true)

Figure 2-34: Variations on the design for the use case “Unlock,” shown in Figure 2-33.

Chapter 2 Object-Oriented Software Engineering 131

Based on review of the class diagram, we may need to go back and revise (or, refactor, see
Section 2.7.6) the domain model and interaction diagrams. For example, one may see that the
Controller has significantly more connections than other classes (Figure 2-35), which will be
addressed in Chapter 5. This approach is characteristic of iterative development methodology.

e also continue maintaining the traceability between the software artifacts. Figure 2-36
traces how software classes evolved from the domain model (Section 2.5). The class

diagram in Figure 2-35 is partial, so we include the classes from Figure 2-32. We see that some
concepts have not been (yet) implemented as classes. Generally, it should be possible to trace all
concepts from the domain model to the class diagram. Some concepts will be mapped directly to
individual classes (although the concept’s name may be changed in the process); others may be
split into several classes. Concepts are derived from the system requirements, and they cannot
disappear without a reason. There are two reasons for a concept to be missing in the traceability
matrix: (i) the concept was derived from a low-priority requirement and the implementation of
this functionality has been deferred for later; or (ii) the corresponding requirement was dropped.

On the other hand, all classes must be traceable back to domain concepts. In iterative and
incremental development, the domain model is not derived completely up front. Rather, the
analysis in Section 2.5 only represents a first iteration. During the design, we may realize that the
domain model is incomplete and we need additional concepts to implement the requested
functionality. In this case, we go back and modify our domain model.

Some classes may not have a directly corresponding abstract concept, because they are introduced
for reasons specific to the programming language in which the system is implemented. Both
missing concepts and emerged (non-traceable) classes must be documented, with the reason for
their disappearance or emergence explained. Tracing elements from the requirements
specification to the corresponding elements in the design specification is part of design
verification and validation.

W

KeyChecker

+ checkKey(k : Key) : boolean
– compare(k : Key, sk : Key) : boolean

Key

– code_ : string
– timestamp_ : long
– doorLocation_ : string

KeyStorage

+ getNext() : Key

Logger

+ logTransaction(k : Key)

Controller

numOfAttemps_ : long
maxNumOfAttempts_ : long

+ enterKey(k : Key)
– denyMoreAttempts()

1

1 sensor

logger

11..*

validKeys 1

1 devCtrl

DeviceCtrl

devStatuses_ : Vector

+ activate(dev : string) : boolean
+ deactivate(dev :string) : boolean
+ getStatus(dev : string) : Object

PhotoSObsrv

+ isDaylight() : boolean

1

checker

Figure 2-35: Class diagram for the home access software-to-be. Compare to Figure 2-25.

Ivan Marsic Rutgers University

132

Class Relationships

Class diagram both describes classes and shows the relationships among them. We already
discussed object relationships in Section 1.4. In our particular case, Figure 2-35, there is an
aggregation relationship between KeyStorage and Key; all other relationships happen to be of the
“uses” type. The reader should also recall the access designations that signify the visibility of
class attributes and operations to other classes: + for public, global visibility; # for protected

visibility within the class and its descendant classes; and, − for private within-the-class-only
visibility (not even for its descendants).

Class diagram is static, unlike interaction diagrams, which are dynamic.

Generic Object Roles

As a result of having specific responsibilities, the members of object community usually develop
some stereotype roles.

 Structurer

 Bridge

Controller-SS1

StatusDisplay

Key

KeyStorage

KeyChecker

HouseholdDeviceOperator

IlluminationDetector

Controller-SS2

SearchRequest

InterfacePage

PageMaker

Archiver

DatabaseConnection

Notifier

InvestigationRequest

Domain Concepts

X

X

X

C
on

tr
ol

le
r-

S
S

2

S
ea

rc
hR

eq
ue

st

«h
tm

l»
in

te
rf

ac
eP

ag
e

P
ag

eM
ak

er

D
at

ab
as

eC
on

ne
ct

io
n

C
on

tr
ol

le
r-

S
S

1

K
ey

K
ey

S
to

ra
ge

K
ey

C
h

ec
ke

r

Lo
g

ge
r

P
ho

to
S

O
bs

rv

D
ev

ic
eC

tr
l

X

X

X

Software Classes

X

X

X

X

X

X

Figure 2-36: Domain-model-to-class-diagram traceability matrix for the safe home access
case study. (Continued from Figure 2-28.)

Chapter 2 Object-Oriented Software Engineering 133

Note that objects almost never play an exclusive role; several roles are usually imparted to
different degree in each object.

Object Communication Patterns

Communication pattern is a message-sending relation imposed on a set of objects. As with any
relation, it can be one-to-one or one-to-many and it can be deterministic or random (Section
3.1.1). Some of these patterns are illustrated in Figure 2-37.

Object-oriented design, particularly design patterns, is further elaborated in Chapter 5.

2.6.3 Why Software Engineering Is Difficult (3)

Another key cause is the lack of analytical methods for software design. Software engineers are
aiming at optimal designs, but quantitative criteria for optimal software design are largely
unknown. Optimality criteria appear to be mainly based upon judgment and experience.

2.7 Test-driven Implementation

“The good news about computers is that they do what you tell them to do. The bad news is that they do
what you tell them to do.” —Ted Nelson

AA BB PP
S2
S2

S1
S1

SN
SN

AA BB

(a) (b) (c)

Figure 2-37: Example object communication patterns. (a) One-to-one direct messages. (b)
One-to-many untargeted messages. (c) Via a shared data element.

Write
test

Write
code

Run
test

Verify &
validate

Figure 2-38: Test-driven implementation.

Ivan Marsic Rutgers University

134

Given a feature selected for implementation, test-driven implementation works by writing the
code for tests, writing the code that implements the feature, running the tests, and finally
verifying and validating the test results (Figure 2-38). If the results meet the expectations, we
move onto the next feature; otherwise, we need to debug the code, identify and fix the problem,
and test again.

2.7.1 Overview of Software Testing
“Testing shows the presence, not the absence of bugs.” —Edsger W. Dijkstra

Testing is often viewed as executing a program to see if it produces the correct output for a given
input. This implies testing the end-product, the software itself, which in turn means that testing
activities are postponed until late in the lifecycle. This is wrong because experience has shown
that errors introduced during the early stages of software lifecycle are the costliest and most
difficult to discover. A more general definition is that testing is the process of finding faults in
software artifacts, such as UML diagrams or code. A fault, also called “defect” or “bug,” is an
erroneous hardware or software element of a system that can cause the system to fail, i.e., to
behave in a way that is not desired or even harmful. We say that the system experienced failure
because of an inbuilt fault.

Any software artifact can be tested, including requirements specification, domain model, and
design specification. Testing activities should be started as early as possible. An extreme form of
this approach is test-driven development (TDD), one of the practices of Extreme Programming
(XP), in which development starts with writing tests. The form and rigor of testing should be
adapted to the nature of the artifact that is being tested. Testing of design sketches will be
approached differently than testing a software code.

Testing works by probing a program with different combinations of inputs to detect faults.
Therefore, testing shows only the presence of faults, not their absence. Showing the absence of
faults requires exhaustively trying all possible combinations of inputs (or following all possible
paths through the program). The number of possible combinations generally grows exponentially
with software size. However, it is not only about inadvertent bugs—a bad-intended programmer
might have introduced purposeful malicious features for personal gain or revenge, which are
activated only by a very complex input sequence. Therefore, it is impossible to test that a program
will work correctly for all imaginable input sequences. An alternative to the brute force approach
of testing is to prove the correctness of the software by reasoning (or, theorem proving).
Unfortunately, proving correctness generally cannot be automated and requires human effort. In
addition, it can be applied only in the projects where the requirements are specified in a formal
(mathematical) language. We will discuss this topic further in Chapter 3.

A key tradeoff of testing is between testing as many possible cases as possible while keeping the
economic costs limited. Our goal is to find faults as cheaply and quickly as possible. Ideally, we
would design a single “right” test case to expose each fault and run it. In practice, we have to run
many “unsuccessful” test cases that do not expose any faults. Some strategies that help keep costs
down include (i) complementing testing with other methods, such as design/code review,
reasoning, or static analysis; (ii) exploiting automation to increase coverage and frequency of
testing; and (iii) testing early in the lifecycle and often. Automatic checking of test results is

Chapter 2 Object-Oriented Software Engineering 135

preferred to keep the costs low, but may not always be feasible. For example, how to check the
display content of a graphical user interface?

Testing is usually guided by the hierarchical structure of the system (software architecture,
Section 2.3) as designed in the analysis and design phases (Figure 2-39). We may start by testing
individual components, which is known as unit testing. These components are incrementally
integrated into a system. Testing the composition of the system components is known as
integration testing. System testing ensures that the whole system complies with the functional
and non-functional requirements. The customer performs acceptance testing of the whole
system. (Acceptance tests and examples are described in Sections 2.2 and 2.4, when describing
requirements engineering.) As always, the logical organization does not imply that testing steps
should be ordered in time as shown in Figure 2-39. Instead, the development lifecycle evolves
incrementally and iteratively, and corresponding cycles will occur in testing as well.

Unit testing finds differences between the object design model and its corresponding
implementation. There are several benefits of focusing on individual components. One is the
common advantage of the divide-and-conquer approach—it reduces the complexity of the
problem and allows us to deal with smaller parts of the system separately. Second, unit testing
makes it easier to locate and correct faults because only few components are involved in the
process. Lastly, unit testing supports division of labor, so several team members can test different
components in parallel. Practical issues with unit testing are described in Section 2.7.3.

Regression testing seeks to expose new errors, or “regressions,” in existing functionality after
changes have been made to the system. A new test is added for every discovered fault, and tests
are run after every change to the code. Regression testing helps to populate test suite with good
test cases, because every regression test is added after it uncovered a fault in one version of the
code. Regression testing protects against reversions that reintroduce faults. Because the fault that
resulted in adding a regression test already happened, it may be an easy error to make again.

Unit
test

Unit
test

Unit
test

Integration
test

Component
code

Component
code

Component
code

Tested component

Integrated
modules

Function
test

Quality
test

Acceptance
test

Installation
test

System
test

System
in use

Ensure that each
component works
as specified

Ensures that all
components work
together

Verifies that functional
requirements are satisfied

Verifies non-functional
requirements

Customer verifies
all requirements

Testing in user
environment

Figure 2-39:Logical organization of software tests.

Ivan Marsic Rutgers University

136

Another useful distinction between testing approaches is what document or artifact is used for
designing the test cases. Black box testing refers to analyzing a running program by probing it
with various inputs. It involves choosing test data only from the specification, without looking at
the implementation. This testing approach is commonly used by customers, for example for
acceptance testing. White box testing chooses test data with knowledge of the implementation,
such as knowledge of the system architecture, used algorithms, or program code. This testing
approach assumes that the code implements all parts of the specification, although possibly with
bugs (programming errors). If the code omitted a part of the specification, then the white box test
cases derived from the code will have incomplete coverage of the specification. White box tests
should not depend on specific details of the implementation, which would prevent their
reusability as the system implementation evolves.

2.7.2 Test Coverage and Code Coverage

Because exhaustive testing often is not practically achievable, a key issue is to know when we
have done enough testing. Test coverage measures the degree to which the specification or code
of a software program has been exercised by tests. In this section we interested in a narrower
notion of code coverage, which measures the degree to which the source code of a program has
been tested. There are a number of code coverage criteria, including equivalence testing,
boundary testing, control-flow testing, and state-based testing.

To select the test inputs, one may make an arbitrary choice of what one “feels” should be
appropriate input values. A better approach is to select the inputs randomly by using a random
number generator. Yet another option is choosing the inputs systematically, by partitioning large
input space into a few representatives. Arbitrary choice usually works the worst; random choice
works well in many scenarios; systematic choice is the preferred approach.

Equivalence Testing

Equivalence testing is a black-box testing method that divides the space of all possible inputs into
equivalence groups such that the program “behaves the same” on each group. The goal is to
reduce the total number of test cases by selecting representative input values from each
equivalence group. The assumption is that the system will behave similarly for all inputs from an
equivalence group, so it suffices to test with only a single element of each group. Equivalence
testing has two steps: (i) partitioning the values of input parameters into equivalence groups and
(ii) choosing the test input values.

The trouble with this approach is that it is just as hard to find the equivalence classes of inputs as
it is to prove correctness. Therefore, we use heuristics (rules of thumb that are generally useful
but do not guarantee correctness) to select a set of test cases. We are essentially guessing based
on experience and domain knowledge, and hoping that at least one of the selected test cases
belongs to each of the true (unknown) equivalence classes.

Partitioning the values of input parameters into equivalence classes may be performed according
to the following heuristics:

 For an input parameter specified over a range of values, partition the value space into one
valid and two invalid equivalence classes. For example, if the allowed input values are
integers between 0 and 100, the valid equivalence class

0 100

valid equivalence class

invalid equivalence classes

Chapter 2 Object-Oriented Software Engineering 137

contains integers between 0 and 100, one invalid equivalence class contains all negative
integers, and the other invalid equivalence class contains all integers greater than 100.

 For an input parameter specified with a single value, partition the value space into one
valid and two invalid equivalence classes. For example, if the allowed value is a real
number 1.4142, the valid equivalence class contains a single element {1.4142}, one
invalid equivalence class contains all real number smaller than 1.4142, and the other
invalid equivalence class contains all real number greater than 1.4142.

 For an input parameter specified with a set of values, partition the value space into one
valid and one invalid equivalence class. For example, if the allowed value is any element
of the set {1, 2, 4, 8, 16}, the valid equivalence class contains the elements {1, 2, 4, 8,
16}, and the invalid equivalence class contains all other elements.

 For an input parameter specified as a Boolean value, partition the value space into one
valid and one invalid equivalence class (one for TRUE and the other for FALSE).

Equivalence classes defined for an input parameter must satisfy the following criteria:

1. Coverage: Every possible input value belongs to an equivalence class.

2. Disjointedness: No input value belongs to more than one equivalence class.

3. Representation: If an operation is invoked with one element of an equivalence class as an
input parameter and returns a particular result, then it must return the same result if any
other element of the class is used as input.

If an operation has more than one input parameter, we must define new equivalence classes for
combinations of the input parameters (known as Cartesian product or cross product, see Section
3.2.1).

For example, consider testing the Key Checker’s operation checkKey(k : Key) :
boolean. As shown in Figure 2-35, the class Key has three string attributes: code,
timestamp, and doorLocation. The operation checkKey() as implemented in Listing
2-4 does not use timestamp, so its value is irrelevant. However, we need to test that the output
of checkKey() does not depend on the value of timestamp. The other two attributes, code
and doorLocation, are specified with a set of values for each. Suppose that the system is
installed in an apartment building with the apartments numbered as {196, 198, 200, 202, 204,
206, 208, 210}. Assume that the attribute doorLocation takes the value of the associated
apartment number. On the other hand, the tenants may have chosen their four-digit access codes
as {9415, 7717, 8290, …, 4592}. Although a code value “9415” and doorLocation value
“198” are each valid separately, their combination is invalid, because the code value for the
tenant in apartment 198 is “7717.”

Therefore, we must create a cross product of code and doorLocation values and partition
this value space into valid and invalid equivalence classes. For the pairs of test input values
chosen from the valid equivalence class, the operation checkKey() should return the Boolean
value TRUE. Conversely, for the pairs of test input values from invalid equivalence classes it
should return FALSE.

When ensuring test coverage, we should consider not only the current snapshot, but also historic
snapshots as well. For example, when testing the Key Checker’s operation checkKey(), the

Ivan Marsic Rutgers University

138

previously-valid keys of former tenants of a given apartment belong to an invalid equivalence
class, although in the past they belonged to the valid equivalence class. We need to include the
corresponding test cases, particularly during integration testing (Section 2.7.4).

Boundary Testing

Boundary testing is a special case of equivalence testing that focuses on the boundary values of
input parameters. After partitioning the input domain into equivalence classes, we test the
program using input values not only “inside” the classes, but also at their boundaries. Rather than
selecting any element from an equivalence class, boundary testing selects elements from the
“edges” of the equivalence class, or “outliers,” such as zero, min/max values, empty set, empty
string, and null. Another frequent “edge” fault results from the confusion between > and >=. The
assumption behind this kind of testing is that developers often overlook special cases at the
boundary of equivalence classes.

For example, if an input parameter is specified over a range of values from a to b, then test cases
should be designed with values a and b as well as just above and just below a and b.

Control Flow Testing

Statement coverage selects a test set such that every elementary statement in the program is
executed at least once by some test case in the test set.

Edge coverage selects a test set such that every edge (branch) of the control flow is traversed at
least once by some test case. We construct the control graph of a program so that statements
become the graph edges, and the nodes connected by an edge represent entry and exit to/from the
statement. A sequence of edges (without branches) should be collapsed into a single edge.

a; b; if a then b; if a then b else c; while a do b;a;

a

not ab

a not a

b c

a a

b

a

b

Condition coverage (also known as predicate coverage) selects a test set such that every
condition (Boolean statement) takes TRUE and FALSE outcomes at least once in some test case.

Path coverage determines the number of distinct paths through the program that must be
traversed (travelled over) at least once to verify the correctness. This strategy does not account for
loop iterations or recursive calls. Cyclomatic complexity metric (Section 4.2.2) provides a simple
way of determining the number of independent paths.

State-based Testing

State-based testing defines a set of abstract states that a software unit can take and tests the
unit’s behavior by comparing its actual states to the expected states. This approach has become
popular with object-oriented systems. The state of an object is defined as a constraint on the
values of object’s attributes. Because the methods use the attributes in computing the object’s
behavior, the behavior depends on the object state.

Chapter 2 Object-Oriented Software Engineering 139

The first step in using state-based testing is to derive the state diagram for the tested unit. We start
by defining the states. Next, we define the possible transitions between states and determine what
triggers a transition from one state to another. For a software class, a state transition is usually
triggered when a method is invoked. Then we choose test values for each individual state.

The second step is to initialize the unit and run the test. The test driver exercises the unit by
calling methods on it, as described in Section 2.7.3. When the driver has finished exercising the
unit, assuming no errors have yet occurred, the test then proceeds to compare the actual state of
the unit with its expected state. If the unit reached the expected state, the unit is considered
correct regardless of how it got to that state.

Assume that we are to test the Controller class of our safe home access case study (the class
diagram shown in Figure 2-35). The process of deriving the state diagrams and UML state
diagram notation are described in Chapter 3. A key responsibility of the Controller is to prevent
the dictionary attacks by keeping track of unsuccessful attempts because of an invalid key.
Normally, we assume that the door is locked (as required by REQ1 in Table 2-1). The user
unlocks the door by providing a valid key. If the user provided an invalid key, the Controller will
allow up to maxNumOfAttempts unsuccessful attempts, after which it should block and sound
alarm. Therefore, we identify the following elements of the state diagram (Figure 2-40):

 Four states { Locked, Unlocked, Accepting, Blocked }

 Two events { valid-key, invalid-key }

 Five valid transitions { LockedUnlocked, LockedAccepting, AcceptingAccepting,
AcceptingUnlocked, AcceptingBlocked }

A test set consists of scenarios that exercise the object along a given path through the state
diagram. In general the number of state diagram elements is

all-events, all-states all-transitions all-paths

invalid-key [numOfAttemps maxNumOfAttempts] /
signal-failure

invalid-key /
signal-failure

invalid-key
[numOfAttemps maxNumOfAttempts] /

sound-alarm

Blocked

Locked

valid-key /
signal-success

valid-key /
signal-success

Unlocked

Accepting

state

event guard condition

action

transition

Figure 2-40: UML state diagram for the Controller class in Figure 2-35. The notation for
UML state diagrams is introduced in Section 3.2.

Ivan Marsic Rutgers University

140

Because the number of possible paths in the state diagram is generally infinite, it is not practical
to test each possible path. Instead, we ensure the following coverage conditions:

 Cover all identified states at least once (each state is part of at least one test case)

 Cover all valid transitions at least once

 Trigger all invalid transitions at least once

Testing all valid transitions implies (subsumes) all-events coverage, all-states coverage, and all-
actions coverage. This is considered a minimum acceptable strategy for responsible testing of a
state diagram. Note that all-transitions testing is not exhaustive, because exhaustive testing
requires that every path over the state machine is exercised at least once, which is usually
impossible or at least unpractical.

2.7.3 Practical Aspects of Unit Testing

Executing tests on single components (or “units”) or a composition of components requires that
the tested thing be isolated from the rest of the system. Otherwise we will not be able to localize
the problem uncovered by the test. But system parts are usually interrelated and cannot work
without one another. To substitute for missing parts of the system, we use test drivers and test
stubs. A test driver simulates the part of the system that invokes operations on the tested
component. A test stub is a minimal implementation that simulates the components which are
called by the tested component. The thing to be tested is also known as the fixture.

A stub is a trivial implementation of an interface that exists for the purpose of performing a unit
test. For example, a stub may be hard-coded to return a fixed value, without any computation. By
using stubs, you can test the interfaces without writing any real code. The implementation is
really not necessary to verify that the interfaces are working properly (from the client’s
perspective—recall that interfaces are meant for the client object, Section 1.4). The driver and
stub are also known as mock objects, because they pretend to be the objects they are simulating.

Each testing method follows this cycle:

1. Create the thing to be tested (fixture), the test driver, and the test stub(s)

2. Have the test driver invoke an operation on the fixture

3. Evaluate that the results are as expected

More specifically, a unit test case comprises three steps performed by the test driver:

1. Setup objects: create an object to be tested and any objects it depends on, and set them up

2. Act on the tested object

3. Verify that the outcome is as expected

Suppose you want to test the Key Checker class of the safe-home-access case study that we
designed in Section 2.6. Figure 2-41(a) shows the relevant excerpt sequence diagram extracted
from Figure 2-33. Class Checker is the tested component and we need to implement a test
driver to substitute Controller and test stubs to substitute KeyStorage and Key classes.

Chapter 2 Object-Oriented Software Engineering 141

As shown in Figure 2-41(b), the test driver passes the test inputs to the tested component and
displays the results. In JUnit testing framework for Java, the result verification is done using the
assert*() methods that define the expected state and raise errors if the actual state differs.
The test driver can be any object type, not necessarily an instance of the Controller class.
Unlike this, the test stubs must be of the same class as the components they are simulating. They
must provide the same operation APIs, with the same return value types. The implementation of
test stubs is a nontrivial task and, therefore, there is a tradeoff between implementing accurate test
stubs and using the actual components. That is, if KeyStorage and Key class implementations
are available, we could use them when testing the Key Checker class.

Listing 2-1: Example test case for the Key Checker class.
public class CheckerTest {
 // test case to check that invalid key is rejected
 @Test public void
 checkKey_anyState_invalidKeyRejected() {

 // 1. set up
 Checker checker = new Checker(/* constructor params */);

 // 2. act
 Key invalidTestKey = new Key(/* setup with invalid code */);
 boolean result = checker.checkKey(invalidTestKey);

 // 3. verify
 assertEqual(result, false);
 }
}

We use the following notation for methods that represent test cases (see Listing 2-1):

k := create()

sk := getNext()

: Controller : Checker : KeyStorage

enterKey()

k : Key

val := checkKey(k)
loop

compare()

[for all stored keys]

(a) (b)

k := create()

testDriver : : KeyStoragek : Key: Checker

loop [for all stored keys]

start()

display
result

sk := getNext()

result :=
checkKey(k)

Test driver Test stubsTested component

compare()

Figure 2-41: Testing the Key Checker’s operation checkKey() (use case Unlock).
(a)Relevant part of the sequence diagram excerpted from Figure 2-33. (b) Test stubs and
drivers for testing the Key Checker.

Ivan Marsic Rutgers University

142

methodName_startingState_expectedResult
1. Set up

2. Act

3. Verify

methodName_startingState_expectedResult
1. Set up

2. Act

3. Verify

where methodName is the name of the method (i.e., event) we are testing on the tested object;
startingState are the conditions under which the tested method is invoked; and, expectedResult is
what we expect the tested method to produce under the specified condition. In our example, we
are testing Checker’s method checkKey(). The Checker object does not have any
attributes, so it is always in an initial state. The expected result is that checkKey() will reject
an invalid key. Thus the test case method name
checkKey_anyState_invalidKeyRejected().

Testing objects with different states is a bit more complex, because we must bring the object to
the tested state and in the end verify that the object remains in an expected state. Consider the
Controller object and its state diagram shown in Figure 2-40. One test case needs to verify
that when Controller receives maxNumOfAttempts invalid keys, it correctly transitions to
the Blocked state.

Listing 2-2: Example test case for the Controller class.
public class ControllerTest {
 // test case to check that the state Blocked is visited
 @Test public void
 enterKey_accepting_toBlocked() {

 // 1. set up: bring the object to the starting state
 Controller cntrl = new Controller(/* constructor params */);
 // bring Controller to the Accepting state, just before it blocks
 Key invalidTestKey = new Key(/* setup with invalid code */);
 for (i=0; i < cntrl.getMaxNumOfAttempts(); i++) {
 cntrl.enterKey(invalidTestKey);
 }
 assertEqual(// check that the starting state is set up
 cntrl.getNumOfAttempts(), cntrl.getMaxNumOfAttempts() – 1
);

 // 2. act
 cntrl.enterKey(invalidTestKey);

 // 3. verify
 assertEqual(// the resulting state must be "Blocked"
 cntrl.getNumOfAttempts(), cntrl.getMaxNumOfAttempts()
);
 assertEqual(cntrl.isBlocked(), true);
 }
}

Chapter 2 Object-Oriented Software Engineering 143

It is left to the reader to design the remaining test cases and ensure the coverage conditions
(Section 2.7.2).

A key challenge of unit testing is to sufficiently isolate the units so that each unit can be tested
individually. Otherwise, you end up with a “unit” test that is really more like an integration test.
The most important technique to help achieve this isolation is to program to interfaces instead of
concrete classes.

2.7.4 Integration and Security Testing

In traditional methods, testing takes place relatively late in the development lifecycle and follows
the logical order Figure 2-39. Unit testing is followed by integration testing, which in turn is
followed by system testing. Integration testing works in a step-by-step fashion by linking together
individual components (“units”) and testing the correctness of the combined component.
Components are combined in a horizontal fashion and integration processes in different direction,
depending on the horizontal integration testing strategy.

In agile methods, testing is incorporated throughout the development cycle. Components are
combined in a vertical fashion to implement an end-to-end functionality. Each vertical slice
corresponds to a user story (Section 2.2.3) and user stories are implemented and tested in parallel.

Horizontal Integration Testing Strategies

There are various ways to start by combining the tested units. The simplest, known as “big bang”
integration approach, tries linking all components at once and testing the combination.

Bottom-up integration starts by combining the units at the lowest level of hierarchy. The
“hierarchy” is formed by starting with the units that have no dependencies to other units. For
example, in the class diagram of Figure 2-35, classes PhotoSObsrv, Logger, and
DeviceCtrl do not have navigability arrow pointing to any other class—therefore, these three
classes form the bottommost level of the system hierarchy (Figure 2-42(a)). In bottom-up
integration testing, the bottommost units (“leaf units”) are tested first by unit testing (Figure
2-42(b)). Next, the units that have navigability to the bottommost units are tested in combination
with the leaf units. The integration proceeds up the hierarchy until the topmost level is tested.
There is no need to develop test stubs: The bottommost units do not depend on any other units;
for all other units, the units on which the currently tested unit depends on are already tested. We
do need to develop test drivers for bottom-up testing, although these can be relatively simple.
Note that in real-world systems unit hierarchy may not necessarily form a “tree” structure, but
rather may include cycles making it difficult to decide the exact level of a unit.

Top-down integration starts by testing the units at the highest level of hierarchy that no other
unit depends on (Figure 2-42(c)). In this approach, we never need to develop test drivers, but we
do need test stubs.

Ivan Marsic Rutgers University

144

Sandwich integration approach combines top-down and bottom-up by starting from both ends
and incrementally using components of the middle level in both directions. The middle level is
known as the target level. In sandwich testing, usually there is need to write stubs for testing the
top components, because the actual components from the target level can be used. Similarly, the
actual target-level components are used as drivers for bottom-up testing of low-level components.
In our example system hierarchy of Figure 2-42(a), the target layer contains only one component:
Key Checker. We start by top-down testing of the Controller using the Checker. In parallel, we
perform bottom-up testing of the Key Storage again by using the Checker. Finally, we test all
components together.

There are advantages and drawbacks of each integration strategy. Bottom-up integration is
suitable when the system has many low-level components, such as utility libraries. Moving up the
hierarchy makes it easier to find the component-interface faults: if a higher-level component
violates the assumption made by a lower-level component, it is easier to find where the problem
is. A drawback is that the topmost component (which is usually the most important, such as user
interface), is tested last—if a fault is detected, it may lead to a major redesign of the system.

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Test
Logger

Test
PhotoSObsrv

Test
DeviceCtrl

Test Key &
KeyStorage

Test KeyChecker
& KeyStorage &

Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl

(a)

(b)

Test
Controller

Test
Controller &
KeyChecker

Test Controller &
KeyChecker &

KeyStorage & Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl
(c)

Figure 2-42: Integration testing strategies for the system from Figure 2-35. (a) Units
hierarchy; (b) Bottom-up integration testing; (c) Top-down integration testing.

Chapter 2 Object-Oriented Software Engineering 145

Top-down integration has the advantage of starting with the topmost component (usually the user
interface, which means possibility of early end-user involvement). The test cases can be derived
directly from the requirements. Its disadvantage is that developing test stubs is time consuming
and error prone.

The advantages of sandwich testing include no need to write stubs or drivers and the ability of
early testing of the user interface and thus early involvement of end users. A drawback is that
sandwich testing does not thoroughly test the units of the target (middle) level before integration.
This problem can be remedied by the modified sandwich testing that tests the lower, middle, and
upper levels individually before combining them in incremental tests with one another.

Vertical Integration Testing Strategies

Agile methods use the vertical integration approach to develop the user stories in parallel (Figure
2-43(a)). Each story is developed in a feedback loop (Figure 2-43(b)), where the developers use
unit tests in the inner loop and the customer runs the acceptance test in the outer loop. Each cycle
starts with the customer/user writing the acceptance test that will test a particular user story.
Based on the acceptance test, the developer writes the unit tests and develops only the code that is
relevant, i.e., needed to pass the unit tests. The unit tests are run on daily basis, soon after the
code is written, and the code is committed to the code base only after it passes the unit tests. The
acceptance test is run at the end of each cycle (order of weeks or months).

The advantage of vertical integration is that it yields a working deliverable quickly. A potential
drawback is that because each subsystem (vertical slice—user story) is developed independently,
the system may lack uniformity and “grand design.” Therefore, the system may need a major
redesign late in the development cycle.

Write a
failing

unit test

Refactor

Make the
test pass

Write a failing
acceptance test

(b)(a)

User
story-1

User
story-2

User
story-N

Figure 2-43: Vertical integration in agile methods develops functional vertical slices (user
stories) in parallel (a). Each story is developed in a cycle that integrates unit tests in the
inner feedback loop and the acceptance test in the outer feedback loop (b).

Ivan Marsic Rutgers University

146

Security Testing

Functional testing is testing for “positives”—that the required features and functions are correctly
implemented. However, a majority of security defects and vulnerabilities are not directly related
to security functionality, such as encryption or privilege management. Instead, security issues
involve often unexpected but intentional misuses of the system discovered by an attacker.
Therefore, we also need to test for “negatives,” such as abuse cases, to determine how the system
behaves under attack. Security tests are often driven by known attack patterns.

2.7.5 Test-driven Implementation
“Real programmers don’t comment their code. If it was hard to write, it should be hard to understand.”

—Unknown

This section shows how the designed system might be implemented. (The reader may wish to
review the Java programming refresher in Appendix A before proceeding.) One thing that
programmers often neglect is that the code must be elegant and readable. This is not for the sake
of the computer which will run the code, but for the sake of humans who will read, maintain, and
improve on the original code. I believe that writing good comments is at least as difficult as
writing good code. It may be even more important, because comments describe the developer’s
intention, while the code expresses only what the developer did. The code that lacks aesthetics
and features poor writing style in comments is likely to be a poor quality code.11 In addition to
comments, languages such as Java and C# provide special syntax for writing the documentation
for classes and methods. Javadoc is a tool for generating API documentation in HTML format
from documentation comments in source code. Sandcastle is the equivalent tool for C#.

The hardware architecture of our system-to-be is described in Section [@@@] (Figure 2-7).

The following code uses threads for concurrent program execution. The reader not familiar with
threads should consult Section 5.3.

The key purpose of the main class is to get hold of the external information: the table of valid
keys and a connection to the embedded processor that controls the devices. Following is an
implementation for the main system class.

Listing 2-3: Implementation Java code of the main class, called
HomeAccessControlSystem, of the case-study home-access system.
import java.io.IOException;
import java.io.InputStream;
import java.util.TooManyListenersException;
import javax.comm.CommPortIdentifier;
import javax.comm.NoSuchPortException;

11 On a related note, writing user messages is as important. The reader may find that the following funny

story is applicable to software products way beyond Microsoft’s: “There was once a young man who
wanted to become a great writer and to write stuff that millions of people would read and react to on an
emotional level, cry, howl in pain and anger, so now he works for Microsoft, writing error messages.”
[Source: A Prairie Home Companion, February 3, 2007. Online at:
http://prairiehome.publicradio.org/programs/2007/02/03/scripts/showjokes.shtml]

Chapter 2 Object-Oriented Software Engineering 147

import javax.comm.SerialPort;
import javax.comm.SerialPortEvent;
import javax.comm.SerialPortEventListener;
import javax.comm.UnsupportedCommOperationException;

public class HomeAccessControlSystem extends Thread
 implements SerialPortEventListener {
 protected Controller ctrler_; // entry point to the domain logic
 protected InputStream inputStream_; // from the serial port
 protected StringBuffer key_ = new StringBuffer(); // user key code
 public static final long keyCodeLen_ = 4; // key code of 4 chars

 public HomeAccessControlSystem(
 KeyStorage ks, SerialPort ctrlPort
) {
 try {
 inputStream_ = ctrlPort.getInputStream();
 } catch (IOException e) { e.printStackTrace(); }

 LockCtrl lkc = new LockCtrl(ctrlPort);
 LightCtrl lic = new LightCtrl(ctrlPort);
 PhotoObsrv sns = new PhotoObsrv(ctrlPort);
 AlarmCtrl ac = new AlarmCtrl(ctrlPort);

 ctrler_ =
 new Controller(new KeyChecker(ks), lkc, lic, sns, ac);

 try {
 ctrlPort.addEventListener(this);
 } catch (TooManyListenersException e) {
 e.printStackTrace(); // limited to one listener per port
 }
 start(); // start the thread
 }

 /** The first argument is the handle (filename, IP address, ...)
 * of the database of valid keys.
 * The second arg is optional and, if present, names
 * the serial port. */
 public static void main(String[] args) {
 KeyStorage ks = new KeyStorage(args[1]);

 SerialPort ctrlPort;
 String portName = "COM1";
 if (args.length > 1) portName = args[1];
 try { // initialize
 CommPortIdentifier cpi =
 CommPortIdentifier.getPortIdentifier(portName);
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 ctrlPort = (SerialPort) cpi.open();

 // start the thread for reading from serial port
 new HomeAccessControlSystem(ks, ctrlPort);
 } catch (NoSuchPortException e) {
 System.err.println("Usage: port_name");
 }

Ivan Marsic Rutgers University

148

 try {
 ctrlPort.setSerialPortParams(
 9600, SerialPort.DATABITS_8, SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE
);
 } catch (UnsupportedCommOperationException e) {
 e.printStackTrace();
 }
 }

 /** Thread method; does nothing, just waits to be interrupted
 * by input from the serial port. */
 public void run() {
 while (true) { // alternate between sleep/awake periods
 try { Thread.sleep(100); }
 catch (InterruptedException e) { /* do nothing */ }
 }
 }

 /** Serial port event handler
 * Assume that the characters are sent one by one, as typed in. */
 public void serialEvent(SerialPortEvent evt) {
 if (evt.getEventType() == SerialPortEvent.DATA_AVAILABLE) {
 byte[] readBuffer = new byte[5]; // 5 chars, just in case

 try {
 while (inputStream_.available() > 0) {
 int numBytes = inputStream_.read(readBuffer);
 // could check if "numBytes" == 1 ...
 }
 } catch (IOException e) { e.printStackTrace(); }
 // append the new char to the user key
 key_.append(new String(readBuffer));

 if (key_.length() >= keyCodeLen_) { // got the whole key?
 // pass on to the Controller
 ctrler_.enterKey(key_.toString());
 // get a fresh buffer for a new user key
 key_ = new StringBuffer();
 }
 }
 }
}

The class HomeAccessControlSystem is a thread that runs forever and accepts the input
from the serial port. This is necessary to keep the program alive, because the main thread just sets
up everything and then terminates, while the new thread continues to live. Threads are described
in Section 5.3.

Next shown is an example implementation of the core system, as designed in Figure 2-33. The
coding of the system is directly driven by the interaction diagrams.

Listing 2-4: Implementation Java code of the classes Controller, KeyChecker, and

Chapter 2 Object-Oriented Software Engineering 149

LockCtrl.
public class Controller {
 protected KeyChecker checker_;
 protected LockCtrl lockCtrl_;
 protected LightCtrl lightCtrl_;
 protected PhotoObsrv sensor_;
 protected AlarmCtrl alarmCtrl_;
 public static final long maxNumOfAttempts_ = 3;
 public static final long attemptPeriod_ = 600000; // msec [=10min]
 protected long numOfAttempts_ = 0;

 public Controller(
 KeyChecker kc, LockCtrl lkc, LightCtrl lic,
 PhotoObsrv sns, AlarmCtrl ac
) {
 checker_ = kc;
 lockCtrl_ = lkc; alarmCtrl_ = ac;
 lightCtrl_ = lic; sensor_ = sns;
 }

 public enterKey(String key_code) {
 Key user_key = new Key(key_code)
 if (checker_.checkKey(user_key)) {
 lockCtrl_.setArmed(false);
 if (!sensor_.isDaylight()) { lightCtrl_.setLit(true); }
 numOfAttempts_ = 0;
 } else {
 // we need to check the attempt period as well, but ...
 if (++numOfAttempts_ >= maxNumOfAttempts_) {
 alarmCtrl_.soundAlarm();
 numOfAttempts_ = 0; // reset for the next user
 }
 }
 }
}

import java.util.Iterator;

public class KeyChecker {
 protected KeyStorage validKeys_;

 public KeyChecker(KeyStorage ks) { validKeys_ = ks; }

 public boolean checkKey(Key user_key) {
 for (Iterator e = validKeys_.iterator(); e.hasNext();) {
 if (compare((Key)e.next(), user_key) { return true; }
 }
 return false;
 }

 protected boolean compare(Key key1, Key key2) {

 }
}

import javax.comm.SerialPort;

Ivan Marsic Rutgers University

150

public class LockCtrl {
 protected boolean armed_ = true;

 public LockCtrl(SerialPort ctrlPort) {
 }
}

In Listing 2-4 I assume that KeyStorage is implemented as a list, java.util.ArrayList. If
the keys are simple objects, e.g., numbers, then another option is to use a hash table,
java.util.HashMap. Given a key, KeyStorage returns a value of a valid key. If the return
value is null, the key is invalid. The keys must be stored in a persistent storage, such as
relational database or a plain file and loaded into the KeyStorage at the system startup time,
which is not shown in Listing 2-4.

The reader who followed carefully the stepwise progression from the requirements from the code
may observe that, regardless of the programming language, the code contains many details that
usually obscure the high-level design choices and abstractions. Due to the need for being precise
about every detail and unavoidable language-specific idiosyncrasies, it is difficult to understand
and reason about software structure from code only. I hope that at this point the reader
appreciates the usefulness of traceable stepwise progression and diagrammatic representations.

Chapter 2 Object-Oriented Software Engineering 151

2.7.6 Refactoring: Improving the Design of Existing
Code

A refactoring of existing code is a transformation that improves its design while preserving its
behavior. Refactoring changes the internal structure of software to make it easier to understand
and cheaper to modify that does not change its observable behavior. The process of refactoring
involves removing duplication, simplifying complex logic, and clarifying unclear code. Examples
of refactoring include small changes, such as changing a variable name, as well as large changes,
such as unifying two class hierarchies.

Refactoring applies sequences of low-level design transformations to the code. Each
transformation improves the code by a small increment, in a simple way, by consolidating ideas,
removing redundancies, and clarifying ambiguities. A major improvement is achieved gradually,
step by step. The emphasis is on tiny refinements, because they are easy to understand and track,
and each refinement produces a narrowly focused change in the code. Because only small and
localized block of the code is affected, it is less likely that a refinement will introduce defects.

Agile methods recommend test-driven development (TDD) and continuous refactoring. They go
together because refactoring (changing the code) requires testing to ensure that no damage was
done.

Using Polymorphism Instead of Conditional Logic

An important feature of programming languages is the conditional. This is a statement that causes
another statement to execute only if a particular condition is true. One can use simple “sentences”
to advise the computer, “Do these fifteen things one after the other; if by then you still haven’t
achieved such-and-such, start all over again at Step 5.” Equally, one can readily symbolize a
complex conditional command such as: “If at that particular point of runtime, this happens, then
do so-and-so; but if that happens, then do such-and-such; if anything else happens, whatever it is,
then do thus-and-so.” Using the language constructs such as IF-THEN-ELSE, DO-WHILE, or
SWITCH, the occasion for action is precisely specified. The problem with conditionals is that
they make code difficult to understand and prone to errors.

Polymorphism allows avoiding explicit conditionals when you have objects whose behavior
varies depending on their types. As a result you find that switch statements that switch on type
codes or if-then-else statements that switch on type strings are much less common in an object-
oriented program. Polymorphism gives you many advantages. The biggest gain occurs when this
same set of conditions appears in many places in the program. If you want to add a new type, you
have to find and update all the conditionals. But with subclasses you just create a new subclass
and provide the appropriate methods. Clients of the class do not need to know about the
subclasses, which reduces the dependencies in your system and makes it easier to update.

some conditionals are needed, like checks for boundary conditions, but when you keep working
with similar variables, but apply different operations to them based on condition, that is the
perfect place for polymorphism and reducing the code complexity. Now there are usually two
types of conditionals you can’t replace with Polymorphism. Those are comparatives (>, <) (or
working with primitives, usually), and boundary cases, sometimes. And those two are language

Ivan Marsic Rutgers University

152

specific as well, as in Java only. Some other languages allow you to pass closures around, which
obfuscate the need for conditionals.

2.8 Summary and Bibliographical Notes

“Good judgment comes from experience, and experience comes from bad judgment.”
—Frederick P. Brooks

This chapter presents incremental and iterative approach to software design and gradually
introduces software engineering techniques using a running case study. Key phases of the process
are summarized in Figure 2-44. (Note that package diagram, which is a structural description, is
not shown for the lack of space.) To ensure meaningful correspondence between the successive
software artifacts, we maintain traceability matrices across the development lifecycle. The
traceability matrix links requirements, design specifications, hazards, and validation. Traceability
among these activities and documents is essential.

Figure 2-44 shows only the logical order in which activities take place and does not imply that
software lifecycle should progress in one direction as in the waterfall method. In practice there is
significant intertwining and backtracking between the steps and Figure 2-44 shows only one
iteration of the process. The sequential presentation of the material does not imply how the actual

S
ys

te
m

 D
es

cr
ip

tio
n

B
eh

av
io

r
S

tr
u

ct
ur

e

Use Cases System Sequence
Diagrams

Communicator Key

LockOperator

lockStatus

KeyChecker

numOfTrials
maxNumOfTrials

conve
ysR

equests

obtains

notifiesKeyValidity

verifie
s

Communicator Key

LockOperator

lockStatus

KeyChecker

numOfTrials
maxNumOfTrials

conve
ysR

equests

obtains

notifiesKeyValidity

verifie
s

Domain Model

checkKey()
sk := getNext()

addElement()

setOpen(true)

: Communicator : Checker : KeyStorage : LockCtrl

val == null : setLit(true)

alt val != null

[else]

Interaction
Diagrams

Class Diagram

Lock

Unlock

Tenant

Landlord

Lock

Unlock

Tenant

Landlord

Implementation
Program

import javax.com

import java.io.I

import java.io.I

import java.util

public class Hom

implemen

protected Co

protected In

protected St

public stati

public HomeA

KeyStora

) {

try {

inpu

} catch

LockCtrl

LightCtr

PhotoObs

selectFunction(“unlock")

: SystemUser
«primary actor»

prompt for the key

enterKey()

signal: valid key, lock open

open the lock,
turn on the light

selectFunction(“unlock")

: SystemUser
«primary actor»

prompt for the key

enterKey()

signal: valid key, lock open

open the lock,
turn on the light

KeyChecker

+ checkKey() : boolean

Key

code_ : long

+ getCode() : long

PhotoSObsrv

+ isDaylight() : boolean

Controller

numOfTrials_ : long
maxNumOfTrials_ : long

+ enterKey(k : Key)

1

1

1

sensor

1 checker

alarmCtrl

lockCtrl

1..*

AlarmCtrl

+ soundAlarm()

LockCtrl

open_ : boolean

+ isOpen() : boolean
+ setOpen(v : boolean)

KeyChecker

+ checkKey() : boolean

Key

code_ : long

+ getCode() : long

PhotoSObsrv

+ isDaylight() : boolean

Controller

numOfTrials_ : long
maxNumOfTrials_ : long

+ enterKey(k : Key)

1

1

1

sensor

1 checker

alarmCtrl

lockCtrl

1..*

AlarmCtrl

+ soundAlarm()

LockCtrl

open_ : boolean

+ isOpen() : boolean
+ setOpen(v : boolean)

Figure 2-44: Summary of a single iteration of the software development lifecycle. The
activity alternates between elaborating the system’s behavior vs. structure. Only selected
steps and artifacts are shown.

Chapter 2 Object-Oriented Software Engineering 153

development is carried out. Teaching works from a known material and follows logical ordering,
but practice needs to face unknown problem and the best ordering is known only after the fact.

A general understanding of the problem domain does not guarantee project success; you need a
very detailed understanding of what is expected from the system. A detailed understanding is best
developed incrementally and iteratively.

Key points:

 Object orientation allows creation of software in solution objects which are directly
correlated to the objects (physical objects or abstract concepts) in the problem to be
solved. The key advantage of the object-oriented approach is in the localization of
responsibilities—if the system does not work as intended, it is easier to pinpoint the
culprit in an object-oriented system.

 The development must progress systematically, so that the artifacts created in the
previous phase are always being carried over into the next phase, where they serve as the
foundation to build upon.

 The traceability matrix acts as a map, providing the links necessary for determining
where information is located. It demonstrates the relationship between design inputs and
design outputs, ensures that design is based on predecessor, established requirements, and
helps ensure that design specifications are appropriately verified and the requirements are
appropriately validated. The traceability matrix supports bidirectional traceability,
“forwards” from the requirements to the code and “backwards” in the opposite direction.

 Use case modeling is an accepted and widespread technique to gather and represent the
business processes and requirements. Use cases describe the scenarios of how the system
under discussion can be used to help the users accomplish their goals. Use cases represent
precisely the way the software system interacts with its environment and what
information must pass the system boundary in the course of interaction. Use case steps
are written in an easy-to-understand structured narrative using the vocabulary of the
domain. This is engaging for the end users, who can easily follow and validate the use
cases, and the accessibility encourages users to be actively involved in defining the
requirements.

 The analysis models are input to the design process, which produces another set of
models describing how the system is structured and how the system’s behavior is realized
in terms of that structure. The structure is represented as a set of classes (class diagram),
and the desired behavior is characterized by patterns of messages flowing between
instances of these classes (interaction diagrams).

 Finally, the classes and methods identified during design are implemented in an object-
oriented programming language. This completes a single iteration. After experimenting
with the preliminary implementation, the developer iterates back and reexamines the
requirements. The process is repeated until a satisfactory solution is developed.

The reader should be aware of the capabilities and limitations of software engineering methods.
The techniques presented in this chapter help you to find a solution once you have the problem
properly framed and defined, as is the case with example projects in Section 1.5. Requirements
analysis can help in many cases with framing the problem, but you should also consider

Ivan Marsic Rutgers University

154

ethnography methods, participatory design, and other investigative techniques beyond software
engineering.

A short and informative introduction to UML is provided by [Fowler, 2004]. The fact that I adopt
UML is not an endorsement, but merely recognition that many designers presently use it and
probably it is the best methodology currently available. The reader should not feel obliged to
follow it rigidly, particularly if he/she feels that the concept can be better illustrated or message
conveyed by other methods.

Section 2.1: Software Development Methods

[MacCormack, 2001; Larman & Basili, 2003; Ogawa & Piller, 2006]

Section 2.2: Requirements Engineering

IEEE Standard 830 was last revised in 1998 [IEEE 1998]. The IEEE recommendations cover
such topics as how to organize requirements specifications document, the role of prototyping, and
the characteristics of good requirements.

The cost-value approach for requirement prioritization was created by Karlsson and Ryan [1997].

A great introduction to user stories is [Cohn, 2004]. It describes how user stories can be used to
plan, manage, and test software development projects. It is also a very readable introduction to
agile methodology.

More powerful requirements engineering techniques, such as Jackson’s “problem frames”
[Jackson, 2001], are described in the next chapter.

Section 2.4: Use Case Modeling

An excellent source on methodology for writing use cases is [Cockburn, 2001].

System sequence diagrams were introduced by [Coleman et al., 1994; Malan et al., 1996] as part
of their Fusion Method.

Section 2.5: Analysis: Building the Domain Model

The approach to domain model construction presented in Section 2.5 is different from, e.g., the
approach in [Larman, 2005]. Larman’s approach can be summarized as making an inventory of
the problem domain concepts. Things, terminology, and abstract concepts already in use in the
problem domain are catalogued and incorporated in the domain model diagram. A more inclusive
and complex model of the business is called Business Object Model (BOM) and it is also part of
the Unified Process.

An entrepreneurial reader may wish to apply some of the analysis patterns described by Fowler
[1997] during the analysis stage. However, the main focus at this stage should be to come up with
any idea of how to solve the problem, rather than finding an optimal solution. Optimizing should
be the focus of subsequent iterations, after a working version of the system is implemented.

Chapter 2 Object-Oriented Software Engineering 155

Section 2.6: Design: Assigning Responsibilities

Design with responsibilities (Responsibility-Driven Design):

[Wirfs-Brock & McKean, 2003; Larman, 2005]

Coupling and cohesion as characteristics of software design quality introduced in [Constantine et
al., 1974; Yourdon & Constantine, 1979]. More on coupling and cohesion in Chapter 4.

See also: http://c2.com/cgi/wiki?CouplingAndCohesion

J. F. Maranzano, S. A. Rozsypal, G. H. Zimmerman, G. W. Warnken, P. E. Wirth, and D. M.
Weiss, “Architecture reviews: Practice and experience,” IEEE Software, vol. 22, no. 2, pp. 34-43,
March-April 2005.

Design should give correct solution but should also be elegant (or optimal). Product design is
usually open-ended because it generally has no unique solution, but some designs are “better”
than others, although all may be “correct.” Better quality matters because software is a living
thing—customer will come back for more features or modified features because of different user
types or growing business. This is usually called maintenance phase of the software lifecycle and
experience shows that it represents the dominant costs of a software product over its entire
lifecycle. Initial design is just a start for a good product and only a failed product will end with a
single release.

Class diagrams do not allow describing the ordering of the constituent parts of an aggregation.
The ordering is important in some applications, such as XML Schema (Chapter 6). We could use
the stereotype «ordered» on the “Has-a” relationship, although this approach lacks the advantage
of graphical symbols. More importantly, «ordered» relationship just says the collection is
ordered, but does not allow showing each element individually to specify where it is in the order,
relative to other elements.

Section 2.3: Software Architecture

Section 2.7: Test-driven Implementation

[Raskin, 2005] [Malan & Halland, 2004] [Ostrand et al., 2004]

Useful information on Java programming is available at:
http://www.developer.com/ (Gamelan) and http://www.javaworld.com/ (magazine)

For serial port communication in Java, I found useful information here (last visited 18 January
2006):

http://www.lvr.com/serport.htm

http://www.cs.tufts.edu/~jacob/150tui/lecture/01_Handyboard.html

http://show.docjava.com:8086/book/cgij/exportToHTML/serialPorts/SimpleRead.java.html

Also informative is Wikibooks: Serial Data Communications, at:

http://en.wikibooks.org/wiki/Programming:Serial_Data_Communications

Ivan Marsic Rutgers University

156

http://en.wikibooks.org/wiki/Serial_communications_bookshelf

A key book on refactoring is [Fowler, 2000]. The refactoring literature tends to focus on specific,
small-scale design problems. Design patterns focus on larger-scale design problems and provide
targets for refactorings. Design patterns will be described in Chapter 5.

A number of studies have suggested that code review reduces bug rates in released software.
Some studies also show a correlation between low bug rates and open source development
processes. It is not clear why it should be so.

The most popular unit testing framework is the xUnit family (for many languages), available at
http://www.junit.org. For Java, the popular version is JUnit, which is integrated into most of the
popular IDEs, such as Eclipse (http://www.eclipse.org). The xUnit family, including JUnit, was
started by Kent Beck (creator of eXtreme Programming) and Eric Gamma (one of the Gang-of-
Four design pattern authors (see Chapter 5), and the chief architect of Eclipse. A popular free
open source tool to automatically rebuild the application and run all unit tests is CruiseControl
(http://cruisecontrol.sourceforge.net).

Testing aims to determine program’s correctness—whether it performs computations correctly, as
expected. However, a program may perform correctly but be poorly designed, very difficult to
understand and modify. To evaluate program quality, we use software metrics (Chapter 4).

Problems

“To learn is no easy matter and to apply what one has learned is even harder.”
—Chairman Mao Tse-Tung

Problem 2.1

Consider the following nonfunctional requirements and determine which of them can be verified
and which cannot. Write acceptance tests for each requirement or explain why it is not testable.

(a) “The user interface must be user-friendly and easy to use.”
(b) “The number of mouse clicks the user needs to perform when navigating to any window

of the system’s user interface must be less than 10.”
(c) “The user interface of the new system must be simple enough so that any user can use it

with a minimum training.”
(d) “The maximum latency from the moment the user clicks a hyperlink in a web page until

the rendering of the new web page starts is 1 second over a broadband connection.”
(e) “In case of failure, the system must be easy to recover and must suffer minimum loss of

important data.”

Chapter 2 Object-Oriented Software Engineering 157

Problem 2.2

Problem 2.3

You are hired to develop an automatic patient monitoring system for a
home-bound patient. The system is required to read out the patient’s heart
rate and blood pressure and compare them against specified safe ranges. The
system also has activity sensors to detect when the patient is exercising and
adjust the safe ranges. In case an abnormality is detected, the system must
alert a remote hospital. (Note that the measurements cannot be taken
continuously, since heart rate is measured over a period of time, say 1
minute, and it takes time to inflate the blood-pressure cuff.) The system must
also (i) check that the analog devices for measuring the patient’s vital signs
are working correctly and report failures to the hospital; and, (ii) alert the owner when the battery
power is running low.

Enumerate and describe the requirements for the system-to-be.

Problem 2.4

Problem 2.5

Problem 2.6

Problem 2.7

Problem 2.8

Consider an online auction site, such as eBay.com, with selling, bidding,
and buying services. Assume that you are a buyer, you have placed a bid
for an item, and you just received a notification that the bidding process is
closed and you won it. Write a single use case that represents the
subsequent process of purchasing the item with a credit card. Assume the
business model where the funds are immediately transferred to the seller’s account, without
waiting for the buyer to confirm the receipt of the goods. Also, only the seller is charged selling
fees. Start from the point where you are already logged in the system and consider only what
happens during a single sitting at the computer terminal. (Unless otherwise specified, use cases

Ivan Marsic Rutgers University

158

are normally considered only for the activities that span a single sitting.) List also some alternate
scenarios.

Problem 2.9

Consider the online auction site described in Problem 2.8. Suppose that by observation you
determine that the generic Buyer and Seller roles can be further differentiated into more
specialized roles:

 Occasional Buyer, Frequent Buyer, and Collector

 Small Seller, Frequent Seller, and Corporate Seller

Identify the use cases for both situations: generic Buyers and Sellers vs. differentiated Buyers and
Sellers. Discuss the similarities and differences. Draw the use case diagrams for both situations.

Problem 2.10

You are hired to develop a software system for motion detection and garage door control.
The system should turn the garage door lights on automatically when it detects motion within a
given perimeter.
The garage door opener should be possible to control either by a remote radio transmitter or by a
manual button switch. The opener should include the following safety feature. An “electric eye”
sensor, which projects invisible infrared light beams, should be used to detect if someone or
something passes under the garage door while it closes. If the beam is obstructed while the door is
going down, the door should not close—the system should automatically stop and reverse the
door movement.

The relevant hardware parts of the system are as follows (see Figure 2-45):

 motion detector

 external light bulb

 motor for moving the garage door

 “electric eye” sensor

 remote control radio transmitter and receiver

 manual opener button switch

Electric
Eye

Motor

Remote
Transmitter

Manual
Opener
SwitchRemote

Receiver

Motion
Detector

External
Light

Motion detection perimeter

Motion
Detector

External
Light

Motion detection perimeter

Figure 2-45: Depiction of the problem domain for Problem 2.10.

Chapter 2 Object-Oriented Software Engineering 159

Assume that all the hardware components are available and you only need to develop a software
system that controls the hardware components.

(a) Identify the actors for the system and their goals

(b) Derive only the use cases relevant to the system objective and write brief or casual text
description of each

(c) Draw the use case diagram for the system

(d) For the use case that deals with the remote-controlled garage door opening, write a fully
dressed description

(e) Draw the system sequence diagram(s) for the use case selected in (d)

(f) Draw the domain model with concepts, associations, and attributes
[Note: derive the domain model using only the information that is available so far—do
not elaborate the other use cases]

(g) Show the operation contracts for the operations of the use case selected in (d)

Problem 2.11

For the system described in Problem 2.10, consider the following security issue. If the remote
control supplied with the garage door opener uses a fixed code, a thief may park near your house
and steal your code with a code grabber device. The thief can then duplicate the signal code and
open your garage at will. A solution is to use so called rolling security codes instead of a fixed
code. Rolling code systems automatically change the code each time you operate your garage
door.

(f) Given the automatic external light control, triggered by motion detection, and the above
security issue with fixed signaling codes, a possible use case diagram is as depicted in
Figure 2-46. Are any of the shown use cases legitimate? Explain clearly your answer.

(g) For the use case that deals with the remote-controlled garage door closing, write a fully
dressed description.

(h) Draw the system sequence diagram(s) for the use case selected in (b).

(i) Draw the domain model with concepts, associations, and attributes .
[Note: derive the domain model using only the information that is available so far—do
not elaborate the other use cases.]

AnimateObject

Thief

«initiate»

«initia
te»

«initiate»
«initiate»

«initiate»

TurnLightOn

TurnLightOff

StealOpenerCode

RemoteOpen

Figure 2-46: A fragment of a possible use case diagram for Problem 2.11.

Ivan Marsic Rutgers University

160

(j) Show the operation contracts for the operations of the use case selected in (b).

Problem 2.12

Derive the basic use cases for the restaurant automation system (described at the book website,
given in Preface). Draw the use case diagram.

Problem 2.13

Identify the actors and derive the use cases for the vehicular traffic information system (described
at the book website, given in Preface). Draw the use case diagram. Also, draw the system
sequence diagram for the use case that deals with data collection.

Problem 2.14

Consider the automatic patient monitoring system described in Problem 2.3. Identify the
actors and their goals. Briefly, in one sentence, describe each use case but do not elaborate
them. Draw the use case diagram.

Problem 2.15

Consider a grocery supermarket planning to computerize their inventory management. This
problem is similar to one described in Example 1.2 (Section 1.5.3), but has a different goal. The
items on shelves will be marked with Radio Frequency Identification (RFID) tags and a set of
RFID reader-devices will be installed for monitoring the movements of the tagged items. Each
tag carries a 96-bit EPC (Electronic Product Code) with a Global Trade Identification number,
which is an international standard. The RFID readers are installed on each shelf on the sales floor.

Reader

Tag

1. Request 2. Response

RFID System:

Tag

Tag

Tag

The RFID system consists of two types of components (see figure above): (1) RFID tag or
transponder, and (2) RFID reader or transceiver. RFID tags are passive (no power source), and
use the power induced by the magnetic field of the RFID reader. An RFID reader consists of an
antenna, transceiver and decoder, which sends periodic signals to inquire about any tag in
vicinity. On receiving any signal from a tag it passes on that information to the data processor.

You are tasked to develop a software system for inventory management. The envisioned system
will detect which items will soon be depleted from the shelves, as well as when shelves run out of

Chapter 2 Object-Oriented Software Engineering 161

stock and notify the store management. The manager will be
able to assign a store associate to replenish the shelf, and the
manager will be notified when the task is completed.

Based on the initial ideas for the desired functions of the
software system, the following requirements are derived:

REQ1. The system shall continuously monitor the tagged
items on the shelves. Every time an item is removed,
this event is recorded in the system database by
recording the current item count from the RFID reader.
The system should also be able to handle the cases
when the customer takes an item, puts it in her
shopping cart, continues shopping, and then changes
her mind, comes back and returns the item to the shelf.

REQ2. The system shall keep track when stock is running low
on shelves. It shall detect a “low-stock” state for a
product when the product’s item count falls below a
given threshold while still greater than zero.

REQ3. The system shall detect an “out-of-stock” state for a
product when the shelf becomes empty and the
product’s item count reaches zero.

REQ4. The system shall notify the store manager when a
“low-stock” or “out-of-stock” state is detected, so the
shelves will be replenished. The notification will be
sent by electronic mail, and the manager will be able to
read it on his mobile phone.

REQ5. The store manager shall be able to assign a store
associate with a task to replenish a particular shelf with
a specific product. The store associate shall be notified
by electronic mail about the details of the assigned
task.

REQ6. While the store associate puts items on the shelf, the RFID system shall automatically
detect the newly restocked items by reading out their EPC. The system should support the
option that customers remove items at the same time while the store associate is
replenishing this shelf.

REQ7. The store associate shall be able to explicitly inform the system when the replenishment
task is completed. The number of restocked items will be stored in the database record.
The item count obtained automatically (REQ5) may be displayed to the store associate
for verification. After the store associate confirms that the shelf is replenished, the task
status will be changed to “completed,” and a notification event will be generated for the
store manager.

To keep the hardware and development costs low, we make the following assumptions:

RFID reader

RFID tag

Store manager

Main computer

Ivan Marsic Rutgers University

162

A1. You will develop only the software that runs on the main computer and not that for the
peripheral RFID devices. Assume that the software running the RFID readers will be purchased
together with the hardware devices.

A2. The tag EPC is unique for a product category, which means that the system cannot
distinguish different items of the same product. Therefore, the database will store only the total
count of a given product type. No item-specific information will be stored.

A3. Assume that the RFID system works perfectly which, of course, is not true in reality. As of
this writing (2011) on an average 20% of the tags do not function properly. Accurate read rates on
some items can be very low, because of physical limitations like reading through liquid or metals
still exist or interference by other wireless sources that can disrupt the tag transmissions.

A4. Assume that the item removal event is a clean break, which again, may not be true. For
example, if the user is vacillating between buying and not buying, the system may repeatedly
count the item as removed or added and lose track of correct count. Also, the user may return an
item and take another one of the same kind because she likes the latter more than the former. (A
solution may be periodically to scan all tags with the same EPC, and adjust incorrect counts in the
database.)

A5. Regarding REQ1, each RFID reader will be able to detect correctly when more than one item
of the same type is removed simultaneously. If a customer changed her mind and returned an item
(REQ1), we assume that she will return it to the correct shelf, rather than any shelf.

A6. The communication network and the computing system will be able to handle correctly large
volume of events. Potentially, there will be many simultaneous or nearly simultaneous RFID
events, because there is a large number of products on the shelves and there may be a great
number of customers currently in the store, interacting with the items. We assume that the great
number of events will not “clog” the computer network or the processors.

Do the following:

(a) Write all the summary use cases that can be derived from the requirements REQ1–REQ7.
For each use case, indicate the related requirements. Note that one use case may be
related to several requirements and vice versa, one requirement may be related to several
use cases.

(b) Draw the use case diagram for the use cases described in item (a).

(c) Discuss additional requirements and use cases that could be added to this system.

Problem 2.16

Consider again the Grocery Inventory Management system described in Problem 2.15. Focus
only on the summary use cases that deal with depleted stock detection, related to the requirements
REQ1–REQ4. Write the detailed specification for these use cases only.

Problem 2.17

Chapter 2 Object-Oriented Software Engineering 163

Problem 2.18

Problem 2.19

Consider a variation of the home access control system which will do user identification based on
face recognition, as described in Section 2.4.2. Write the detailed use case descriptions of use
cases UC3: AddUser and UC4: RemoveUser for both cases given in Figure 2-16, that is locally
implemented face recognition (Case (a)) and remotely provided face recognition (Case (b)).

Problem 2.20

Consider an automatic bank machine, known as Automatic Teller Machine (ATM), and a
customer who wishes to withdraw some cash from his or her banking account. Draw a UML
activity diagram to represent this use case.

Problem 2.21

Derive the domain model with concepts, associations, and attributes for the virtual mitosis lab
(described at the book website, given in Preface).

Note: You may wonder how is it that you are asked to construct the domain model without first
having the use cases derived. The reason is, because the use cases for the mitosis lab are very
simple, this is left as an exercise for the reader.

Problem 2.22

Explain the relationship between use cases and domain model objects and illustrate by example.

Problem 2.23

Problem 2.24

Problem 2.25

Problem 2.26

Problem 2.27

Ivan Marsic Rutgers University

164

Problem 2.28

Problem 2.29

An example use case for the system presented in Section 1.5.1 is given as follows. (Although the
advertisement procedure is not shown to preserve clarity, you should assume that it applies where
appropriate, as described in Section 1.5.1.)
Use Case UC-x: BuyStocks
Initiating Actor: Player [full name: investor player]
Actor’s Goal: To buy stocks, get them added to his portfolio automatically
Participating Actors: StockReportingWebsite [e.g., Yahoo! Finance]
Preconditions: Player is currently logged in the system and is shown a hyperlink “Buy

stocks.”
Postconditions: System has informed the player of the purchase outcome. The logs and

the player’s portfolio are updated.

Flow of Events for Main Success Scenario:
 1. Player clicks the hyperlink “Buy stocks”
 2. System prompts for the filtering criteria (e.g., based on company names, industry

sector, price range, etc.) or “Show all”
 3. Player specifies the filtering criteria and submits
 4. System contacts StockReportingWebsite and requests the current stock prices for

companies that meet the filtering criteria
 5. StockReportingWebsite responds with HTML document containing the stock prices
 6. From the received HTML document, System extracts, formats, and displays the stock

prices for Player’s consideration; the display also shows the player’s account balance
that is available for trading

 7. Player browses and selects the stock symbols, number of shares, and places the order
_

8. System (a) updates the player’s portfolio; (b) adjusts the player’s account balance,
including a commission fee charge; (c) archives the transaction in a database; and (d)
informs Player of the successful transaction and shows his new portfolio standing

Note that in Step 8 above only virtual trading takes place because this is fantasy stock trading.

Derive (a part of) the domain model for the system-to-be based on the use case BuyStocks.
(a) Write a definition for each concept in your domain model.
(b) Write a definition for each attribute and association in your domain model.
(c) Draw the domain model.
(d) Indicate the types of concepts, such as «boundary», «control», or «entity».

Chapter 2 Object-Oriented Software Engineering 165

1
2

34 5
67

8
90

1
2

34 5
67

8
90

Problem 2.30

Suppose you are designing an ATM machine (also see Problem 2.20). Consider the use case
“Withdraw Cash” and finish the sequence diagram shown in Figure 2-47. The
CustomerID object contains all the information received from the current customer.
IDChecker compares the entered ID with all the stored IDs contained in
CustomerIDStorage. AcctInfo mainly contains information about the current account
balance. AcctManager performs operations on the AcctInfo, such as subtracting the
withdrawn amount and ensuring that the remainder is greater than or equal to zero.
Lastly, CashDispenserCtrl control the physical device that dispenses cash.

One could argued that AcctInfo and AcctManager should be combined into a single
object Account, which encapsulates both account data and the methods that operate
on the data. The account data is most likely read from a database, and the container
object is created at that time. Discuss the pros and cons for both possibilities.

Indicate any design principles that you employ in the sequence diagram.

Problem 2.31

You are to develop an online auction site, with selling, bidding, and buying services. The buying
service should allow the users to find an item, bid for it and/or buy it, and pay for it. The use case
diagram for the system may look as follows:

: Controller : IDChecker : CustomerIDStore : AcctManager : AcctInfo

Customer
enterCard()

: CustomerID : CashDispenserCtrl: GUI

enterPIN()

askPIN()

askAmt()

enterAmt()

Figure 2-47: Sequence diagram for the ATM machine of Problem 2.30 (see text for
explanation). GUI = Graphical user interface.

«partic
ipate»

«initia
te»

«initiate»

«initiate»

«initiate»«initiate»
«initiate»«participate»

«participate»

«i
ni

tia
te

»

FindItem

ViewBids

ListItem

BidForItem

CloseAuction

Seller Buyer

BuyItem

RateTransaction

«i
nc

lu
d

e»

«i
nc

lu
de

»

Creditor

Shipping
Agency

?

«initiate»

Online Auction Site

Ivan Marsic Rutgers University

166

 We assume a simple system to which extra features may be added, such as auction expiration
date on items. Other features may involve the shipment agency to allow tracking the shipment
status.

A possible class diagram for the system is shown in Figure 2-48. Assume that ItemInfo is marked
as “reserved” when the Seller accepts the highest bid and closes the auction on that item only.
Before closing, Seller might want to review how active the bidding is, to decide whether to wait
for some more time before closing the bid. That particular ItemInfo is removed from
ItemsCatalog once the payment is processed.

In the use case CloseAuction, the Seller reviews the existing bids for a given item, selects the
highest and notifies the Buyer associated with the highest bid about the decision (this is why
«participate» link between the use case CloseAuction and Buyer). Assume that there are more
than one bids posted for the selected item.

Complete the interaction diagram shown below for this use case. Do not include processing the
payment (for this use case see Problem 2.8). (Note: You may introduce new classes or modify the
existing classes in Figure 2-48 if you feel it necessary for solving the problem.)

ItemInfo

– name : String
– startPrice : float
– reserved : boolean

+ getName() : String
+ getStartPrice() : float
+ getSeller() : SellerInfo
+ getBidsList() : BidsList
+ setReserved(ok : boolean)
+ isReserved() : boolean

ItemsCatalog

+ add(item: ItemInfo) : int
+ remove(idx : int)
+ getNext(): ItemInfo
+ hasMore() : boolean

*

BuyerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

SellerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

Payment

– amount : float

+ getBuyer() : BuyerInfo
… Etc.

Bid

– amount : float

+ getBidder() : BuyerInfo
+ getAmount() : float

1

BidsList

+ add(bid: Bid) : int
+ remove(idx : int)
+ getNext(): Bid
+ hasMore() : boolean

*

1

1

1

11

Controller

+ listItem(item: ItemInfo)
+ findItem(name : String)
+ bidForItem(name : String)
+ viewBids(itemName : String)
+ closeAuction(itmNam : String)
+ buyItem(name : String)
+ payForItem(price: float)

bids

seller

seller

item
buyer

bidder

ItemInfo

– name : String
– startPrice : float
– reserved : boolean

+ getName() : String
+ getStartPrice() : float
+ getSeller() : SellerInfo
+ getBidsList() : BidsList
+ setReserved(ok : boolean)
+ isReserved() : boolean

ItemInfo

– name : String
– startPrice : float
– reserved : boolean

+ getName() : String
+ getStartPrice() : float
+ getSeller() : SellerInfo
+ getBidsList() : BidsList
+ setReserved(ok : boolean)
+ isReserved() : boolean

ItemsCatalog

+ add(item: ItemInfo) : int
+ remove(idx : int)
+ getNext(): ItemInfo
+ hasMore() : boolean

ItemsCatalog

+ add(item: ItemInfo) : int
+ remove(idx : int)
+ getNext(): ItemInfo
+ hasMore() : boolean

*

BuyerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

BuyerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

SellerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

SellerInfo

– name : String
– address : String

+ getName() : String
+ getAddress() : String

Payment

– amount : float

+ getBuyer() : BuyerInfo
… Etc.

Payment

– amount : float

+ getBuyer() : BuyerInfo
… Etc.

Bid

– amount : float

+ getBidder() : BuyerInfo
+ getAmount() : float

Bid

– amount : float

+ getBidder() : BuyerInfo
+ getAmount() : float

1

BidsList

+ add(bid: Bid) : int
+ remove(idx : int)
+ getNext(): Bid
+ hasMore() : boolean

BidsList

+ add(bid: Bid) : int
+ remove(idx : int)
+ getNext(): Bid
+ hasMore() : boolean

*

1

1

1

11

Controller

+ listItem(item: ItemInfo)
+ findItem(name : String)
+ bidForItem(name : String)
+ viewBids(itemName : String)
+ closeAuction(itmNam : String)
+ buyItem(name : String)
+ payForItem(price: float)

Controller

+ listItem(item: ItemInfo)
+ findItem(name : String)
+ bidForItem(name : String)
+ viewBids(itemName : String)
+ closeAuction(itmNam : String)
+ buyItem(name : String)
+ payForItem(price: float)

bids

seller

seller

item
buyer

bidder

Figure 2-48: A possible class diagram for the online auction site of Problem 2.31.

Chapter 2 Object-Oriented Software Engineering 167

Problem 2.32

Consider the use case BuyStocks presented in Problem 2.29. The goal is to draw the UML
sequence diagram only for Step 6 in this use case. Start at the point when the system receives the
HTML document from the StockReportingWebsite and stop at the point when an HTML page is
prepared and sent to player’s browser for viewing.

(a) List the responsibilities that need to be assigned to software objects.
(b) Assign the responsibilities from the list in (a) to objects. Explicitly mention any design

principles that you are using in your design, such as Expert Doer, High Cohesion, or Low
Coupling. Provide arguments as to why the particular principle applies.

(c) Draw the UML sequence diagram.

Problem 2.33

Problem 2.34

In the patient-monitoring scenario of Problem 2.3 and Problem 2.14, assume that the hospital
personnel who gets notified about patient status is not office-bound but can be moving around the
hospital. Also, all notifications must be archived in a hospital database for a possible future
auditing. Draw a UML deployment diagram representing the hardware/software mapping of this
system.

Problem 2.35

Consider the automatic patient monitoring system described in Problem 2.3 and analyzed in
Problem 2.14. Focus on the patient device only and ignore any software that might be
running in the remote hospital. Suppose you are provided with an initial software design as
follows.

?

: Controller

Seller

viewBids(itemName)

closeAuction(itemName)

Buyer

Ivan Marsic Rutgers University

168

The domain model consists of the following concepts and their responsibilities:
Responsibility Concept

Read out the patient’s blood pressure from a sensor Blood Pressure Reader
Read out the patient’s heart rate from a sensor Heart Rate Reader
Compare the vital signs to the safe ranges and detect if the vitals are outside Abnormality Detector
Hold description of the safe ranges for patient vital signs; measurements
outside these ranges indicate elevated risk to the patient; should be
automatically adjusted for patient’s activity

Vitals Safe Ranges

Accept user input for constraints on safe ranges Safe Range Entry
Read the patient’s activity indicators Activity Observer
Recognize the type of person’s activity Activity Classifier
Hold description of a given type of person’s activity Activity Model
Send an alert to a remote hospital Hospital Alerter
Hold information sent to the hospital about abnormal vitals or faulty sensors Hospital Alert
Run diagnostic tests on analog sensors Sensor Diagnostic
Interpret the results of diagnostic tests on analog sensors Failure Detector
Hold description of a type of sensor failure Sensor Failure Mode
Read the remaining batter power Battery Checker
Send an alert to the patient Patient Alerter
Hold information sent to the patient about low battery Patient Alert
Coordinate activity and delegate work to other concepts Controller

A sketchy UML sequence diagram is designed using the given concepts as in Figure 2-49. Note
that this diagram is incomplete: the part for checking the batter power is not shown for the lack of
space. However, it should be clear from the given part how the missing part should look like.

Recall that the period lengths for observations made by our system are related as:

 BP Reader & HR Reader < Sensor Diagnostic < Activity Observer < Battery Checker

In other words, vital signs are recorded frequently and battery is checked least frequently. These
relationships also indicate the priority or relative importance of the observations. However, the
initial design takes a simplified approach and assumes a single timer that periodically wakes up
the system to visit all different sensors, and acquire and process their data. You may but do not
need to stick with this simplified design in your solution.

Using the design principles from Section 2.6 or any other principles that you are aware of, solve:
(a) Check if the design in Figure 2-49 already uses some design principles and, if so, explain

your claim.
- If you believe that the given design or some parts of it are sufficiently good then

explain how the application of any interventions would make the design worse.
- Be specific and avoid generic or hypothetical explanations of why some designs

are better than others. Use concrete examples and UML diagrams or pseudo-code
to illustrate your point and refer to specific qualities of software design.

(b) Carefully examine the sketchy design in Figure 2-49 and identify as many opportunities
as you can to improve it by applying design principles.

- If you apply a principle, first argue why the existing design may be problematic.
- Provide as much details as possible about how the principle will be implemented

and how the new design will work (draw UML sequence diagrams or write
pseudo-code).

Chapter 2 Object-Oriented Software Engineering 169

- Explain how the principle that you introduced improved the original design (i.e.,
what are the expected benefits compared to the original design).

Feel free to introduce new concepts, substitute the given concepts with different ones, or modify
their responsibilities. You may also discard existing concepts if you find them redundant. In
addition, you may change how acquisition of different sensory data is initiated. However, when
you do so, explain the motivation for your actions.

Problem 2.36

vital := readVitalSign()

: VSafeRanges: VitalSignReader

wakeup

[abnormal == TRUE]

: AbnormalDetect

: Controller

ranges := getValues()

abnormal := isOutOfRange(vital)

opt send(Hospital Alert Abnormal Vitals)

check if in/out

: HospitalAlerter

faulty := isFaulty()

: SensDiagnostc : FailureDetectr

isFailed(result)

result :=
run tests

[faulty == TRUE]opt

exrcs := isExercising()

: ActivityObserv : ActivityClassif

classify(data)

data :=
read sensor

[exrcs == TRUE]opt adjust(exercise-mode)

send(Hospital Alert Sensor Failure)

Blood pressr
Heart rate

Figure 2-49: A sketchy UML sequence diagram for patient monitoring in Problem 2.35.

170

Contents
3.1 What is a System?

3.1.1 World Phenomena and Their Abstractions
3.1.2 States and State Variables
3.1.3 Events, Signals, and Messages
3.1.4 Context Diagrams and Domains
3.1.5 Systems and System Descriptions

3.2 Notations for System Specification
3.2.1 Basic Formalisms for Specifications
3.2.2 UML State Machine Diagrams
3.2.3 UML Object Constraint Language (OCL)
3.2.4 TLA+ Notation

3.3 Problem Frames
3.3.1 Problem Frame Notation
3.3.2 Problem Decomposition into Frames
3.3.3 Composition of Problem Frames
3.3.4

3.4 Specifying Goals
3.4.1
3.4.2
3.4.3
3.4.4

3.5
3.5.1
3.5.2
3.5.3

3.6 Summary and Bibliographical Notes

Problems

Chapter 3
Modeling and System Specification

“The beginning is the most important part of the work.” —Plato

The term “system specification” is used both for the process
of deriving the properties of the software system as well as for
the document that describes those properties. As the system is
developed, its properties will change during different stages of
its lifecycle, and so it may be unclear which specification is
being referred to. To avoid ambiguity we adopt a common
meaning: The system specification states what should be valid
(true) about the system at the time when the system is
delivered to the customer. Specifying system means stating
what we desire to achieve, not how we plan to accomplish it or
what has been achieved at an intermediate stage. The focus of
this chapter is on describing the system function, not its form.
Chapter 5 will focus on the form, how to build the system.

There are several aspects of specifying the system under
development, including:

 Understanding the problem and determining what
needs to be specified

 Selecting notation(s) to use for the specification

 Verifying that the specification meets the
requirements

Of course, this is not a linear sequence of activities. Rather, as we achieve better understanding of
the problem, we may wish to switch to a different notation; also, the verification activity may
uncover some weaknesses in understanding the problem and trigger an additional study of the
problem at hand.

We have already encountered one popular notation for specification, that is, the UML standard.
We will continue using UML and learn some more about it as well as about some other notations.
Most developers agree that a single type of system model is not enough to specify any non-trivial
system. You usually need several different models, told in different “languages” for different
stakeholders. The end user has certain requirements about the system, such as that the system
allows him to do his job easier. The business manager may be more concerned about the policies,

Chapter 3 Modeling and System Specification 171

rules, and processes supported by the system. Some stakeholders will care about engineering
design’s details, and others will not. Therefore, it is advisable to develop the system specification
as viewed from several different angles, using different notations.

My primary concern here is the developer’s perspective. We need to specify what are the
resting/equilibrium states and the anticipated perturbations. How does the system appear in an
equilibrium state? How does it react to a perturbation and what sequence of steps it goes through
to reach a new equilibrium? We already saw that use cases deal with such issues, to a certain
extent, although informally. Here, I will review some more precise approaches. This does not
necessarily imply formal methods. Some notations are better suited for particular types of
problems. Our goal is to work with a certain degree of precision that is amenable to some form of
analysis.

The system specification should be derived from the requirements. The specification should
accurately describe the system behavior necessary to satisfy the requirements. Most developers
would argue that the hardest part of software task is arriving at a complete and consistent
specification, and much of the essence of building a program is in fact the debugging its
specification—figuring out what exactly needs to be done. The developer might have
misunderstood the customer’s needs. The customer may be unsure, and the initial requirements
will often be fuzzy or incomplete. I should emphasize again and again that writing the
requirements and deriving the specification is not a strictly sequential process. Rather, we must
explore the requirements and system specification iteratively, until a satisfactory solution is
found. Even then, we may need to revisit and reexamine both if questions arise during the design
and implementation.

Although the system requirements are ultimately decided by the customer, the developer needs to
know how to ask the right questions and how to systemize the information gathered from the
customer. But, what questions to ask? A useful approach would be to be start with a catalogue of
simple representative problems that tend to occur in every real-world problem. These elementary-
building-block problems are called “problem frames.” Each can be described in a well-defined
format, each has a well-known solution, and each has a well-known set of associated issues. We
already made initial steps in Section 2.3.1. In Section 3.3 we will see how complex problems can
be made manageable by applying problem frames. In this way, problem frames can help us bridge
the gap between system requirements and system specification.

3.1 What is a System?

“All models are wrong, but some are useful.” —George E. P. Box

“There is no property absolutely essential to one thing. The same property, which figures as the essence of
a thing on one occasion, becomes a very inessential feature upon another.” —William James

In Chapter 2 we introduced system-to-be, or more accurately the software-to-be, as the software
product that a software engineer (or a team of engineers) sets out to develop. Apart from the
system, the rest of the world (“environment”) has been of concern only as far as it interacts with

Ivan Marsic Rutgers University 172

the system and it was abstracted as a set of actors. By describing different interaction scenarios as
a set of use cases, we were able to develop a software system in an incremental fashion.

However, there are some limitations with this approach. First, by considering only the “actors”
that the system directly interacts with, we may leave out some parts of the environment that have
no direct interactions with the software-to-be but are important to the problem and its solution.
Consider, for example, the stock market fantasy league system and the context within which it
operates (Figure 1-32). Here, the real-world stock market exchange does not interact with our
software-to-be, so it would not be considered an “actor.” Conceivably, it would not even be
mentioned in any of the use cases, because it is neither an initiating nor a participating actor! I
hope that the reader would agree that this is strange—the whole project revolves about a stock
exchange and yet the stock exchange may not appear in the system description at all.

Second, starting by focusing on interaction scenarios may not be the easiest route in describing
the problem. Use cases describe the sequence of user’s (actor) interaction with the system. I
already mentioned that use cases are procedural rather than object-oriented. The focus on
sequential procedure may not be difficult to begin with, but it requires being on a constant watch
for any branching off of the “main success scenario.” Decision making (branching points) may be
difficult to detect—it may be hard to conceive what could go wrong—particularly if not guided
by a helpful representation of the problem structure.

The best way to start conceptual modeling may be with how users and customers prefer to
conceptualize their world, because the developer needs to have a great deal of interaction with
customers at the time when the problem is being defined. This may also vary across different
application domains.

In this chapter I will present some alternative approaches to problem description (i.e.,
requirements and specification), which may be more involved but are believed to offer easier
routes to solving large-scale and complex problems.

3.1.1 World Phenomena and Their Abstractions

The key to solving a problem is in understanding the problem. Because problems are in the real
world, we need good abstractions of world phenomena. Good abstractions will help us to
represent accurately the knowledge that we gather about the world (that is, the “application
domain,” as it relates to our problem at hand). In object-oriented approach, key abstractions are
objects and messages and they served us well in Chapter 2 in understanding the problem and
deriving the solution. We are not about to abandon them now; rather, we will broaden our
horizons and perhaps take a slightly different perspective.

Usually we partition the world in different parts (or regions, or domains) and consider different
phenomena, see Figure 3-1. A phenomenon is a fact, or object, or occurrence that appears or is
perceived to exist, or to be present, or to be the case, when you observe the world or some part of
it. We can distinguish world phenomena by different criteria. Structurally, we have two broad
categories of phenomena: individuals and relations among individuals. Logically, we can
distinguish causal vs. symbolic phenomena. In terms of behavior, we can distinguish
deterministic vs. stochastic phenomena. Next I describe each kind briefly.

Chapter 3 Modeling and System Specification 173

I should like to emphasize that this is only one possible categorization, which seems suitable for
software engineering; other categorizations are possible and have been proposed. Moreover, any
specific identification of world phenomena is evanescent and bound to become faulty over time,
regardless of the amount of effort we invest in deriving it. I already mentioned in Section 1.1.1
the effect of the second law of thermodynamics. When identifying the world phenomena, we
inevitably make approximations. Certain kinds of information are regarded as important and the
rest of the information is treated as unimportant and ignored. Due to the random fluctuations in
the nature and society, some of the phenomena that served as the basis for our separation of
important and unimportant information will become intermingled thus invalidating our original
model. Hence the ultimate limits to what our modeling efforts can achieve.

Individuals

An individual is something that can be named and reliably distinguished from other individuals.
Decisions to treat certain phenomena as individuals are not objective—they depend on the
problem at hand. It should be clear by now that the selected level of abstraction is relative to the
observer. We choose to recognize just those individuals that are useful to solving the problem and
are practically distinguishable. We will choose to distinguish three kinds of individual: events,
entities, and values.

 An event is an individual happening, occurring at a particular point in time. Each event is
indivisible and instantaneous, that is, the event itself has no internal structure and takes no time to
happen. Hence, we can talk about “before the event” and “after the event,” but not about “during
the event.” An example event is placing a trading order; another example event is executing a
stock trading transaction; yet another example is posting a stock price quotation. Further
discussion of events is in Section 3.1.3.

WORLD

Part/Domain I Part/Domain J

Part/Domain K

Phenomena in Part i

Phenomena in Part j

Phenomena in Part k

Shared
phenomena

Figure 3-1: World partitioning into domains and their phenomena.

Ivan Marsic Rutgers University 174

 An entity is an individual with distinct existence, as opposed to a quality or relation. An entity
persists over time and can change its properties and states from one point in time to another.
Some entities may initiate events; some may cause spontaneous changes to their own states; some
may be passive.

Software objects and abstract concepts modeled in Chapter 2 are entities. But entities also include
real-world objects. The entities are determined by what part of the world is being modeled. A
financial-trader in our investment assistant case study (Section 1.3.2) is an entity; so is his
investment-portfolio; a listed-stock is also an entity. They belong to entity classes trader,
portfolio, and stock, respectively.

 A value is an intangible individual that exists outside time and space, and is not subject to
change. The values we are interested in are such things as numbers and characters, represented by
symbols. For example, a value could be the numerical measure of a quantity or a number
denoting amount on some conventional scale, such as 7 kilograms.

In our case study (Section 1.3.2), a particular stock price is a number of monetary units in which
a stock share is priced—and is therefore a value. Examples of value classes include integer,
character, string, and so on.

Relations
“I have an infamously low capacity for visualizing relationships, which made the study of geometry and all

subjects derived from it impossible for me.” —Sigmund Freud

We say that individuals are in relation if they share a certain characteristic. To define a relation,
we also need to specify how many individuals we consider at a time. For example, for any pair of
people, we could decide that they are neighbors if their homes are less than 100 meters apart from
each other. Given any two persons, Person_i and Person_j, if they pass this test then the relation
holds (is true); otherwise it does not hold (is false). All pairs of persons that pass the test are said
to be in the relation Neighbors(Person_i, Person_j). The pairs of persons that are neighbors form
a subset of all pairs of persons as shown in Figure 3-2(a).

Relations need not be established on pairs of individuals only. We can consider any number of
individuals and decide whether they are in a relation. The number n of considered individuals can
be any positive integer n 2 and it must be fixed for every test of the relation; we will call it an n-
tuple. We will write relation as RelationName(Individual1, …, Individualn). When one of the

Set of neighbors

Set of all pairs of persons

Set of neighbors

Set of all pairs of persons

Set of love triangles

Set of all 3-tuples of persons

Set of love triangles

Set of all 3-tuples of persons

(a) (b)

Figure 3-2: Example relations: Neighbors(Person_i, Person_j) and InLoveTriangle(Person_i,
Person_j, Person_k).

Chapter 3 Modeling and System Specification 175

individuals remains constant for all tests of the relation, we may include its name in the relation’s
name. For example, consider the characteristic of wearing eyeglasses. Then we can test whether a
Person_i is in relation Wearing(Person_i, Glasses), which is a subset of all persons. Because
Glasses remain constant across all tests, we can write WearingGlasses(Person_i), or simply
Bespectacled(Person_i). Consider next the so-called “love triangle” relation as an example for n =
3. Obviously, to test for this characteristic we must consider exactly three persons at a time; not
two, not four. Then the relation InLoveTriangle(Person_i, Person_j, Person_k) will form a set of
all triplets (3-tuples) of persons for whom this characteristic is true, which is a subset of all
3-tuples of persons as shown in Figure 3-2(b). A formal definition of relation will be given in
Section 3.2.1 after presenting some notation.

We will consider three kinds of relations: states, truths, and roles.

 A state is a relation among individual entities and values, which can change over time. I will
describe states in Section 3.1.2, and skip them for now.

 A truth is a fixed relation among individuals that cannot possibly change over time. Unlike
states, which change over time, truths remain constant. A bit more relaxed definition would be to
consider the relations that are invariable on the time-scale that we are interested in. Example
time-scales could be project duration or anticipated product life-cycle. When stating a truth, the
individuals are always values, and the truth expresses invariable facts, such as GreaterThan(5, 3)
or StockTickerSymbol(“Google, Inc.,” “GOOG”). It is reasonably safe to assume that company
stock symbols will not change (although mergers or acquisitions may affect this!).

 A role is a relation between an event and individual that participate in it in a particular way.
Each role expresses what you might otherwise think of as one of the “arguments” (or
“parameters”) of the event.

Causal vs. Symbolic Phenomena

 Causal phenomena are events, or roles, or states relating entities. These are causal phenomena
because they are directly produced or controlled by some entity, and because they can give rise to
other phenomena in turn.

 Symbolic phenomena are values, and truths and states relating only values. They are called
symbolic because they are used to symbolize other phenomena and relationships among them. A
symbolic state that relates values—for example, the data content of a disk record—can be
changed by external causation, but we do not think of it as causal because it can neither change
itself nor cause change elsewhere.

Deterministic vs. Stochastic Phenomena

 Deterministic phenomena are the causal phenomena for which the occurrence or non-
occurrence can be established with certainty.

 Stochastic phenomena are the causal phenomena that are governed by a random distribution of
probabilities.

Ivan Marsic Rutgers University 176

3.1.2 States and State Variables

A state describes what is true in the world at each particular point in time. The state of an
individual represents the cumulative results of its behavior. Consider a device, such as a digital
video disc (DVD) player. How the device reacts to an input command depends not only upon that
input, but also upon the internal state that the device is currently in. So, if the “PLAY” button is
pushed on a DVD player, what happens next will depend on various things, such as whether or
not the player is turned on, contains a disc, or is already playing. These conditions represent
different states of a DVD player.

By considering such options, we may come up with a list of all states for a DVD player, like this:

State 1: NotPowered (the player is not powered up)
State 2: Powered (the player is powered up)
State 3: Loaded (a disc is in the tray)
State 4: Playing

We can define state more precisely as a relation on a set of objects, which simply selects a subset
of the set. For the DVD player example, what we wish to express is “The DVD player’s power is
off.” We could write Is(DVDplayer, NotPowered) or IsNotPowered(DVDplayer). We will settle
on this format: NotPowered(DVDplayer). NotPowered(x) is a subset of DVD players x that are
not powered up. In other words, NotPowered(x) is true if x is currently off. Assuming that one
such player is the one in the living room, labeled as DVDinLivRm, then
NotPowered(DVDinLivRm) holds true if the player in the living room is not powered up.

Upon a closer examination, we may realize that the above list of states implies that a non-
powered-up player never contains a disc in the tray. If you are charged to develop software for the
DVD player, you must clarify this. Does this mean that the disc is automatically ejected when the
power-off button is pushed? If this is not the case or the issue is yet unresolved, we may want to
redesign our list of DVD player states as:

State 1: NotPoweredEmpty (the player is not powered up and it contains no disc)
State 2: NotPoweredLoaded (the player is not powered up but a disc is in the tray)
State 3: PoweredEmpty (the player is powered up but it contains no disc)
State 4: PoweredLoaded (the player is powered up and a disc is in the tray)
State 5: Playing

At this point one may realize that instead of aggregate or “global” system states it may be more
elegant to discern different parts (sub-objects) of the DVD player and, in turn, consider the state
of each part (Figure 3-3). Each part has its “local” states, as in this table

System part (Object) State relations
Power button {Off, On}
Disc tray {Empty, Loaded}
Play button {Off, On}
… …

Note that the relation Off(b) is defined on the set of buttons. Then these relations may be true:
Off(PowerButton) and Off(PlayButton). Similar holds for On(b).

Given the states of individual parts, how can we define the state of the whole system? Obviously,
we could say that the aggregate system state is defined by the states of its parts. For example, one

Chapter 3 Modeling and System Specification 177

state of the DVD player is { On(PowerButton), Empty(), Off(PlayButton), … }. Note that the
relation Empty() is left without an argument, because it is clear to which object it refers to. In this
case we could also write Empty without parentheses. The arrangement of the relations in this
“state tuple” is not important as long as it is clear what part each relation refers to.

The question now arises, is every combination of parts’ states allowed? Are these parts
independent of each other or there are constraints on the state of one part that are imposed by the
current states of other parts? Some states of parts of a composite domain may be mutually
exclusive. Going back to the issue posed earlier, can the disc tray be in the “loaded” state when
the power button is in the “off” state? Because these are parts of the same system, we must make
explicit any mutual dependencies of the parts’ states. We may end up with a list of valid system
state tuples that does not include all possible tuples that can be constructed.

Both representations of a system state (single aggregate state vs. tuple of parts’ states) are correct,
but their suitability depends on what kind of details you care to know about the system. In
general, considering the system as a set of parts that define state tuples presents a cleaner and
more modular approach than a single aggregate state.

In software engineering, we care about the visible aspects of the software system. In general,
visible aspects do not necessarily need to correspond to “parts” of the system. Rather, they are
any observable qualities of the system. For example, domain-model attributes identified in
Section 2.5 represent observable qualities of the system. We call each observable quality a state
variable. In our first case-study example, variables include the lock and the bulb. Another
variable is the counter of the number of attempts at opening the lock. Yet another variable is the
amount of timer that counts down the time elapsed since the lock was open, to support auto-lock
functionality. The state variables of our system can be summarized as in this table

Variable State relations
Door lock {Disarmed, Armed}
Bulb {Lit, Unlit}
Counter of failed attempts {0, 1, …, maxNumOfAttempts}
Auto-lock timer {0, 1, …, autoLockInterval}

In case of multiple locks and/or bulbs, we have a different state variable for every lock/bulb,
similar to the above example of DVD player buttons. So, the state relations for backyard and front
door locks could be defined as Disarmed(Backyard) and Disarmed(Front).

DVD player

Power
button

Play
button

Disc
tray

…

DVD player

(a) (b)

Figure 3-3: Abstractions of a DVD player at different levels of detail: (a) The player as a
single entity. (b) The player seen as composed of several entities.

Ivan Marsic Rutgers University 178

The situation with numeric relations is a bit trickier. We could write 2(Counter) to mean that the
counter is currently in state “2,” but this is a bit awkward. Rather, just for the sake of convenience
I will write Equals(Counter, 2) and similarly Equals(Timer, 3).

System state is defined as a tuple of state variables containing any valid combination of state
relations. State is an aggregate representation of the system characteristics that we care to know
about looking from outside of the system. For the above example, an example state tuple is:
{Disarmed(Front), Lit, Armed(Backyard), Equals(Counter, 0), Equals(Timer, 0) }.

One way to classify states is by what the object is doing in a given state:

 A state is a passive quality if the object is just waiting for an event to happen. For the DVD
player described earlier, such states are “Powered” and “Loaded.”

 A state is an active quality if the object is executing an activity. When the DVD player is in the
“Playing” state it is actively playing a disc.

A combination of these options is also possible, i.e., the object may be executing an activity and
also waiting for an event.

The movements between states are called transitions and are most often caused by events
(described in Section 3.1.3). Each state transition connects two states. Usually, not all pairs of
states are connected by transitions—only specific transitions are permissible.

Example 3.1 Identifying Stock Exchange States (First Attempt)

Consider our second case study on an investment assistant system (Section 1.3.2), and suppose that we
want to identify the states of the stock exchange. There are many things that we can say about the
exchange, such as where it is located, dimensions of the building, the date it was built, etc. But, what
properties we care to know as it relates to our problem? Here are some candidates:

 What are the operating hours and is the exchange currently “open” or “closed?”

 What stocks are currently listed?

 For each listed stock, what are the quoted price (traded/bid/ask) and the number of offered shares?

 What is the current overall trading volume?

 What is the current market index or average value?

The state variables can be summarized like so:
Variable State relations
Operating condition (or gate condition) {Open, Closed}
ith stock price any positive real number
ith stock number of offered shares {0, 1, 2, 3, …}
Trading volume {0, 1, 2, 3, …}
Market index/average any positive real number

The asterisk in the table indicates that the prices are quoted up to a certain number of decimal places
and there is a reasonable upper bound on the prices. In other words, this is a finite set of finite values.
Obviously, this system has a great many of possible states, which is, nonetheless, finite. An improvised
graphical representation is shown in Figure 3-4. (UML standard symbols for state diagrams are
described later in Section 3.2.2.)

An example state tuple is: { Open, Equals(Volume, 783014), Equals(Average, 1582), Equals(Price_1,
74.52), Equals(Shares_1, 10721), Equals(Price_2, 105.17), Equals(Shares_2, 51482), … }. Note that
the price and number of shares must be specified for all the listed stocks.

Chapter 3 Modeling and System Specification 179

As the reader should know by now, the selection of state phenomena depends on the observer and
observer’s problem at hand. An alternative characterization of a market state is presented later in
Example 3.2.

Observables vs. Hidden Variables

States Defined from Observable Phenomena

State is an abstraction, and as such it is subjective—it depends on who is making the
abstraction. There are no “objective states”—every categorization of states is relative
to the observer. Of course, the same observer can come up with different abstractions.
The observer can also define new states based on observable phenomena; such states
are directly observed. Consider, for example, a fruit states: “green,” “semiripe,” “ripe,”
“overripe,” and “rotten.” The state of “ripeness” of a fruit is defined based on observable
parameters such as its skin color and texture, size, scent, softness on touch, etc. Similarly, a
“moving” state of an elevator is defined by observing its position over subsequent time moments
and calculating the trend.

For the auto-lock timer discussed earlier, we can define the states “CountingDown” and “Idle”
like so:

CountingDown(Timer)

 The relation Equals(Timer,) holds true for decreasing with time

Idle(Timer)

 The relation Equals(Timer,) holds true for remaining constant with time

The symbol

 means that this is a defined state.

Example 3.2 Identifying Stock Exchange States (Second Attempt)

2

1

3

2

1

3

1.01

1.00

1.02

1.01

1.00

1.02

1.011.00 1.021.011.00 1.02

Stock_1_Price

Market
index

ClosedOpen ClosedOpen
Market
gate

Stock_1_Shares

2

1

3

2

1

3

1.01

1.00

1.02

1.01

1.00

1.02

Stock_2_Price Stock_2_Shares

(prices and num. of shares
for all listed stocks)

Figure 3-4: Graphical representation of states for Example 3.1. The arrows indicate the
permissible paths for transitioning between different states.

Ivan Marsic Rutgers University 180

Let us revisit Example 3.1. Upon closer examination, one may conclude that the trader may not find
very useful the variables identified therein. In Section 1.3.2, we speculated that what trader really cares
about is to know if a trading opportunity arises and, once he places a trading order, tracking the status
of the order. Let us assume that the trading decision will be made based on the trending direction of the
stock price. Also assume that, when an upward trend of Stock_i’s price triggers a decision to buy, a
market order is placed for x shares of Stock_i. To summarize, the trader wants to represent the states of
two things:

 “Stock tradability” states (“buy,” “sell,” “hold”) are defined based on considering a time window
of recent prices for a given stock and interpolating a line. If the line exhibits an upward trend, the
stock state is Buy. The states Sell and Hold are decided similarly. A more financially astute trader
may use some of the technical analysis indicators (e.g., Figure 1-23), instead of the simple
regression line.

 “Order status” states (“pending” vs. “executed”) are defined based on whether there are sufficient
shares offered so the buying transaction can be carried out. We have to be careful here, because a
selling transaction can be executed only if there are willing buyers. So, the buy and sell orders
have the same states, defined differently.

Then the trader could define the states of the market as follows:

Buy

 The regression line of the relation Equals(Price_i(t), p), for t = tcurrent Window, …, tcurrent 2,

tcurrent 1, tcurrent, has a positive slope

Sell

 The regression line of the relation Equals(Price_i(t), p), for t = tcurrent Window, …, tcurrent, has a

negative slope

Hold

 The regression line of the relation Equals(Price_i(t), p), for t = tcurrent Window, …, tcurrent, has

a zero slope

SellOrderPending

 The relation Equals(Shares_i, y) holds true for all values of y less than x

SellOrderExecuted

 The relation Equals(Shares_i, y) holds true for all values of y greater than or

equal to x

What we did here, essentially, is to group a large number of detailed states from Example 3.1 into few
aggregate states (see Figure 3-5). These grouped states help simplify the trader’s work.

It is possible to discern further nuances in each of these states. For example, two sub-states of the state
Sell could be distinguished as when the trader should sell to avert greater loss vs. when he may wish to
take profit at a market top. The most important point to keep in mind is the trader’s goals and strategies
for achieving them. This is by no means the only way the trader could view the market. A more
proficient trader may define the states in terms of long vs. short trading positions (see Section 1.3.2,
Figure 1-22). Example states could be:

GoLong – The given stock is currently suitable for taking a long position

x 1x 2 x x 1 x 2

OrderPending OrderExecuted

Figure 3-5: Graphical representation of states for Example 3.2. Microstates from Figure 3-4
representing the number of offered shares are aggregated into two macrostates.

Chapter 3 Modeling and System Specification 181

GoShort – The given stock is currently suitable for taking a long position

GoNeutral – The trader should hold or avoid the given stock at this time

The states that are directly observable at a given level of detail (coarse graining) will be called
microstates. A group of microstates is called a macrostate (or superstate). The states defined in
Example 3.2 are macrostates.

Sometimes our abstraction may identify simultaneous (or concurrent) activities that object
executes in a given state. For example, when the DVD player is in the “Playing” state it may be
simultaneously playing a disc (producing video output) and updating the time-progress display.

Section 3.2.2 describes UML state machine diagrams as a standardized graphical notation for
representing states and transitions between them.

3.1.3 Events, Signals, and Messages

Event definition requires that events are indivisible—any happening (or performance, or action)
that has an internal time structure must be regarded as two or more events. The motivation for this
restriction is to avoid having intermediate states: an event represents a sharp boundary between
two different states. We also need to assume that no two events occur simultaneously. All events
happen sequentially, and between successive events there are intervals of time in which nothing
happens—that is, there are no events. Events and intervals alternate: each event ends one interval
and begins another. Consider the example in Figure 3-6. By examining the time diagram we
partition time into intervals (“states”) and identify what point (“event”) separates two intervals.
Then we name the resulting five phenomena as shown in Figure 3-6. We cannot have an

State:
Ball standing

State:
Ball flying

State:
Ball floating

Event: Kick

Event: Splash

1

2

3

5

4

Time

E
le

va
tio

n
of

 t
he

 b
al

l

Event: Kick

Event: Splash

Figure 3-6: Events take place at transitions between the states.

Ivan Marsic Rutgers University 182

uninterrupted sequence of events—this would simply be a wrong model and would require
refining the time scale to identify the intervals between successive events.

The developer may need to make a choice of what to treat as a single event. Consider the home-
access control case study (Section 1.3.1). When the tenant is punching in his identification key,
should this be treated as a single event, or should each keystroke be considered a different event?
The answer depends on whether your problem statement requires you to treat it one way or
another. Are there any exceptions that are relevant to the problem, which may arise between
different keystrokes? If so, then we need to treat each keystroke as an event.

The reader may wonder about the relationship between events and messages, or operations in
object-oriented approach. The notion of event as defined above is more general, because it is not
limited to object orientation. The notion of message implies that a signal is sent from one entity to
another. Unlike a message, an event is something that happens—it may include one or more
individuals but it is not necessarily directed from one individual to another. Events just mark
transitions between successive states. The advantage of this view is that we can avoid specifying
processing detail at an early stage of problem definition. Use case analysis (Section 2.4.3) is
different in that it requires making explicit the sequential processing procedure (“scenarios”),
which leads to system operations.

Another difference is that events always signify state change—even for situations where system
remains in the same state, there is an explicit description of an event and state change. Hence,
events depend on how the corresponding state set is already defined. On the other hand, messages
may not be related to state changes. For example, an operation that simply retrieves the value of
an object attribute (known as accessor operation) does not affect the object’s state.

Example events:

listStock – this event marks that it is first time available for trading – marks transition between
price states; marks a transition between number-of-shares-available states

splitStock – this event marks a transition between price states; marks transition between number-
of-shares-available states

submitOrder – this event marks a transition between the states of a trading order; also marks a
transition between price states (the indicative price of the stock gets updated); also marks a
transition between number-of-shares-available states, in case of a sell-order

matchFound – this event marks a transition between the states of a trading order when a matching
order(s) is(are) found; also marks a transition between price states (the traded price of the stock
gets updated); also marks a transition between number-of-shares-available states

The above events can also mark change in “trading volume” and “market index/average.” The
reader may have observed that event names are formed as verb phrases. The reason for this is to
distinguish events from states. Although this is reminiscent of messages in object-oriented
approach, events do not necessarily correspond to messages, as already discussed earlier.

Example 3.3 Identifying Stock Exchange Events

Consider Example 3.2, where the states Buy, Sell, or Hold, are defined based on recent price
movements. The events that directly lead to transitioning between these states are order placements by
other traders. There may be many different orders placed until the transition happens, but we view the

Chapter 3 Modeling and System Specification 183

transitioning as an indivisible event—the moment when the regression line slope exceeds a given
threshold value. The events can be summarized like so:

Event Description
trade Causes transition between stock states Buy, Sell, or Hold
submit Causes transition between trading-order states

InPreparation OrderPending
matched Causes transition between trading-order states

OrderPending OrderExecuted
… …
… …

The events marking a trading order transitions are shown in Figure 3-7. Other possible events include
bid and offer, which may or may not lead to transitions among the states of a trading order. We will
consider these in Section 3.2.2.

3.1.4 Context Diagrams and Domains

Now that we have defined basic phenomena, we can start the problem domain analysis by placing
the planned system in a context—the environment in which it will work. For this we use context
diagrams, which are essentially a bit more than the commonplace “block diagrams.” Context
diagrams are not part of UML; they were introduced by Michael Jackson [1995] based on the
notation dating back to structured analysis in 1970s. The context diagram represents the context
of the problem that the developer sets out to solve. The block diagrams we encountered in Figure
1-20(b) and Figure 1-32 are essentially context diagrams. Based on the partitioning in Figure 3-1,
we show different domains as rectangular boxes and connect them with lines to indicate that they
share certain phenomena. Figure 3-8 is Figure 1-20(b) redrawn as a context diagram, with some
details added. Our system-to-be, labeled “machine,” subsumes the broker’s role and the figure
also shows abstract concepts such as portfolio, trading order, and ith stock. Jackson uses the term
“machine” to avoid the ambiguities of the word “system,” some of which were discussed in
Section 2.4.2. We use all three terms, “system-to-be,” “software-to-be,” and “machine.”

A context diagram shows parts of the world (Figure 3-1) that are relevant to our problem and only
the relevant parts. Each box in a context diagram represents a different domain. A domain is a
part of the world that can be distinguished because it is conveniently considered as a whole, and
can be considered—to some extent—separately from other parts of the world. Each domain is a
different subject matter that appears in the description of the problem. A domain is described by
the phenomena that exist or occur in it. In every software development problem there are at least
two domains: the application domain (or environment, or real world—what is given) and the

InPreparation Pending Executed Archived

submit matched archive

Figure 3-7: Graphical representation of events marking state transitions of a trading order.

Ivan Marsic Rutgers University 184

machine (or system-to-be—what is to be constructed). Some of the domains in Figure 3-8
correspond to what we called “actors” in Chapter 2. However, there are other subject matters, as
well, such as “Investment portfolio.”

To simplify, we decide that all the domains in the context diagram are physical. In Figure 3-8,
while this may be clear for other domains, even “Investment portfolio” should be a physical
domain. We assume that the corresponding box stands for the physical representation of the
information about the stocks that the trader owns. In other words, this is the representation stored
in computer memory or displayed on a screen or printed on paper. The reason for emphasizing
physical domains and physical interactions is because the point of software development is to
build systems that interact with the physical world and help the user solve problems.

Domain Types

Domains can be distinguished as to whether they are given or are to be designed. A given domain
is a problem domain whose properties are given—we are not allowed to design such a domain. In
some cases the machine can influence the behavior of a given domain. For example, in Figure 3-8
executing trading orders influences the behavior of the stock exchange (given domain). A
designed domain is a problem domain for which data structures and, to some extent, its data
content need to be determined and constructed. An example is the “Investment portfolio” domain
in Figure 3-8.

Often, one kind of problem is distinguished from another by different domain types. To a large
degree these distinctions arise naturally out of the domain phenomena. But it is also useful to
make a broad classification into three main types.

 A causal domain is one whose properties include predictable causal relationships among its
causal phenomena.

A causal domain may control some or all or none of the shared phenomena at an interface with
another domain.

 A biddable domain usually consists of people. The most important characteristic of a biddable
domain is that it lacks positive predictable internal causality. That is, in most situations it is
impossible to compel a person to initiate an event: the most that can be done is to issue
instructions to be followed.

Machine
(SuD)

Machine
(SuD)

Stock
exchange

Trader

Bank

Investment
portfolio

Investment
portfolio

Context diagram symbols:

A box with a double stripe
is a machine domain

A box with a single stripe
is a designed domain

A box with no stripe
is a given domainith stock

Trading
order

Figure 3-8: Context diagram for our case study 2: investment advisory system.

Chapter 3 Modeling and System Specification 185

 A lexical domain is a physical representation of data—that is, of symbolic phenomena.

Shared Phenomena

So far we considered world phenomena as belonging to particular domains. Some phenomena are
shared. Shared phenomena, viewed from different domains, are the essence of domain interaction
and communication. You can think of the domains as seeing the same event from different points
of view.

Figure 3-9 shows

3.1.5 Systems and System Descriptions

Now that we have defined domains as distinguishable parts of the world, we can consider any
domain as a system. A system is an organized or complex whole, an assemblage of things or
parts interacting in a coordinated way. All systems are affected by events in their environment
either internal and under the organization’s control or external and not controllable by the
organization.

Behavior under Perturbations: We need to define the initial state, other equilibrium states, and
state transitions.

Most of real-world problems require a dynamical model to capture a process which changes over
time. Depending on the application, the particular choice of model may be continuous or discrete
(using differential or difference equations), deterministic or stochastic, or a hybrid. Dynamical
systems theory describes properties of solutions to models that are prevalent across the sciences.
It has been quite successful, yielding geometric descriptions of phase portraits that partition state
space into region of solution trajectories with similar asymptotic behavior, characterization of the
statistical properties of attractors, and classification of bifurcations marking qualitative changes of
dynamical behavior in generic systems depending upon parameters. [Strogatz, 1994]

S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering. Perseus Books Group, 1994.

eject (?)

start
stop

eject
load

enable
disable

enable
disable

activate
shut down Power

button

Play
button

Eject
button

Disc tray Display

activate
shut down

notify

notify

Figure 3-9: Domains and shared phenomena in the problem of controlling a DVD player.

Ivan Marsic Rutgers University 186

Given an external perturbation or stimulus, the system responds by traversing a set of transient
states until it settles at an equilibrium state. An equilibrium state may involve stable oscillations,
e.g., a behavior driven by an internal clock.

In mechanics, when an external force acts on an object, we describe its behavior through a set of
mathematical equations. Here we describe it as a sequence of (discrete) action-reaction or
stimulus-response events, in plain English.

Figure 3-x shows the state transition diagram. Action “turnLightOff” is marked with question
mark because we are yet to arrive at an acceptable solution for this case. The state [disarmed,
unlit] is not shown because the lock is not supposed to stay for a long in a disarmed state—it will
be closed shortly either by the user or automatically.

3.2 Notations for System Specification

“… psychologically we must keep all the theories in our heads, and every theoretical physicist who is any
good knows six or seven different theoretical representations for exactly the same physics. He knows that
they are all equivalent, and that nobody is ever going to be able to decide which one is right at that level,

but he keeps them in his head, hoping that they will give him different ideas for guessing.”
—Richard Feynman, The Character of Physical Law

3.2.1 Basic Formalisms for Specifications
“You can only find truth with logic if you have already found truth without it.”

—Gilbert Keith Chesterton, The Man who was Orthodox

“Logic: The art of thinking and reasoning in strict accordance with the limitations and incapacities of the
human misunderstanding.” —Ambrose Bierce, The Devil’s Dictionary

This section reviews some basic discrete mathematics that often appears in specifications. First I
present a brief overview of sets notation. A set is a well-defined collection of objects that are
called members or elements. A set is completely defined by its elements. To declare that object x
is a member of a set A, write x A. Conversely, to declare that object y is not a member of a set
A, write x A. A set which has no members is the empty set and is denoted as { } or .

Sets A and B are equal (denoted as A = B) if they have exactly the same members. If A and B are
not equal, write A B. A set B is a subset of a set A if all of the members of B are members of A,
and this is denoted as B A. The set B is a proper subset of A if B is a subset of A and B A,
which is denoted as B A.

The union of two sets A and B is the set whose members belong to A, B or both, and is denoted as
A B. The intersection of two sets A and B is the set whose members belong to both A and B,
and is denoted as A B. Two sets A and B are disjoint if their intersections is the empty set: A
B = . When B A, the set difference A \ B is the set of members of A which are not members of
B.

Chapter 3 Modeling and System Specification 187

p q p q
T T T
T F F
F T T
F F T

Truth table
for p q.

The members of a set can themselves be sets. Of particular interest is the set that contains all the
subsets of a given set A, including both and A itself. This set is called the power set of set A
and is denoted (A), or A, or 2A.

The ordered pair x, y is a pair of objects in which x is the first object and y is the second object.
Two ordered pairs x, y and a, b are equal if and only if x = a and y = b. We define Cartesian
product or cross product of two sets A and B (denoted as A B) as the set of all ordered pairs
x,y where x A and y B. We can define the n-fold Cartesian product as A A … A.
Recall the discussion of relations among individuals in Section 3.1.1. An n-ary relation R on A,
for n 1, is defined as a subset of the n-fold Cartesian product, R A A … A.

Boolean Logic

The rules of logic give precise meaning to statements and so they play a key role in
specifications. Of course, all of this can be expressed in a natural language (such as English) or
you can invent your own syntax for describing the system requirements and
specification. However, if these descriptions are expressed in a standard and
predictable manner, not only they can be easily understood, but also
automated tools can be developed to understand such descriptions. This
allows automatic checking of descriptions.

Propositions are the basic building block of logic. A proposition is a
declarative sentence (a sentence that declares a fact) that is either true or
false, but not both. We already saw in Section 1.3 that a proposition is a
statement of a relation among concepts, given that the truth value of the
statement is known. Examples of declarative sentence are “Dogs are mammals” and “one plus
one equals three.” The first proposition is true and the second one is false. The sentence “Write
this down” is not a proposition because it is not a declarative sentence. Also, the sentence “x is
smaller than five” is not a proposition because it is neither true nor false (depends on what x is).
The conventional letters used to denote propositions are p, q, r, s, … These are called
propositional variables or statement variables. If a proposition is true, its truth value is denoted
by T and, conversely, the truth value of a false proposition is denoted by F.

Many statements are constructed by combining one or more propositions, using logical operators,
to form compound propositions. Some of the operators of propositional logic are shown on top of
Table 3-1.

A conditional statement or, simply a conditional, is obtained by combining two propositions p
and q to a compound proposition “if p, then q.” It is also written as p q and can be read as “p
implies q.” In the conditional statement p q, p is called the premise (or antecedent or
hypothesis) and q is called the conclusion (or consequence). The conditional statement p q is
false when the premise p is true and the conclusion q is false, and true otherwise. It is important
to note that conditional statements should not be interpreted in terms of cause and effect. Thus,
when we say “if p, then q,” we do not mean that the premise p causes the conclusion q, but only
that when p is true, q must be true as well1.

1 This is different from the if-then construction used in many programming languages. Most programming

languages contain statements such as if p then S, where p is a proposition and S is a program segment of

Ivan Marsic Rutgers University 188

The statement p q is a biconditional, or bi-implication, which means that p q and q p.
The biconditional statement p q is true when p and q have the same truth value, and is false
otherwise.

So far we have considered propositional logic; now let us briefly introduce predicate logic. We
saw ealier that the sentence “x is smaller than 5” is not a proposition because it is neither true nor
false. This sentence has two parts: the variable x, which is the subject, and the predicate, “is
smaller than 5,” which refers to a property that the subject of the sentence can have. We can
denote this statement by P(x), where P denotes the predicate “is smaller than 5” and x is the
variable. The sentence P(x) is also said to be the value of the propositional function P at x. Once a
specific value has been assigned to the variable x, the statement P(x) becomes a proposition and
has a truth value. In our example, by setting x = 3, P(x) is true; conversely, by setting x = 7, P(x)
is false2.

There is another way of creating a proposition from a propositional function, called
quantification. Quantification expresses the extent to which a predicate is true over a range of
elements, using the words such as all, some, many, none, and few. Most common types of
quantification are universal quantification and existential quantification, shown at the bottom of
Table 3-1.

The universal quantification of P(x) is the proposition “P(x) is true for all values of x in the
domain,” denoted as x P(x). The value of x for which P(x) is false is called a counterexample of
x P(x). The existential quantification is the proposition “There exists a value of x in the domain
such that P(x) is true,” denoted as x P(x).

In constructing valid arguments, a key elementary step is replacing a statement with another
statement of the same truth value. We are particularly interested in compound propositions
formed from propositional variables using logical operators as given in Table 3-1. Two types of
compound propositions are of special interest. A compound proposition that is always true,
regardless of the truth values of its constituent propositions is called a tautology. A simple
example is p p, which is always true because either p is true or it is false. On the other hand, a
compound proposition that is always false is called a contradiction. A simple example is p p,
because p cannot be true and false at the same time. Obviously, the negation of a tautology is a

one or more statements to be executed. When such an if-then statement is encountered during the
execution of a program, S is executed is p is true, but S is not executed if p is false.

2 The reader might have noticed that we already encountered predicates in Section 3.1.2 where the state
relations for objects actually are predicates.

Table 3-1: Operators of the propositional and predicate logics.

Propositional Logic
 conjunction (p and q) implication (if p then q)
 disjunction (p or q) biconditional (p if and only if q)
 negation (not p) equivalence (p is equivalent to q)
Predicate Logic (extends propositional logic with two quantifiers)
 universal quantification (for all x, P(x))
 existential quantification (there exists x, P(x))

Chapter 3 Modeling and System Specification 189

contradiction, and vice versa. Finally, compound proposition that is neither a tautology nor a
contradiction is called a contingency.

The compound propositions p and q are said to be logically equivalent, denoted as p q, if p q
is a tautology. In other words, p q if p and q have the same truth values for all possible truth
values of their component variables. For example, the statements r s and r s are logically
equivalent, which can be shown as follows. Earlier we stated that a conditional statement is false
only when its premise is true and its conclusion is false, and true otherwise. We can write this as

r s (r s)
 r (s) by the first De Morgan’s law: (p q) p q
 r s

[For the sake of completeness, I state here, as well, the second De Morgan’s law: (p q)
pq.]

Translating sentences in natural language into logical expressions is an essential part of
specifying systems. Consider, for example, the following requirements in our second case study
on financial investment assistant (Section 1.3.2).

Example 3.4 Translating Requirements into Logical Expressions

Translate the following two requirements for our second case study on personal investment assistant
(Table 2-2) into logical expressions:

REQ1. The system shall support registering new investors by providing a real-world email, which
shall be external to our website. Required information shall include a unique login ID and a
password that conforms to the guidelines, as well as investor’s first and last name and other
demographic information. Upon successful registration, the system shall set up an account with
a zero balance for the investor.

REQ2. The system shall support placing Market Orders specified by the action (buy/sell), the stock to
trade, and the number of shares. The current indicative (ask/bid) price shall be shown and
updated in real time. The system shall also allow specifying the upper/lower bounds of the
stock price beyond which the investor does not wish the transaction executed. If the action is to
buy, the system shall check that the investor has sufficient funds in his/her account. When the
market order matches the current market price, the system shall execute the transaction
instantly. It shall then issue a confirmation about the outcome of the transaction (known as
“order ticket”), which contains: the unique ticket number, investor’s name, stock symbol,
number of shares, the traded share price, the new portfolio state, and the investor’s new
account balance.

We start by listing all the declarative sentences that can be extracted from the requirements. REQ1
yields the following declarative sentences. Keep in mind that these are not necessarily propositions
because we still do not know whether they have truth value.

Label Declarative sentence (not necessarily a proposition!)
a The investor can register with the system
b The email address entered by the investor exists in real world
c The email address entered by the investor is external to our website
d The login ID entered by the investor is unique
e The password entered by the investor conforms to the guidelines
f The investor enters his/her first and last name, and other demographic info
g Registration is successful
h Account with zero balance is set up for the investor

Ivan Marsic Rutgers University 190

Next we need to ascertain their truth value. Recall that the specifications state what is true about the
system at the time it is delivered to the customer. The truth value of a must be established by the
developer before the system is delivered. The truth values of b, c, d, and e depends on what the
investor will enter. Hence, these are propositional functions at investor’s input. Consider the sentence
b. Assuming that email denotes the investor’s input and B denotes the predicate in b, the propositional
function is B(email). Similarly, c can be written as C(email), d as D(id), and e as E(pwd). The system
can and should evaluate these functions at runtime, during the investor registration, but the
specification refers to the system deployment time, not its runtime. I will assume that the truth of
sentence f is hard to ascertain so the system will admit any input values and consider f true.

We have the following propositions derived from REQ1:
REQ1 represented as a set of propositions
a
(email)(id)(pwd) [B(email) C(email) D(id) E(pwd) g]
f
g h

The reader should be reminded that conditional statements in logic are different from if-then
constructions in programming languages. Hence, g h does not describe a cause-effect sequence of
instructions such as: when registration is successful, do set up a zero-balance account. Rather, this
simply states that when g is true, h must be true as well.

The system correctly implements REQ1 for an assignment of truth values that makes all four
propositions true. Note that it would be wrong to simply write (b c d e) g instead of the
second proposition above, for this does not correctly reflect the reality of user choice at entering the
input parameters.

Extracting declarative sentences from REQ2 is a bit more involved than for REQ1. The two most
complex aspects of REQ2 seem to be about ensuring the sufficiency of funds for the stock purchase
and executing the order only if the current price is within the bounds (in case the trader specified the
upper/lower bounds). Let us assume that the ticker symbol selected by the trader is denoted by SYM
and its current ask price at the exchange is IP (for indicative price). Note that unlike the email and
password in REQ1, here we can force the user to select a valid ticker symbol by displaying only
acceptable options. The number of shares (volume) for the trade specified by the investor is denoted as
VOL. In case the investor specifies the upper/lower bounds, let their values be denoted as UB and LB,
respectively. Lastly, the investor’s current account balance is denoted as BAL.

Here is a partial list of propositions needed to state these two constraints:
Label Propositions (partial list)

m The action specified by the investor is “buy”
n The investor specified the upper bound of the “buy” price
o The investor specified the lower bound of the “sell” price

The above table contains propositions because their truth value can be established independent of the
user’s choice. For example, the developer should allow only two choices for trading actions, “buy” or
“sell,” so m means that the investor selected “sell.” In case the investor specifies the upper/lower
bounds, the system will execute the transaction only if [n m (IP UB)] [o m (LB IP)].
To verify that the investor’s account balance is sufficient for the current trade, the system needs to
check that [n (VOL IP BAL)] [n (VOL UB BAL)].

The additional declarative sentences extracted from REQ2 are:
Label Propositions (they complete the above list)

p The investor requests to place a market order
q The investor is shown a blank ticket where the trade can be specified (action, symbol, etc.)
r The most recently retrieved indicative price is shown in the currently open order ticket
s The symbol SYM specified by the investor is a valid ticker symbol
t The current indicative price that is obtained from the exchange

Chapter 3 Modeling and System Specification 191

u The system executes the trade
v The system calculates the player’s account new balance
w The system issues a confirmation about the outcome of the transaction
x The system archives the transaction

We have the following propositions derived from REQ2:
REQ2 represented as a set of propositions
p q r
s
y = v {(n o) [(o p o q) (IP)(LB IP UB)]}
z = m {[n (VOL IP BAL)] [n (VOL UB BAL)]}
y z u
u v w x

Again, all of the above propositions must evaluate to true for the system to correctly implement REQ2.
Unlike REQ1, we have managed to restrict the user choice and simplify the representation of REQ2. It
is true that by doing this we went beyond mere problem statement and imposed some choices on the
problem solution, which is generally not a good idea. But in this case I believe these are very simple
and straightforward choices. It requires the developer’s judgment and experience to decide when
simplification goes too far into restricting the solution options, but sometimes the pursuit of purity only
brings needless extra work.

System specifications should be consistent, which means that they should not contain conflicting
requirements. In other words, if the requirements are represented as a set of propositions, there
should be an assignment of truth values to the propositional variables that makes all requirements
propositions true.

Example…

In Section 3.2.3 we will see how logic plays role in the part of the UML standard called Object
Constraint Language (OCL). Another notation based on Boolean logic is TLA+, described in
Section 3.2.4.

Finite State Machines

The behavior of complex objects and systems depends not only on their immediate input, but also
on the past history of inputs. This memory property, represented as a state, allows such systems
to change their actions with time. A simple but important formal notation for describing such
systems is called finite state machines (FSMs). FSMs are used extensively in computer science
and data networking, and the UML standard extends the FSMs into UML state machine diagrams
(Section 3.2.2).

There are various ways to represent a finite state machine. One way is to make a table showing
how each input affects the state the machine is in. Here is the state table for the door lock used in
our case-study example

 Present state

Ivan Marsic Rutgers University 192

Armed Disarmed

Input
lock Armed Armed
unlock Disarmed Disarmed

Here, the entries in the body of the table show the next state the machine enters,
depending on the present state (column) and input (row).

We can also represent our machine graphically, using a transition diagram, which is a
directed graph with labeled edges. In this diagram, each state is represented by a circle.
Arrows are labeled with the input for each transition. An example is shown in Figure
3-10. Here the states “Disarmed” and “Armed” are shown as circles, and labeled arrows
indicate the effect of each input when the machine is in each state.

A finite state machine is formally defined to consist of a finite set of states S, a finite set
of inputs I, and a transition function with S I as its domain and S as its codomain (or
range) such that if s S and i I, the f(s, i) is the state the machine moves to when it is
in state s and is given input i. Function f can be a partial function, meaning that it can be
undefined for some values of its domain. In certain applications, we may also specify an
initial state s0 and a set of final (or accepting) states S S, which are the states we
would like the machine to end in. Final states are depicted in state diagrams by using
double concentric circles. An example is shown in Figure 3-11, where M =
maxNumOfAttempts is the final state: the machine will halt in this state and needs to be
restarted externally.

A string is a finite sequence of inputs. Given a string i1i2 … in and the initial state s0, the
machine successively computes s1 = f(s0, i1), then s2 = f(s1, i2), and so on, finally ending up with
state sn. For the example in Figure 3-11, the input string iiv transitions the FSM through the states
s0s1s2s0. If sn S, i.e., it is an accepting state, then we say that the string is accepted; otherwise it
is rejected. It is easy to see that in Figure 3-11, the input string of M i’s (denoted as iM) will be
accepted. We say that this machine recognizes this string and, in this sense, it recognizes the

unlock

lock

unlocklock

Closed Open

Figure 3-10: State transition diagram for a door lock.

v = (input-key Valid-keys)
i = (input-key Valid-keys)

M = maxNumOfAttemptsiv

v

i

v

10

Start

2 M

iv

v

i

v

10

Start

2 M

Figure 3-11: State transition diagram for the counter of unsuccessful lock-opening attempts.

Chapter 3 Modeling and System Specification 193

attempted intrusion.

A slightly more complex machine is an FSM that yields output when it transitions to the next
state. Suppose that, for example, the door lock in Figure 3-10 also produces an audible signal to
let the user know that it is armed or disarmed. The modified diagram is shown in Figure 3-12(a).
We use a slash symbol to separate the input and the output labels on each transition arrow. (Note
that here we choose to produce no outputs when the machine receives duplicate inputs.)

We define a finite state machine with output to consist of a finite set of states S, a finite set of
inputs I, a finite set of outputs O, along with a function f : S I S that assigns to each (state,
input) pair a new state and another function g : S I O that assigns to each (state, input) pair
an output.

We can enrich the original FSM model by adding new features. Figure 3-12(b) shows how we
can add guards to transitions. The full notation for transition descriptions is then
input[guard]/output, where each element is optional. A guard is a Boolean proposition that
permits or blocks the transition. When a guard is present, the transition takes place if the guard
evaluates to true, but the transition is blocked if the guard is false. Section 3.2.2 describes how
UML adds other features to extend the FSM model into UML state machine diagrams.

3.2.2 UML State Machine Diagrams

One of the key weaknesses of the original finite-state-machines model (described in the preceding
section) in the context of system and software specification is the lack of modularization
mechanisms. When considering the definitions of states and state variables in Section 3.1.2,
FSMs are suitable for representing individual simple states (or microstates). UML state machine
diagrams provide a standardized diagrammatic notation for state machines and also incorporate
extensions, such as macrostates and concurrent behaviors.

unlock / beep

lock / beep

unlocklock

Closed Open

unlock [key Valid-keys] / beep

lock / beep

unlocklock

Closed Open

(a)

(b)

Figure 3-12: State transition diagram from Figure 3-10, modified to include output labels
(a) and guard labels (b).

Ivan Marsic Rutgers University 194

Basic Notation

In every state machine diagram, there must be exactly one default initial state, which we
designate by writing an unlabeled transition to this state from a special icon, shown as a filled
circle. An example is shown in Figure 3-13. Sometimes we also need to designate a stop state. In
most cases, a state machine associated with an object or the system as a whole never reaches a
stop state—the state machine just vanishes when the object it represents is destroyed. We
designate a stop state by drawing an unlabeled state transition from this state to a special icon,
shown as a filled circle inside a slightly larger hollow circle.3 Initial and final states are called
pseudostates.

Transitions between pairs of states are shown by directed arrows. Moving between states is
referred to as firing the transition. A state may transition to itself, and it is common to have many
different state transitions from the same state. All transitions must be unique, meaning that there
will never be any circumstances that would trigger more than one transition from the same state.

There are various ways to control the firing of a transition. A transition with no annotation is
referred to as a completion transition. This simply means that when the object completes the
execution of an activity in the source state, the transition automatically fires, and the target state is
entered.

In other cases, certain events have to occur for the transition to fire. Such events are annotated on
the transition. (Events were discussed is Section 3.1.3.) In Figure 3-13, one may argue that
bankruptcy or acquisition phenomena should be considered states rather than events, because
company stays in bankruptcy for much longer than an instant of time. The correct answer is
relative to the observer. Our trader would not care how long the company will be in bankruptcy—
the only thing that matters is that its stock is not tradable anymore starting with the moment the
bankruptcy becomes effective.

We have already seen for FSMs that a guard condition may be specified to control the transition.
These conditions act as guards so that when an event occurs, the condition will either allow the
transition (if the condition is true) or disallow the transition (if the condition is false).

State Activities: Entry, Do, and Exit Activities

I already mentioned that states can be passive or active. In particular, an activity may be specified
to be carried out at certain points in time with respect to a state:

3 The Delisted state in Figure 3-13 is the stop state with respect to the given exchange. Although investors

can no longer trade shares of the stock on that exchange, it may be traded on some other markets

Delisted
IPO

planned
Traded

initial-listing

trade bankruptcy,
acquisition,
merger, …

IPO = initial public offering

Figure 3-13: UML state machine diagram showing the states and transitions of a stock.

Chapter 3 Modeling and System Specification 195

 Perform an activity upon entry of the state

 Do an activity while in the state

 Perform an activity upon exit of the state

An example is shown in Figure 3-14.

Composite States and Nested States

UML state diagrams define superstates (or macrostates). A superstate is a complex state that is
further refined by decomposition into a finite state machine. A superstate can also be obtained by
aggregation of elementary states, as already seen in Section 3.1.2.

Suppose now that we wish to extend the diagram in Figure 3-13 to show the states Buy, Sell, and
Hold, which we defined in Example 3.2. These states are a refinement of the Traded state within
which they are nested, as shown in Figure 3-15. This nesting is depicted with a surrounding
boundary known as a region and the enclosing boundary is called a composite state. Given the
composite state Traded with its three substates, the semantics of nesting implies an exclusive OR
(XOR) relationship. If the stock is in the Traded state (the composite state), it must also be in
exactly one of the three substates: Buy, Hold, or Sell.

Nesting may be to any depth, and thus substates may be composite states to other lower-level
substates. For simplicity in drawing state transition diagrams with depth, we may zoom in or
zoom out relative to a particular state. Zooming out conceals substates, as in Figure 3-13, and

bankruptcy,
acquisition,
merger, …

Traded

IPO
planned

Delisted
trade

trade
trade

trade

trade

trade

trade

trade

Buy SellHold

trade

trade
trade

trade

trade

trade

trade

trade

Buy SellHold

initial-
listing

composite state
nested
state

Figure 3-15: Example of composite and nested states for a stock. Compare with Figure 3-13.

matched

archive

cancel,
reject

view

trade

Executed Archived

Cancelled

submit

data
Entry

InPreparation

Pending

do: check_price+supply [buy]
check_price+demand [sell]

Figure 3-14: Example of state activities for a trading order. Compare with Figure 3-7.

Ivan Marsic Rutgers University 196

zooming in reveals substates, as in Figure 3-15. Zoomed out representation may improve
comprehensibility of a complex state machine diagram.

Concurrency

Figure 3-16

Applications

State machine diagrams are typically used to describe the behavior of individual objects.
However, they can also be used to describe the behavior of any abstractions that the developer is
currently considering. We may also provide state machine diagrams for the entire system under
consideration. During the analysis phase of the development lifecycle (described in Section 2.5),
we are considering the event-ordered behavior of the system as a whole; hence, we may use state
machine diagrams to represent the behavior of the system. During the design phase (described in
Section 2.6), we may use state machine diagrams to capture dynamic behavior of individual
classes or of collaborations of classes.

In Section 3.3 we will use state machine diagrams to describe problem domains when trying to
understand and decompose complex problems into basic problems.

3.2.3 UML Object Constraint Language (OCL)
“I can speak French but I cannot understand it.” —Mark Twain

The UML standard defines Object Constraint Language (OCL) based on Boolean logic. Instead
of using mathematical symbols for operators (Table 3-1), OCL uses only ASCII characters which
makes it easier for typing and computer processing. It also makes OCL a bit wordy in places.

OCL is not a standalone language, but an integral part of the UML. An OCL expression needs to
be placed within the context of a UML model. In UML diagrams, OCL is primarily used to write
constraints in class diagrams and guard conditions in state and activity diagrams. OCL
expressions, known as constraints, are added to express facts about elements of UML diagrams.

Figure 3-16: Example of concurrency in states.

Chapter 3 Modeling and System Specification 197

Any implementation derived from such a design model must ensure that each of the constraints
always remains true.

We should keep in mind that for software classes there is no notion of a computation to specify in
the sense of having well-defined start and end points. A class is not a program or subroutine.
Rather, any of object’s operations can be invoked at arbitrary times with no specific order. And
the state of the object can be an important factor in its behavior, rather than just input-output
relations for the operation. Depending on its state, the object may act differently for the same
operation. To specify the effect of an operation on object’s state, we need to be able to describe
the present state of the object which resulted from any previous sequence of operations invoked
on it. Because object’s state is captured in its attributes and associations to other objects, OCL
constraints usually relate to these properties of objects.

OCL Syntax

OCL’s syntax is similar to object-oriented languages such as C++ or Java. OCL expressions
consist of model elements, constraints, and operators. Model elements include class attributes,
operations, and associations. However, unlike programming languages OCL is a pure
specification language, meaning that an OCL expression is guaranteed to be without side effects.
When an OCL expression is evaluated, it simply returns a value. The state of the system will
never change because of the evaluation of an OCL expression, even though an OCL expression
can be used to specify a state change, such as in a post-condition specification.

OCL has four built-in types: Boolean, Integer, Real, and String. Table 3-2 shows example values
and some examples of the operations on the predefined types. These predefined value types are
independent of any object model and are part of the definition of OCL.

When writing an OCL contract, the first step is to decide the context, which is the software class
for which the OCL expression is applicable. Within the given class context, the keyword self
refers to all instances of the class. Other model elements can be obtained by navigating using the
dot notation from the self object. Consider the example of the class diagram in Figure 2-35
(Section 2.6). To access the attribute numOfAttempts_ of the class Controller, we write

 self.numOfAttempts_

Due to encapsulation, object attributes frequently must be accessed via accessor methods. Hence,
we may need to write self.getNumOfAttempts().

Table 3-2: Basic predefined OCL types and operations on them.

Type Values Operations
Boolean true, false and, or, xor, not, implies, if-then-else
Integer 1, 48, 3, 84967, … *, , , /, abs()
Real 0.5, 3.14159265, 1.e+5 *, , , /, floor()
String 'With more exploration comes more text.' concat(), size(), substring()

Ivan Marsic Rutgers University 198

Starting from a given context, we can navigate associations on the class diagram to refer to other
model elements and their properties. The three basic types of navigation are illustrated in Figure
3-17. In the context of Class_A, to access its local attribute, we write self.attribute2.
Similarly, to access instances of a directly associated class we use the name of the opposite
association-end in the class diagram. So in Figure 3-17(b), in the context of Class_A, to access
the set of instances of Class_B, we write self.assocAB. Lastly in Figure 3-17(c), in the
context of Class_A, to access instances of an indirectly associated class Class_C, we write
self.assocAB.assocBC. (This approach should not come as a surprise to the reader familiar
with an object programming language, such as Java or C#.)

We already know from UML class diagrams that object associations may be individual objects
(association multiplicity equals 1) or collections (association multiplicity 1). Navigating a one-
to-one association yields directly an object. Figure 2-35 shows a single LockCtrl (assuming
that a single lock device is controlled by the system). Assuming that this association is named
lockCtrl_ as in Listing 2.2, the navigation self.lockCtrl_ yields the single object
lockCtrl_ : LockCtrl. However, if the Controller were associated with multiple
locks, e.g., on front and backyard doors, then this navigation would yield a collection of two
LockCtrl objects.

OCL specifies three types of collections:

 OCL sets are used to collect the results of navigating immediate associations with one-to-
many multiplicity.

 OCL sequences are used when navigating immediate ordered associations.

 OCL bags are used to accumulate the objects when navigating indirectly related objects.
In this case, the same object can show up multiple times in the collection because it was
accessed via different navigation paths.

Note that in the example in Figure 3-17(c), the expression self.assocAB.assocBC
evaluates to the set of all instances of class Class_C objects associated with all instances of
class Class_B objects that, in turn, are associated with class Class_A objects.

Class_A

– attribute1
– attribute2
– …

Class_A

– attribute1
– attribute2
– …

(a) Local attribute (b) Directly related class (c) Indirectly related class

Class_A

Class_B

*

*

assocBA

assocAB

Class_A

Class_B

*

*

assocBA

assocAB

Class_A

Class_B

*

*

Class_C

*

*

assocBA

assocAB

assocCB

assocBC

Class_A

Class_B

*

*

Class_C

*

*

assocBA

assocAB

assocCB

assocBC

Figure 3-17: Three basic types of navigation in a UML class diagram. (a) Attributes of class
A accessed from an instance of class A. (b) Accessing a set of instances of class B from an
instance of class A. (c) Accessing a set of instances of class C from an instance of class A.

Chapter 3 Modeling and System Specification 199

To distinguish between attributes in classes from collections, OCL uses the dot notation for
accessing attributes and the arrow operator -> for accessing collections. To access a property of a
collection, we write the collection’s name, followed by an arrow ->, and followed by the name of
the property. OCL provides many predefined operations for accessing collections, some of which
are shown in Table 3-3.

Constants are unchanging (non-mutable) values of one of the predefined OCL types (Table 3-2).
Operators combine model elements and constants to form an expression.

OCL Constraints and Contracts

Contracts are constraints on a class that enable the users of the class, implementers, and
extenders to share the same assumptions about the class. A contract specifies constraints on the
class state that must be valid always or at certain times, such as before or after an operation is
invoked. The contract is between the class implementer about the promises of what can be

Table 3-3: Summary of OCL operations for accessing collections.

OCL Notation Meaning
EXAMPLE OPERATIONS ON ALL OCL COLLECTIONS

c->size() Returns the number of elements in the collection c.
c->isEmpty() Returns true if c has no elements, false otherwise.
c1->includesAll(c2) Returns true if every element of c2 is found in c1.
c1->excludesAll(c2) Returns true if no element of c2 is found in c1.
c->forAll(var | expr) Returns true if the Boolean expression expr true for all

elements in c. As an element is being evaluated, it is bound
to the variable var, which can be used in expr. This
implements universal quantification .

c->forAll(var1, var2
 | expr)

Same as above, except that expr is evaluated for every
possible pair of elements from c, including the cases where
the pair consists of the same element.

c->exists(var | expr) Returns true if there exists at least one element in c for
which expr is true. This implements existential
quantification .

c->isUnique(var |
 expr)

Returns true if expr evaluates to a different value when
applied to every element of c.

c->select(expr) Returns a collection that contains only the elements of c for
which expr is true.

EXAMPLE OPERATIONS SPECIFIC TO OCL SETS
s1->intersection(s2) Returns the set of the elements found in s1 and also in s2.
s1->union(s2) Returns the set of the elements found either s1 or s2.
s->excluding(x) Returns the set s without object x.

EXAMPLE OPERATION SPECIFIC TO OCL SEQUENCES
seq->first() Returns the object that is the first element in the sequence

seq.

Ivan Marsic Rutgers University 200

expected and the class user about the obligations that must be met before the class is used. There
are three types of constraints in OCL: invariants, preconditions, and postconditions.

One important characterization of object states is describing what remains invariant throughout
the object’s lifetime. This can be described using an invariant predicate. An invariant must
always evaluate to true for all instance objects of a class, regardless of what operation is invoked
and in what order. An invariant applies to a class attribute.

In addition, each operation can be specified by stating a precondition and a postcondition. A
precondition is a predicate that is checked before an operation is executed. A precondition
applies to a specific operation. Preconditions are frequently used to validate input parameters to
an operation.

A postcondition is a predicate that must be true after an operation is executed. A postcondition
also applies to a specific operation. Postconditions are frequently used to describe how the
object’s state was changed by an operation.

We already encountered some preconditions and postconditions in the context of domain models
(Section 2.5.4). Subsequently, in Figure 2-35 we assigned the domain attributes to specific
classes. Therein, we used an informal, ad-hoc notation. OCL provides a formal notation for
expressing constraints. For example, one of the constraints for our case study system is that the
maximum allowed number of failed attempts at disarming the lock is a positive integer. This
constraint must be always true, so we state it as an invariant:

context Controller inv:
self.getMaxNumOfAttempts() > 0

Here, the first line specifies the context, i.e., the model element to which the constraint applies, as
well as the type of the constraint. In this case the inv keyword indicates the invariant constraint
type. In most cases, the keyword self can be omitted because the context is clear.

Other possible types of constraint are precondition (indicated by the pre keyword) and
postcondition (indicated by the post keyword). A precondition for executing the operation
enterKey() is that the number of failed attempts is less than the maximum allowed number:

context Controller::enterKey(k : Key) : boolean pre:
self.getNumOfAttempts() self.getMaxNumOfAttempts()

The postconditions for enterKey()are that (Poc1) a failed attempt is recorded, and (Poc2) if
the number of failed attempts reached the maximum allowed number, the system becomes
blocked and the alarm bell is sounded. The first postcondition (Poc1) can be restated as:

(Poc1) If the provided key is not element of the set of valid keys, then the counter of failed
attempts after exiting from enterKey() must be by one greater than its value before
entering enterKey().

The above two postconditions (Poc1) and (Poc2) can be expressed in OCL as:

context Controller::enterKey(k : Key) : Boolean

-- postcondition (Poc1):
post: let allValidKeys : Set = self.checker.validKeys()
 if allValidKeys.exists(vk | k = vk) then

Chapter 3 Modeling and System Specification 201

getNumOfAttempts() = getNumOfAttempts()@pre
else

getNumOfAttempts() = getNumOfAttempts()@pre + 1

-- postcondition (Poc2):
post: getNumOfAttempts() >= getMaxNumOfAttempts() implies

self.isBlocked() and self.alarmCtrl.isOn()

There are three features of OCL used in stating the first postcondition above that the reader
should note. First, the let expression allows one to define a variable (in this case
allValidKeys of the OCL collection type Set) which can be used in the constraint.

Second, the @pre directive indicates the value of an object as it existed prior to the operation.
Hence, getNumOfAttempts()@pre denotes the value returned by
getNumOfAttempts()before invoking enterKey(), and
getNumOfAttempts()denotes the value returned by the same operation after invoking
enterKey().

Third, the expressions about getNumOfAttempts() in the if-then-else operation are
not assignments. Recall that OCL is not a programming language and evaluation of an OCL
expression will never change the state of the system. Rather, this just evaluates the equality of the
two sides of the expression. The result is a Boolean value true or false.

SIDEBAR 3.1: The Dependent Delegate Dilemma

 The class invariant is a key concept of object-oriented programming, essential for reasoning
about classes and their instances. Unfortunately, the class invariant is, for all but non-trivial
examples, not always satisfied. During the execution of the method that client object called on
the server object (“dependent delegate”), the invariant may be temporarily violated. This is
considered acceptable because in such an intermediate state the server object is not directly
usable by the rest of the world—it is busy executing the method that client called—so it does
not matter that its state might be inconsistent. What counts is that the invariant will hold before
and after the execution of method calls.

However, if during the executing of the server’s method the server calls back a method on the
client, then the server may catch the client object in an inconsistent state. This is known as the
dependent delegate dilemma and is difficult to handle. The interested reader should check
[Meyer, 2005] for more details.

The OCL standard specifies only contracts. Although not part of the OCL standard, nothing
prevents us from specifying program behavior using Boolean logic.
[give example]

3.2.4 TLA+ Notation

This section presents TLA+ system specification language, defined by Leslie Lamport. The book
describing TLA+ can be downloaded from http://lamport.org/. There are many other specification
languages, and TLA+ reminds in many ways of Z (pronounced Zed, not Zee) specification

Ivan Marsic Rutgers University 202

language. My reason for choosing TLA+ is that it uses the language of mathematics, specifically
the language of Boolean algebra, rather than inventing another formalism.

A TLA+ specification is organized in a module, as in the following example, Figure 3-18, which
specifies our home access case study system (Section 1.3.1). Observe that TLA+ language
reserved words are shown in SMALL CAPS and comments are shown in a highlighted text. A
module comprises several sections

 Declaration of variables, which are primarily the manifestations of the system visible to
an outside observer

 Definition of the behavior: the initial state and all the subsequent (next) states, which
combined make the specification

 The theorems about the specification

The variables could include internal, invisible aspects of the system, but they primarily address
the external system’s manifestations. In our case-study of the home access controller, the
variables of interest describe the state of the lock and the bulb. They are aggregated in a single
status record, lines 6 and 7.

The separator lines 8 and 20 are a pure decoration and can be omitted. Unlike these, the module
start and termination lines, lines 1 and 22, respectively, have semantic meaning and must appear.

1 MODULE AccessController
2 CONSTANTS validKeys, The set of valid keys.
3 ValidateKey(_) A ValidateKey(k) step checks if k is a valid key.
4 ASSUME validKeys STRING
5 ASSUME key STRING : ValidateKey(key) BOOLEAN
6 VARIABLE status
7 TypeInvariant ̂ status [lock : {“disarmed”, “armed”}, bulb : {“lit”, “unlit”}]
8
9 Init ̂ TypeInvariant The initial predicate.

10 status.lock = “armed”
11 status.bulb = “unlit”

12 Unlock(key) ̂ ValidateKey(key) Only if the user enters a valid key, then
13 status.lock = “disarmed” unlock the lock and
14 status.bulb = “lit” turn on the light (if not already lit).

15 Lock ̂ status.lock = “armed” Anybody can lock the doors
16 UNCHANGED status.bulb but not to play with the lights.

17 Next ̂ Unlock(key) Lock The next-state action.
18
19 Spec ̂ Init �[Next]status The specification.
20
21 THEOREM Spec � TypeInvariant Type correctness of the specification.
22

Figure 3-18: TLA+ specification of the cases study system.

Chapter 3 Modeling and System Specification 203

Lines 2 and 3 declare the constants of the module and lines 4 and 5 list our assumptions about
these constants. For example, we assume that the set of valid passwords is a subset of all
character strings, symbolized with STRING. Line 5 essentially says that we expect that for any key
k, ValidateKey(k) yields a BOOLEAN value.

TypeInvariant in line 7 specifies all the possible values that the system variable(s) can assume in
a behavior that satisfies the specification. This is a property of a specification, not an assumption.
That is why it is stated as a theorem at the end of the specification, line 21.

The definition of the initial system state appears in lines 9 and 10.

Before defining the next state in line 17, we need to define the functions that could be requested
of the system. In this case we focus only on the key functions of disarming and arming the lock,
Disarm and Arm, respectively, and ignore the rest (see all the use cases in Section 2.2). Defining
these functions is probably the most important part of a specification.

The variable status with an apostrophe symbol represents the state variable in the next step, after
an operation takes place.

3.3 Problem Frames

“Computers are useless. They can only give you answers.” —Pablo Picasso

“Solving a problem simply means representing it so as to make the solution transparent.”
—Herbert Simon, The Sciences of the Artificial

Problem frames were proposed by Michael Jackson [1995; 2001] as a way for understanding and
systematic describing the problem as a first step towards the solution. Problem frames decompose
the original complex problem into simple, known subproblems. Each frame captures a problem
class stylized enough to be solved by a standard method and simple enough to present clearly
separated concerns.

We have an intuitive feeling that a problem of data acquisition and display is different from a
problem of text editing, which in turn is different from writing a compiler that translates source
code to machine code. Some problems combine many of these simpler problems. The key idea of
problem frames is to identify the categories of simple problems, and to devise a methodology for
representing complex problems in terms of simple problems.

There are several issues to be solved for successful formulation of a problem frame methodology.
First we need to identify the frame categories. One example is the information frame, which
represents the class of problems that are primarily about data acquisition and display. We need to
define the notation to be used in describing/representing the frames. Then, given a complex
problem, we need to determine how to decompose it into a set of problem frames. Each individual
frame can then be considered and solved independently of other frames. A key step in solving a
frame is to address the frame concerns, which are generic aspects of each problem type that need
to be addressed for solving a problem of a particular type.

Ivan Marsic Rutgers University 204

Finally, we need to determine how to compose the individual solutions into the overall solution
for the original problem. We need to determine how individual frames interact with each other
and we may need to resolve potential conflicts of their interaction.

3.3.1 Problem Frame Notation

We can picture the relationship between the computer system to be developed and the real world
where the problem resides as in Figure 3-19. The task of software development is to construct the
Machine by programming a general-purpose computer. The machine has an interface a consisting
of a set of phenomena—typically events and states—shared with the Problem Domain. Example
phenomena are keystrokes on a computer keyboard, characters and symbols shown on a computer
screen, signals on the lines connecting the computer to an instrument, etc.

The purpose of the machine is described by the Requirement, which specifies that the machine
must produce and maintain some relationship among the phenomena of the problem domain. For
example, to disarm the lock device when a correct code is presented, or to ensure that the figures
printed on a restaurant check correctly reflect the patron’s consumption.

Phenomena a shared by a problem domain and the machine are called specification phenomena.
Conversely, phenomena b articulate the requirements and are called the requirement phenomena.
Although a and b may be overlapping, they are generally distinct. The requirement phenomena
are the subject matter of the customer’s requirement, while the specification phenomena describe
the interface at which the machine can monitor and control the problem domain.

A problem diagram as in Figure 3-19 provides a basis for problem analysis because it shows you
what you are concerned with, and what you must describe and reason about in order to analyze
the problem completely. The key topics of your descriptions will be:

The
Machine

The
Machine

Problem
Domain

The
Requirement

a b

The
Machine

The
Machine

Problem
Domain

The
Requirement

a b

Specification Domain properties
seen by the machine

Domain properties
seen by the requirement

Requirement

a: specification interface phenomena
b: requirement interface phenomena

(a)

(b)

Figure 3-19: (a) The Machine and the Problem Domain. (b) Interfaces between the problem
domain, the requirements and the machine.

Chapter 3 Modeling and System Specification 205

 The requirement that states what the machine must do. The requirement is what your customer
would like to achieve in the problem domain. Its description is optative (it describes the
option that the customer has chosen). Sometimes you already have an exact description of the
requirement, sometimes not. For example, requirement REQ1 given in Table 2-2 states
precisely how users are to register with our system.

 The domain properties that describe the relevant characteristics of each problem domain. These
descriptions are indicative because they describe what is true regardless of the machine’s
behavior. For example, Section 1.3.2 describes the functioning of financial markets, which
we must understand to implement a useful system that will provide investment advice.

 The machine specification. Like the requirement, this is an optative description: it describes the
machine’s desired behavior at its interfaces with the problem domain.

Obviously, the indicative domain properties play a key role: without a clear understanding of how
financial markets work we would never be able to develop a useful investment assistant system.

3.3.2 Problem Decomposition into Frames

Problem analysis relies on a strategy of problem
decomposition based on the type of problem domain and
the domain properties. The resulting subproblems are
treated independently of other subproblems, which is the
basis of effective separation of concerns. Each
subproblem has its own machine (specification), problem
domain(s), and requirement. Each subproblem is a
projection of the full problem, like color separation in
printing, where colors are separated independently and
then overlaid (superimposed) to form the full picture.

Jackson [2001] identifies five primitive problem frames,
which serve as the basic units of problem decomposition.
These are (i) required behavior, (ii) commanded
behavior, (iii) information display, (iv) simple
workpieces, and (v) transformation. They differ in their
requirements, domain characteristics, domain involvement (whether the domain is controlled,
active, inert, etc.), and the frame concern. These problem frames correspond to the problem types
identified earlier in Section 2.3.1 (see Figure 2-11).

Each frame has a particular concern, which is a set of generic issues that need to be solved when
solving the frame:

(a) Required behavior frame concern: To describe precisely (1) how the controlled domain
currently behaves; (2) the desired behavior for the domain, as stated by the requirement;
and, (3) what the machine (software-to-be) will be able to observe about the domain state,
by way of the sensors that will be used in the system-to-be.

(b) Commanded behavior frame concern: To identify (1) all the commands that will be
possible in the envisioned system-to-be; (2) the commands that will be supported or

Ivan Marsic Rutgers University 206

allowed under different scenarios; and, (3) what should happen if the user tries to execute
a command that is not supported/allowed under the current scenario.

(c) Information display frame concern: To identify (1) the information that the machine will
be able to observe from the problem domain, by way of the sensors that will be used in
the system-to-be; (2) the information that needs to be displayed, as stated by the
requirement; and, (3) the transformations needed to process the raw observed information
to obtain displayable information.

(d) Simple workpieces frame concern: To describe precisely (1) the data structures of the
workpieces; (2) all the commands that will be possible in the envisioned system-to-be;
(3) the commands that will be supported or allowed under different scenarios; and, (4)
what should happen if the user tries to execute a command that is not supported/allowed
under the current scenario.

(e) Transformation frame concern: To describe precisely (1) the data structures of the input
data and output data; (2) how each data structure will be traversed (travelled over); and,
(3) how each element of the input data structure will be transformed to obtain the
corresponding element in the output data structure.

Identification and analysis of frame flavors, reflecting a finer classification of domain properties

The frame concern is to make the requirement, specification, and domain descriptions and to fit
them into a correctness argument for the machine to be built. Frame concerns include:
initialization, overrun, reliability, identities, and completeness. The initialization concern is to
ensure that a machine is properly synchronized with the real world when it starts.

… frame variants, in which a domain is usually added to a problem frame

Basic Frame Type 1: Required Behavior

In this scenario, we need to build a machine which controls the behavior of a part of the physical
world according to given conditions.

Figure 3-20 shows the frame diagram for the required behavior frame. The control machine is the
machine (system) to be built. The controlled domain is the part of the world to be controlled. The
requirement, giving the condition to be satisfied by the behavior of the controlled domain, is
called the required behavior.

The controlled domain is a causal domain, as indicated by the C in the bottom right corner of its
box. Its interface with the machine consists of two sets of causal phenomena: C1, controlled by
the machine, and C2, controlled by the controlled domain. The machine imposes the behavior on
the controlled domain by the phenomena C1; the phenomena C2 provide feedback.

Control
Machine
Control
Machine

Controlled
Domain

Required
Behavior

CM!C1 C3

CD!C2 C

Figure 3-20: Problem frame diagram for the required behavior frame.

Chapter 3 Modeling and System Specification 207

An example is shown in Figure 3-21 for how a stock-broker’s system handles trading orders.
Once the user places an order, the order is recorded in the broker’s machine and from now on the
machine monitors the quoted prices to decide when the conditions for executing the order are
met. When the conditions are met, e.g., the price reaches a specified value, the controlled domain
(stock exchange) is requested to execute the order. The controlled domain will execute the order
and return an acknowledgement, known as “order ticket.”

Basic Frame Type 2: Commanded Behavior

In this scenario, we need to build a machine which allows an operator to control the behavior of a
part of the physical world by issuing commands.

Basic Frame Type 3: Information Display

In this scenario, we need to build a machine which acquires information about a part of the
physical world and presents it at a given place in a given form.

Basic Frame Type 4: Simple Workpieces

In this scenario, we need to build a machine which allows a user to create, edit, and store some
data representations, such as text or graphics. The lexical domain that will be edited may be
relatively simple to design, such as text document for taking notes. It may also be very complex,
such as creating and maintaining a “social graph” on a social networking website. A videogame is
another example of a very complex digital (lexical) domain that is edited as the users play and
issue different commands.

Figure 3-22 shows the frame diagram for the simple workpieces frame.

Broker
Machine
Broker

Machine
Stock

Exchange

Order
handling

rules

a b

C

Control
Machine

Controlled
Domain

Required
Behavior

b: SE! {Place[i], Cancel[i],
Executed[i], Expired[i]} [C3]

a: BM! {Execute[i]} [C1]

SE! {PriceQuotes, Ack[i]} [C2]

Figure 3-21: Example of a Required Behavior basic frame: handling of trading orders.

Editing
tool

Editing
tool

Editing
tool

Command
effects

ET!E1

Y3WP!Y2

User
B

User
B

US!E3 E3

Work
pieces X

Work
pieces X

Figure 3-22: Problem frame diagram for the simple workpieces frame.

Ivan Marsic Rutgers University 208

An example is shown in Figure 3-23.

Basic Frame Type 5: Transformation

In this scenario, we need to build a machine takes an input document and produces an output
document according to certain rules, where both input and output documents may be formatted
differently. For example, given the records retrieved from a relational database, the task is to
render them into an HTML document for Web browser display.

A key concern for a transformation frame problem is to define the order in which the data
structures of the input data and output data will be traversed and their elements accessed. For
example, if the input data structure is a binary tree, then it can be traversed in pre-order, in-order,
or post-order manner.

Figure 3-24 shows the key idea behind the frame decomposition. Given a problem represented as
a complex set of requirements relating to a complex application domain, our goal is to represent
the problem using a set of basic problem frames.

3.3.3 Composition of Problem Frames

Real-world problems almost always consist of combinations of simple problem frames. Problem
frames help us achieve understanding of simple subproblems and derive solutions (machines) for
these problem frames. Once the solution is reached at the local level of specialized frames, the
integration (or composition) or specialized understanding is needed to make a coherent whole.

There are some standard composite frames, consisting of compositions of two or more simple
problem frames.

a cEditing tool

Workpieces

Command
effects

c: TR! {Place[i], Cancel[i],
Executed[i], Expired[i]} [Y3]

a: TM! {Create[i]} [E1]

b: TR! {PriceQuotes, Place[i]} [Y2]

Trading
machine
Trading
machine

Order
placing rules

Trader
B

Trader
B

User

b d

Trading
order X

Trading
order X

Figure 3-23: Example of a Simple Workpieces basic frame: placing a trading order.

Chapter 3 Modeling and System Specification 209

3.3.4 Models

Software system may have world representation and this is always idealized. E.g., in our lock
system, built-in (as opposed to runtime sensed/acquired) knowledge is: IF valid key entered AND
sensing dark THEN turn the light on.

The
Machine

Domain
1

The
Requirements

Domain
2

Domain
3

Domain
4

Domain
5

The
Machine

The
Machine

Domain
1

The
Requirements

Domain
2

Domain
3

Domain
4

Domain
5

(a)

M
ac

hi
ne

1

D
om

ai
n

1

R
eq

ui
re

m
en

t

1

M
ac

hi
ne

1
M

ac
hi

ne

1

D
om

ai
n

1

R
eq

ui
re

m
en

t

1

M
ac

hi
ne

3

R
eq

ui
re

m
en

t
3

D
om

ai
n

3

D
om

ai
n

4

M
ac

hi
ne

3

M
ac

hi
ne

3

R
eq

ui
re

m
en

t
3

D
om

ai
n

3

D
om

ai
n

4

M
a

ch
in

e
2

D
om

ai
n

2
R

e
q

ui
re

m
e

n
t

2

M
a

ch
in

e
2

M
a

ch
in

e
2

D
om

ai
n

2
R

e
q

ui
re

m
e

n
t

2

Mach
ine

4

Domain

5

Require
ment

4

Mach
ine

4Mach
ine

4

Domain

5

Require
ment

4

(b)

Figure 3-24: The goal of frame decomposition is to represent a complex problem (a) as a set
of basic problem frames (b).

Ivan Marsic Rutgers University 210

3.4 Specifying Goals

“Correctness is clearly the prime quality. If a system does not do what it is supposed to do, then everything
else about it matters little.” —Bertrand Meyer

The basic idea of goal-oriented requirements engineering is to start with the aggregate goal of the
whole system, and to refine it by successive steps into a goal hierarchy.

AND-OR refinements …

Problem frames can be related to goals. Goal-oriented approach distinguishes different kinds of
goal, as problem-frames approach distinguishes different problem classes. Given a problem
decomposition into basic frames, we can restate this as an AND-refinement of the goal hierarchy:
to satisfy the system requirement goal, it is necessary to satisfy each individual subgoal (of each
basic frame).

When programmed, the program “knows” its goals implicitly rather than explicitly, so it cannot
tell those to another component. This ability to tell its goals to others is important in autonomic
computing, as will be seen in Section 9.3.

State the goal as follows: given the states A=armed, B=lightOff, C=user positively identified,
D=daylight

(Goal is the equilibrium state to be reached after a perturbation.)

Initial state: AB, goal state: AB.

Possible actions: —setArmed; 1—setDisarmed; —setLit; 1—setUnlit

Preconditions for 1: C; for : D

We need to make a plan to achieve AB by applying the permitted actions.

Program goals, see also “fuzzy” goals for multi-fidelity algorithms, MFAs, [Satyanarayanan &
Narayanan, 2001]. http://www.cs.yale.edu/homes/elkin/ (Michael Elkin)

The survey “Distributed approximation,” by Michael Elkin. ACM SIGACT News, vol. 36, no. 1,
(Whole Number 134), March 2005. http://theory.lcs.mit.edu/~rajsbaum/sigactNewsDC.html

The purpose of this formal representation is not to automatically build a program; rather, it is to
be able to establish that a program meets its specification.

Chapter 3 Modeling and System Specification 211

3.5 Summary and Bibliographical Notes

This chapter presents …

People often complain about software quality (for example Microsoft products). The issue of
software quality is complex one. Software appeal depends on what it does (functionality), how
good it is (quality), and what it costs (economy). Different people put different weights on each of
these, but in the end all three matter. Microsoft figured that the functionality they deliver is
beyond the reach of smeller software vendors who cannot produce it at a competitive price, so
they emphasized functionality. It paid off. It appears that the market has been more interested in
low-cost, feature-laden products than reliability (for the mass market kind of products). It worked
in the market, thus far, which is the ultimate test. Whether this strategy will continue to work, we
do not know. But the tradeoff between quality / functionality / economy will always be present.

Also see the virtues if the “good enough” principle extolled here:

S. Baker, “Why ‘good enough’ is good enough: Imperfect technology greases innovation—and
the whole marketplace,” Business Week, no. 4048, p. 48, September 3, 2007. Online at:
http://www.businessweek.com/magazine/content/07_36/b4048048.htm

Comment

Formal specifications have had lack of success, usually blamed on non-specialists finding such
specifications difficult to understand, see e.g., [Sommerville, 2004, p. 116; Larman, 2005, p. 65].
The usual rationale given for avoiding rigorous, mathematically driven program development is
the time-to-market argument—rigor takes too much time and that cannot be afforded in today’s
world. We are also told that such things make sense for developing safety-critical applications,
such as hospital systems, or airplane controls, but not for everyday use. Thanks to this
philosophy, we can all enjoy Internet viruses, worms, spam, spyware, and many other inventions
that are thriving on lousy programs.

The problem, software ends up being used for purposes that it was not intended for. Many of-the-
shelf software products end up being used in mission-critical operations, regardless of the fact
that they lack robustness necessary to support such operations.

It is worth noticing that often we don’t wear what we think is “cool”—we often wear what the
“trend setters” in our social circle, or society in general, wear [Gladwell, 2000]. But, as Petroski
[1992], echoing Raymond Loewy, observes, it has to be MAYA—most advanced, yet acceptable.
So, if hackers let the word out that some technique is cool, it shall become cool for the masses of
programmers.

Bibliographical Notes

Much of this chapter is directly inspired by the work of Michael Jackson [1995; 2001]. I have
tried to retell it in a different way and relate it to other developments in software engineering. I

Ivan Marsic Rutgers University 212

hope I have not distorted his message in the process. In any case, the reader would do well by
consulting the original sources [Jackson, 1995; 2001].

This chapter requires some background in discrete mathematics. I tried to provide a brief
overview, but the reader may need to check a more comprehensive source. [Rosen, 2007] is an
excellent introduction to discrete mathematics and includes very nice pieces on logic and finite
state machines.

[Guttenplan, 1986]

[Woodcock & Loomes, 1988]

J. P. Bowen and M. G. Hinchey, “Ten commandments of formal methods… ten years later,”
IEEE Computer, vol. 39, no. 1, pp. 40-48, January 2006.

The original sources for problem frames are [Jackson, 1995; 2001]. The reader can also find a
great deal of useful information online at: http://www.ferg.org/pfa/ .

Problem 3.7: Elevator Control given below is based on the classical elevator problem, which first
appeared in Donald Knuth’s book, The Art of Computer Programming: Vol. 1, Fundamental
Algorithms. It is based on the single elevator in the mathematics building at the California
Institute of Technology, where Knuth was a graduate student. Knuth used the elevator problem to
illustrate co-routines in an imaginary computing machine, called MIX. A detailed discussion of
software engineering issues in elevator control is available in [Jackson, 2001].

Problems

Problem 3.1

Problem 3.2

Consider a system consisting of a button and two light bulbs, as shown in the figure. Assume that
the system starts from the initial state where both bulbs are turned off. When the button is pressed
the first time, one of the bulbs will be lit and the other remains unlit. When the button is pressed
the second time, the bulb which is currently lit will be turned off and the other bulb will be lit.
When the button is pressed the third time, both bulbs will be lit. When the button is pressed the
fourth time, both bulbs will be turned off. For the subsequent button presses, the cycle is repeated.

Chapter 3 Modeling and System Specification 213

Name and describe all the states and events in this system. Draw the UML state diagram and be
careful to use the correct symbols.

Problem 3.3

Consider the auto-locking feature of the case study of the home access-control system. In Section
2.4 this feature is described via use cases (a timer is started when the doors are unlocked and if it
counts down to zero, the doors will be automatically locked).

Suppose now that you wish to represent the auto-locking subsystem using UML state diagrams.
The first step is to identify the states and events relevant for the auto-locking subsystem. Do the
following:

(a) Name and describe the states that adequately represent the auto-locking subsystem.

(b) Name and describe the events that cause the auto-locking subsystem to transition between
the states.

(Note: You do not need to use UML notation to draw a state diagram, just focus on identifying
the states and events.)

Problem 3.4

Suppose that in the virtual mitosis lab (described at the book website, given in Preface), you are
to develop a finite state machine to control the mechanics of the mitosis process. Write down the
state transition table and show the state diagram. See also Problem 2.21.

Problem 3.5

Consider the grocery inventory management system that uses Radio Frequency Identification
(RFID), described in Problem 2.15 (Chapter 2). Identify the two most important entities of the
software-to-be and represent their states using UML state diagrams. Do the following:

(a) List and describe the states that adequately represent the two most important entities

(b) List and describe the events that cause the entities to transition between the states

(c) Draw the UML state diagrams for both entities

Note: Consider all the requirements REQ1 – REQ7.

Problem 3.6

Ivan Marsic Rutgers University 214

Problem 3.7: Elevator Control

Consider developing a software system to control an elevator in a building. Assume that there
will be a button at each floor to summon the elevator, and a set of buttons inside the elevator
car—one button per floor to direct the elevator to the corresponding floor. Pressing a button will
be detected as a pulse (i.e., it does not matter if the user keeps holding the button pressed). When
pressed, the button is illuminated. At each floor, there will be a floor sensor that is “on” when the
elevator car is within 10 cm of the rest position at the floor.

There will be an information panel above the elevator doors on each floor, to show waiting
people where the elevator car is at any time, so that they will know how long they can expect to
wait until it arrives.

The information panels will have two lamps representing each floor (see the figure below). A
square lamp indicates that the car is at the corresponding floor, and a round lamp indicates that
there is a request outstanding for the elevator to visit the corresponding floor. In addition, there
will be two arrow-shaped lamps to indicate the current direction of travel. For example, in the
figure below, the panel indicates that the elevator car is currently on the fifth floor, going up, and
there are outstanding requests to visit the lobby, third, fourth, and sixth floor.

After the elevator visits a requested floor, the corresponding lamp on all information panels
should be turned off. Also, the button that summoned the elevator to the floor should be turned
off.

Let us assume that the outstanding requests are served so that the elevator will first visit all the
requested floors in the direction to which it went first after the idle state. After this, it will serve
the requests in the opposite direction, if any. When the elevator has no requests, it remains at its
current floor with its doors closed.

L 2 3 4 5 6 7

Down Up

L 2 3 4 5 6 7

Down Up

L 2 3 4 5 6 7

Down Up

L 52 3 4 6 7

Down Up

Requests outstanding to visit the floors

Direction of travel

Floor where the elevator currently is

Button to summon the elevator to this floor

Suppose that you already have designed UML interaction and class diagrams. Your system will
execute in a single thread, and your design includes the following classes:

ElevatorMain: This class runs an infinite loop. During each iteration it checks the physical
buttons whether any has been pressed and reads the statuses of all the floor sensors. If a
button has been pressed or the elevator car arrived/departed a floor, it calls the appropriate
classes to do their work, and then starts a new iteration.

CarControl: This class controls the movement of the elevator car.
This class has the attribute requests that lists the outstanding requests for the elevator to
visit the corresponding floors. It also has three operations:
addRequest(floorNum : int) adds a request to visit the floor floorNum;

Chapter 3 Modeling and System Specification 215

stopAt(floorNum : int) requests the object to stop the car at the floor floorNum.
This operation calls DoorControl.operateDoors() to open the doors, let the
passengers in or out, and close the doors.
When operateDoors() returns, the CarControl object takes this as a signal that it is
safe to start moving the car from the current floor (in case there are no pending requests, the
car remains at the current floor).

InformationPanel: This class controls the display of information on the elevator
information panel. It also has the attribute requests and these operations:
arrivedAt(floorNum : int) informs the software object that the car has arrived at
the floor floorNum.
departed() which informs the object that the car has departed from the current floor.

OutsideButton: This class represents the buttons located outside the elevator on each floor
that serve to summon the elevator. The associated physical button should be illuminated
when pressed and turned off after the car visits the floor.
This class has the attribute illuminated that indicates whether the button was pressed. It
also has two operations:
illuminate() requests the object to illuminate the associated physical button (because it
was pressed);
turnOff()requests the object to turn off the associated physical button (because the
elevator car has arrived at this floor).

InsideButton: This class represents the buttons located inside the elevator car that serve to
direct the elevator to the corresponding floor. The associated physical button should be
illuminated when pressed and turned off after the car visits the floor. It has the same attributes
and operations as the class OutsideButton.

DoorControl: This class controls opening and closing of the elevator doors on each floor.
This class has the Boolean attribute doorsOpen that is set true when the associated doors
are open and false otherwise. It also has the operation:
operateDoors() : void tells the software object when to open the doors. This
operation sets a timer for a given amount of time to let the passengers in or out; after the
timer expires, the operation closes the doors automatically and returns.

Note that some classes may have multiple instances (software objects), because there are multiple
corresponding physical objects. For example, there is an information panel, outside button, and
doors at each floor. In addition, we do not have a special class to represent a floor sensor that
senses when the elevator car is in or near the rest position at the floor. The reason for this choice
is that this system is single-threaded and the ElevatorMain object will notify the interested
objects about the floor sensor status, so there is no reason to keep this information in a class
dedicated solely for this purpose.

Draw the interaction and class diagrams corresponding to the design described above.

Problem 3.8

Consider the class diagram for an online auction website given in Figure 2-48, and the system as
described in Problem 2.31 for which the solution is given on the back of this text. Suppose that
you want to specify a contract for the operation closeAuction(itemName : String) of

Ivan Marsic Rutgers University 216

the class Controller. To close auction on an item means that no new bids will be accepted;
the item is offered to the current highest bidder. If this bidder fails to pay within the specified
time interval, the auction may be reopened.

You want to specify the preconditions that the auction for the item itemName is currently open
and the item is not reserved. The postconditions should state that the auction is closed, and the
item is reserved to the name of the highest bidder, given that there was at least one bidder. Write
this contract as statements in OCL.

You may add more classes, attributes, or operations, if you feel that this is necessary to solve the
problem, provided that you justify your modification.

Problem 3.9

Problem 3.10

Problem 3.11

Consider the automatic patient monitoring system described in Problem 2.3. Solve the
following:

(a) Identify the problem frames and describe the frame concerns for each frame.
(b) Draw the state diagram for different subsystems (problem frames). Define each

state and event in the diagrams.
(c) Explain if the system needs to behave differently when it reports abnormal vital

signs or device failures. If yes, incorporate this behavior into your state diagrams.

Problem 3.12

Derive the domain model for the patient monitoring system from Problem 3.11.
(a) Write a definition for each concept in your domain model.
(b) Write a definition for each attribute and association in your domain model.
(c) Draw the domain model.
(d) Indicate the types of concepts, such as «boundary», «control», or «entity».

Note that you are not asked to derive the use cases for this system (see Problem 2.14). The
description of the system behavior that you will generate in the solution of Problem 3.11 should
suffice for deriving its domain model.

Problem 3.13

217

Contents
4.1 Fundamentals of Measurement Theory

4.1.1 Measurement Theory
4.1.2
4.1.3

4.2 What to Measure?
4.2.1 Cyclomatic Complexity
4.2.2 Use Case Points
4.2.3
4.2.4

4.3 Measuring Module Cohesion
4.3.1 Internal Cohesion or Syntactic Cohesion
4.3.2 Semantic Cohesion
4.3.3
4.3.4
4.2.3

4.4 Psychological Complexity
4.4.1 Algorithmic Information Content
4.4.2
4.4.3
4.4.4

4.5
4.5.1
4.5.2
4.5.3
4.5.4

4.6 Summary and Bibliographical Notes

Problems

Chapter 4
Software Measurement and Estimation

“What you measure improves.”
—Donald Rumsfeld, Known and Unknown: A Memoir

Measurement is a process by which numbers or symbols are
assigned to properties of objects. To have meaningful
assignment of numbers, it must be governed by rules or theory
(or, model). There are many properties of software that can be
measured. Similarities can be drawn with physical objects: we
can measure height, width, weight, chemical composition,
etc., properties of physical objects. The numbers obtained
through such measurement have little value by themselves—
their key value is relative to something we want to do with
those objects. For example, we may want to know the weight
so we can decide what it takes to lift an object. Or, knowing
physical dimensions helps us decide whether the object will fit
into a certain space. Similarly, software measurement is
usually done with purpose. A common purpose is for
management decision making. For example, the project
manager would like to be able to estimate the development
cost or the time it will take to develop and deliver a software
product. Similar to how knowing the object weight helps us to
decide what it takes to lift it, the hope is that by measuring
certain software properties we will be able to estimate the
necessary development effort.

Uses of software measurements:

 Estimation of cost and effort (preferably early in the lifecycle)

 Feedback to improve the quality of design and implementation

Obviously, once a software product is already completed, we know how much effort it took to
complete it. The invested effort is directly known, without the need for inferring it indirectly via
some other properties of the software. However, that is too late for management decisions.
Management decisions require knowing (or estimating) effort before we start with the
development, or at least early enough in the process, so we can meaningfully negotiate the budget
and delivery terms with the customer.

Ivan Marsic Rutgers University 218

Therefore, it is important to understand correctly what measurement is about:

Measured property [model for estimation] Estimated property

(e.g., number of functional features) (e.g., development effort required)

Notice also that we are trying to infer properties of one entity from properties of another entity:
the entity the properties of which are measured is software (design documents or code) and the
entity the properties of which are estimated is development process (people’s effort). The
“estimation model” is usually based on empirical evidence; that is, it is derived based on
observations of past projects. For past projects, both software and process characteristics are
known. From this, we can try to calculate the correlation of, say, the number of functional
features to, say, the development effort required. If correlation is high across a range of values,
we can infer that the number of functional features is a good predictor of the development effort
required. Unfortunately, we know that correlation does not equal causation. A causal model,
which not only establishes a relationship, but also explains why, would be better, if possible to
have.

Feedback to the developer is based on the knowledge of “good” ranges for software modules and
systems: if the measured attributes are outside of “good” ranges, the module needs to be
redesigned. It has been reported based on many observations that maintenance costs run to about
70 % of all lifetime costs of software products. Hence, good design can not only speed up the
initial development, but can significantly affect the maintenance costs.

Most commonly measured characteristics of software modules and systems are related to its size
and complexity. Several software characteristics were mentioned in Section 2.5, such as coupling
and cohesion, and it was argued that “good designs” are characterized by “low coupling” and
“high cohesion.” In this chapter I will present some techniques for measuring coupling and
cohesion and quantifying the quality of software design and implementation. A ubiquitous size
measure is the number of lines of code (LOC). Complexity is readily observed as an important
characteristic of software products, but it is difficult to operationalize complexity so that it can be
measured.

taking a well-reasoned, thoughtful approach that goes beyond the simplest correlative
relationships between the most superficial details of a problem.

Although it is easy to agree that more complex software is more difficult to develop and maintain,
it is difficult to operationalize complexity so that it can be measured. The reader may already be
familiar with computational complexity measure big O (or big Oh), O(n). O(n) measures software
complexity from the machine’s viewpoint in terms of how the size of the input data affects an
algorithm’s usage of computational resources (usually running time or memory). However, the
kind of complexity measure that we need in software engineering should measure complexity
form the viewpoint of human developers.

4.1 Fundamentals of Measurement Theory

Chapter 4 Software Measurement and Estimation 219

“It is better to be roughly right than precisely wrong.” —John Maynard Keynes

The Hawthorne effect - an increase in worker productivity produced by the psychological
stimulus of being singled out and made to feel important. The Hawthorne effect describes a
temporary change to behavior or performance in response to a change in the environmental
conditions. This change is typically an improvement. Others have broadened this definition to
mean that people’s behavior and performance change following any new or increased attention.

Individual behaviors may be altered because they know they are being studied was demonstrated
in a research project (1927–1932) of the Hawthorne Works plant of the Western Electric
Company in Cicero, Illinois.

Initial improvement in a process of production caused by the obtrusive observation of that
process. The effect was first noticed in the Hawthorne plant of Western Electric. Production
increased not as a consequence of actual changes in working conditions introduced by the plant's
management but because management demonstrated interest in such improvements (related: self-
fulfilling hypothesis).

4.1.1 Measurement Theory

Measurement theory is a branch of applied mathematics.
The specific theory we use is called the representational
theory of measurement. It formalizes our intuitions about
the way the world actually works.

Measurement theory allows us to use statistics and probability to understand quantitatively the
possible variances, ranges, and types of errors in the data.

Measurement Scale

In measurement theory, we have five types of scales: nominal, ordinal, interval, ratio, and
absolute.

In nominal scale we can group subjects into different categories. For example, we designate the
weather condition as “sunny,” “cloudy,” “rainy,” or “snowy.” The two key requirements for the
categories are: jointly exhaustive and mutually exclusive. Mutually exclusive means a measured
attribute can be classified into one and only one category. Jointly exhaustive means that all
categories together should cover all possible values of the attribute. If the measured attribute has
more categories than we are interested in, an “other” category can be introduced to make the
categories jointly exhaustive. Provided that categories are jointly exhaustive and mutually
exclusive, we have the minimal conditions necessary for the application of statistical analysis. For
example, we may want to compare the values of software attributes such as defect rate, cycle
time, and requirements defects across the different categories of software products.

Ordinal scale refers to the measurement operations through which the subjects can be compared
in order. An example ordinal scale is: “bad,” “good,” and “excellent,” or “star” ratings used for
products or services on the Web. An ordinal scale is asymmetric in the sense that if A > B is true
then B > A is false. It has the transitivity property in that if A > B and B > C, then A > C. Although
ordinal scale orders subjects by the magnitude of the measured property, it offers no information

2345678012345

9

2345678012345

9

Ivan Marsic Rutgers University 220

about the relative magnitude of the difference between subjects. For example, we only know that
“excellent” is better than “good,” and “good” is better than “bad.” However, we cannot compare
that the relative differences between the excellent-good and good-bad pairs. A commonly used
ordinal scale is an n-point Likert scale, such as the Likert five-point, seven-point, or ten-point
scales. For example, a five-point Likert scale for rating books or movies may assign the following
values: 1 = “Hated It,” 2 = “Didn’t Like It,” 3 = “Neutral,” 4 = “Liked It,” and 5 = “Loved It.”
We know only that 5 > 4, 4 > 3, 5 > 2, etc., but we cannot say how much greater is 5 than 4. Nor
can we say that the difference between categories 5 and 4 is equal to that between 3 and 2. This
implies that we cannot use arithmetic operations such as addition, subtraction, multiplication and
division. Nonetheless, the assumption of equal distance is often made and the average rating
reported (e.g., product rating at Amazon.com uses fractional values, such as 3.7stars).

Interval scale indicates the exact differences between measurement points. An interval scale
requires a well-defined, fixed unit of measurement that can be agreed on as a common standard
and that is repeatable. A good example is a traditional temperature scale (centigrade or Fahrenheit
scales). Although the zero point is defined in both scales, it is arbitrary and has no meaning. Thus
we can say that the difference between the average temperature in Florida, say 80F, and the
average temperature in Alaska, say 20F, is 60F, but we do not say that 80F is four times as hot
as 20F. The arithmetic operations of addition and subtraction can be applied to interval scale
data.

Ratio scale is an interval scale for which an absolute or nonarbitrary zero point can be located.
Absolute or true zero means that the zero point represents the absence of the property being
measured (e.g., no money, no behavior, none correct). Examples are mass, temperature in degrees
Kelvin, length, and time interval. Ratio scale is the highest level of measurement and all
arithmetic operations can be applied to it, including division and multiplication.

For interval and ratio scales, the measurement can be expressed in both integer and noninteger
data. Integer data are usually given in terms of frequency counts (e.g., the number of defects that
could be encountered during the testing phase).

Absolute scale is used when there is only one way to measure a property. It is independent of the
physical properties of any specific substance. In practice, values on an absolute scale are usually
(if not always) obtained by counting. An example is counting entities, such as chairs in a room.

Some Basic Measures

Ratio

Proportion

Percentage

Rate

Six Sigma

Chapter 4 Software Measurement and Estimation 221

4.2 What to Measure?

Given a software artifact (design document or source code), generally we can measure

1. Attributes of any representation or description of a problem or a solution. Two main
categories of representations are structure vs. behavior.

2. Attributes of the development process or methodology.

Measured aspect:

 quantity (size)

 complexity

If the purpose of software measurement is estimation of cost and effort, we would like to measure
at an early stage in the software life-cycle. Typically a budget allocation is set at an early phase of
a procurement process and a decision on contract price made on these budget constraints and

Figure 4-1: Issues with subjective size measures (compare to Figure 1-10). Left side of the
hedge as seen by a pessimist; right side seen by an optimist.

Ivan Marsic Rutgers University 222

suppliers’ tender responses. Consequently, the functional decomposition of the planned system
needs to be at a high level, but must be of sufficient detail to flush out as many of the implied
requirements and hidden complexities as possible, and as early as possible. In the ideal world this
would be a full and detailed decomposition of the use cases, but this is impractical during the
estimation process, because estimates need to be produced within tight time frames.

Figure 4-1

4.2.1 Use Case Points

Intuitively, projects with many complicated requirements take more effort to design and
implement than projects with few simple requirements. In addition, the effort depends not only on
inherent difficulty or complexity of the problem, but also on what tools the developers employ
and how skilled the developers are. The factors that determine the time to complete a project
include:

 Functional requirements: These are often represented with use cases (Section 2.3). The
complexity of use cases, in turn, depends on the number and complexity of the actors and
the number of steps (transactions) to execute each use case.

 Nonfunctional requirements: These describe the system’s nonfunctional properties,
known as FURPS+ (see Section 2.2.1), such as security, usability, and performance.
These are also known as the “technical complexity factors.”

 Environmental factors: Various factors such as the experience and knowledge of the
development team, and how sophisticated tools they will be using for the development.

An estimation method that took into account the above factors early in a project’s life cycle, and
produced a reasonable accurate estimate, say within 20% of the actual completion time, would be
very helpful for project scheduling, cost, and resource allocation.

Because use cases are developed at the earliest or notional stages of system design, they afford
opportunities to understand the scope of a project early in the software life-cycle. The Use Case
Points (UCP) method provides the ability to estimate the person-hours a software project requires
based on its use cases. The UCP method analyzes the use case actors, scenarios, nonfunctional
requirements, and environmental factors and abstracts them into an equation. Detailed use case
descriptions (Section 2.3.3) must be derived before the UCP method can be applied. The UCP
method cannot be applied to sketchy use cases. As discussed in Section 2.3.1, we can apply user
story points (described in Section 2.2.3) for project effort estimation at this very early stage.

The formula for calculating UCP is composed of three variables:

1. Unadjusted Use Case Points (UUCP), which measures the complexity of the functional
requirements

2. The Technical Complexity Factor (TCF), which measures the complexity of the
nonfunctional requirements

3. The Environment Complexity Factor (ECF), which assesses the development team’s
experience and their development environment

Chapter 4 Software Measurement and Estimation 223

Each variable is defined and computed separately using weighted values, subjective values, and
constraining constants. The subjective values are determined by the development team based on
their perception of the project’s technical complexity and the team’s efficiency. Here is the
equation:

UCP = UUCP TCF ECF (4.1)

Unadjusted Use Case Points (UUCPs) are computed as a sum of these two components:

1. The Unadjusted Actor Weight (UAW), based on the combined complexity of all the actors
in all the use cases.

2. The Unadjusted Use Case Weight (UUCW), based on the total number of activities (or
steps) contained in all the use case scenarios.

The computation of these components is described next.

Unadjusted Actor Weight (UAW)

An actor in a use case might be a person, another program, a piece of hardware, etc. The weight
for each actor depends on how sophisticated is the interface between the actor and the system.
Some actors, such as a user working with a text-based command-line interface, have very simple
needs and increase the complexity of a use case only slightly. Other actors, such as a user
working with a highly interactive graphical user interface, have a much more significant impact
on the effort to develop a use case. To capture these differences, each actor in the system is
classified as simple, average, or complex, and is assigned a weight as shown in Table 4-1. This
scale for rating actor complexity was devised by expert developers based on their experience.
Notice that this is an ordinal scale (Section4.1.1). You can think of this as a scale for “star
rating,” similar to “star ratings” of books (Amazon.com), films (IMDb.com), or restaurants
(yelp.com). Your task is, using this scale, to assign “star ratings” to all actors in your system. In
our case, we can assign one, two, or three “stars” to actors, corresponding to “Simple,”
“Average,” or “Complex” actors, respectively. Table 4-2 shows my ratings for the actors in the
case study of home access control, for which the actors are described in Section 2.3.1. The UAW
is calculated by totaling the number of actors in each category, multiplying each total by its
specified weighting factor, and then adding the products we obtain:

Table 4-1: Actor classification and associated weights.
Actor type Description of how to recognize the actor type Weight

Simple
The actor is another system which interacts with our system through
a defined application programming interface (API).

1

Average
The actor is a person interacting through a text-based user interface,
or another system interacting through a protocol, such as a network
communication protocol.

2

Complex The actor is a person interacting via a graphical user interface. 3

Ivan Marsic Rutgers University 224

 UAW(home access) = 5 Simple 2 Average 1 Complex = 51 22 13 = 12

Unadjusted Use Case Weight (UUCW)

The UUCW is derived from the number of use cases in three categories: simple, average,
and complex (see Table 4-3). Each use case is categorized based on the number of steps
(or, transactions) within its event flow, including both the main success scenario and
alternative scenarios (extensions).

The number of steps in a scenario affects the estimate. A large number of steps in a use case
scenario will bias the UUCW toward complexity and increase the UCPs. A small number of steps
will bias the UUCW toward simplicity and decrease the UCPs. Sometimes, a large number of
steps can be reduced without affecting the business process.

The UUCW is calculated by tallying the number of use cases in each category, multiplying each
total by its specified weighting factor, and then adding the products. For example, Table 4-4
computes the UUCW for the sample case study.

There is a controversy on how to count alternate scenarios (extensions). Initially, it was suggested
to ignore all scenarios except the main success scenario. The current view is that extensions
represent a significant amount of work and need to be included in effort estimation. However, it is
not agreed upon how to do the inclusion. The problem is that you cannot simply count the number
of lines in an extension scenario and add those to the lines in the main success scenario.

Table 4-2: Actor classification for the case study of home access control (see Section 2.3).
Actor name Description of relevant characteristics Complexity Weight

Landlord
Landlord is interacting with the system via a graphical user
interface (when managing users on the central computer).

Complex 3

Tenant

Tenant is interacting through a text-based user interface
(assuming that identification is through a keypad; for
biometrics based identification methods Tenant would be a
complex actor).

Average 2

LockDevice
LockDevice is another system which interacts with our
system through a defined API.

Simple 1

LightSwitch Same as LockDevice. Simple 1
AlarmBell Same as LockDevice. Simple 1
Database Database is another system interacting through a protocol. Average 2
Timer Same as LockDevice. Simple 1
Police Our system just sends a text notification to Police. Simple 1

Chapter 4 Software Measurement and Estimation 225

As seen in UC-7: AuthenticateUser (Section 2.3), each extension starts with a result of a
transaction, rather than a new transaction itself. For example, extension 2a (“Tenant/Landlord
enters an invalid identification key”) is the result of the transaction described by step 2 of the
main success scenario (“Tenant/Landlord supplies an identification key”). So, item 2a in the
extensions section of UC-7: AuthenticateUser is not counted. The same, of course, is true for 2b,
2c, and 3a. The transaction count for the use case in UC-7: AuthenticateUser is then ten. You may
want to count 2b1 and 2b2 only once but that is more effort than is worthwhile, and they may be
separate transactions sharing common text in the use case.

Another mechanism for measuring use case complexity is counting the concepts obtained by
domain modeling (Section 2.4). Of course, this assumes that the domain model is already derived
at the time the estimate is being made. The concepts can be used in place of transactions once it
has been determined which concepts model a specific use case. As indicated in Table 4-3, a
simple use case is implemented by 5 or fewer concepts, an average use case by 5 to 10 concepts,
and a complex use case by more than 10 concepts. The weights are as before. Each type of use
case is then multiplied by the weighting factor, and the products are added up to get the UUCW.

The UUCW is calculated by tallying the use cases in each category, multiplying each count by its
specified weighting factor (Table 4-3), and then adding the products:

 UUCW(home access) = 1 Simple 5 Average 2 Complex = 15 510 215 = 85

The UUCP is computed by adding the UAW and the UUCW. Based on the scores in Table 4-2
and Table 4-4, the UUCP for our case study project is UUCP = UAW + UUCW = 12 + 85 = 97.

The UUCP gives the unadjusted size of the overall system, unadjusted because it does not
account for the nonfunctional requirements (TCFs) and the environmental factors (ECFs).

Table 4-3: Use case weights based on the number of transactions.
Use case category Description of how to recognize the use-case category Weight

Simple
Simple user interface. Up to one participating actor (plus
initiating actor). Number of steps for the success scenario: 3. If
presently available, its domain model includes 3 concepts.

5

Average
Moderate interface design. Two or more participating actors.
Number of steps for the success scenario: 4 to 7. If presently
available, its domain model includes between 5 and 10 concepts.

10

Complex
Complex user interface or processing. Three or more
participating actors. Number of steps for the success scenario:
7. If available, its domain model includes 10 concepts.

15

Ivan Marsic Rutgers University 226

Technical Complexity Factor (TCF)—Nonfunctional
Requirements

Thirteen standard technical factors were identified (by expert developers) to estimate the impact
on productivity of the nonfunctional requirements for the project (see Table 4-5). Each factor is
weighted according to its relative impact.

The development team should assess the perceived complexity of each technical factor from
Table 4-5 in the context of their project. Based on their assessment, they assign another “star
rating,” a perceived complexity value between zero and five. The perceived complexity value
reflects the team’s subjective perception of how much effort will be needed to satisfy a given
nonfunctional requirement. For example, if they are developing a distributed system (factor T1 in
Table 4-5), it will require more skill and time than if developing a system that will run on a single
computer. A perceived complexity value of 0 means that a technical factor is irrelevant for this
project, 3 corresponds to average effort, and 5 corresponds to major effort. When in doubt, use 3.

Each factor’s weight (Table 4-5) is multiplied by its perceived complexity factor to produce the
calculated factor. The calculated factors are summed to produce the Technical Total Factor. Table
4-6 calculates the technical complexity for the case study.

Two constants are used with the Technical Total Factor to produce the TCF. The constants limit
the impact the TCF has on the UCP equation (4.1) from a range of 0.6 (when perceived
complexities are all zero) to a maximum of 1.3 (when perceived complexities are all five), see
Figure 4-2(a).

Table 4-4: Use case classification for the case study of home access control (see Section 2.3).
Use case Description Category Weight

Unlock (UC-1)
Simple user interface. 5 steps for the main success
scenario. 3 participating actors (LockDevice,
LightSwitch, and Timer).

Average 10

Lock (UC-2)

Simple user interface. 2+3=5 steps for the all
scenarios. 3 participating actors (LockDevice,
LightSwitch, and Timer).

Average 10

ManageUsers
(UC-3)

Complex user interface. More than 7 steps for the
main success scenario (when counting UC-6 or
UC-7). Two participating actors (Tenant, Database).

Complex 15

ViewAccessHistory
(UC-4)

Complex user interface. 8 steps for the main success
scenario. 2 participating actors (Database, Landlord).

Complex 15

AuthenticateUser
(UC-5)

Simple user interface. 3+1=4 steps for all scenarios.
2 participating actors (AlarmBell, Police).

Average 10

AddUser (UC-6)
Complex user interface. 6 steps for the main success
scenario (not counting UC-3). Two participating
actors (Tenant, Database).

Average 10

RemoveUser
(UC-7)

Complex user interface. 4 steps for the main success
scenario (not counting UC-3). One participating actor
(Database).

Average 10

Login (UC-8)
Simple user interface. 2 steps for the main success
scenario. No participating actors.

Simple 5

Chapter 4 Software Measurement and Estimation 227

TCF values less than one reduce the UCP because any positive value multiplied by a positive
fraction decreases in magnitude: 100 0.6 = 60 (a reduction of 40%). TCF values greater than
one increase the UCP because any positive value multiplied by a positive mixed number increases
in magnitude: 100 1.3 = 130 (an increase of 30%). The constants were determined by
interviews with experienced developers, based on their subjective estimates.

Because the constants limit the TCF from a range of 0.6 to 1.3, the TCF can impact the UCP
equation from 40% (0.6) to a maximum of 30% (1.3). The formula to compute the TCF is:

TCF = Constant-1 Constant-2 Technical Factor Total =

13

1
21

i
ii FWCC (4.2)

where,

Table 4-5: Technical complexity factors and their weights.
Technical factor Description Weight
T1 Distributed system (running on multiple machines) 2

T2
Performance objectives (are response time and throughput
performance critical?) 1()

T3 End-user efficiency 1
T4 Complex internal processing 1
T5 Reusable design or code 1

T6
Easy to install (are automated conversion and installation
included in the system?)

0.5

T7
Easy to use (including operations such as backup, startup, and
recovery)

0.5

T8 Portable 2
T9 Easy to change (to add new features or modify existing ones) 1
T10 Concurrent use (by multiple users) 1
T11 Special security features 1

T12
Provides direct access for third parties (the system will be used
from multiple sites in different organizations)

1

T13 Special user training facilities are required 1
() Some sources assign 2 as the weight for the performance objectives factor (T2).

(a) (b)

Technical Factor Total

T
C

F

0
0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

70503010

(70, 1.3)

(0, 0.6)

Technical Factor Total

T
C

F

0
0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

70503010

(70, 1.3)

(0, 0.6)

Environmental Factor Total

E
C

F

0 10 20 30 40
0

0.8

1

1.2

1.4

0.6

0.4

0.2

(0, 1.4)

(32.5, 0.425)

Environmental Factor Total

E
C

F

0 10 20 30 40
0

0.8

1

1.2

1.4

0.6

0.4

0.2

(0, 1.4)

(32.5, 0.425)

Figure 4-2: Scaling constants for technical and environmental factors.

Ivan Marsic Rutgers University 228

Constant-1 (C1) = 0.6

Constant-2 (C2) = 0.01

Wi = weight of ith technical factor (Table 4-5)

Fi = perceived complexity of ith technical factor (Table 4-6)

Formula (4.2) is illustrated in Figure 4-2(a). Given the data in Table 4-6, the TCF = 0.6 + (0.01
31) = 0.91. According to equation (4.1), this results in a reduction of the UCP by 9%.

Environment Complexity Factor (ECF)

The environmental factors (Table 4-7) measure the experience level of the people on the project
and the stability of the project. Greater experience will in effect reduce the UCP count, while
lower experience will in effect increase the UCP count. One might wish to consider other external
factors, such as the available budget, company’s market position, the state of the economy, etc.

The development team determines each factor’s perceived impact based on their perception the
factor has on the project’s success. A value of 1 means the factor has a strong, negative impact for
the project; 3 is average; and 5 means it has a strong, positive impact. A value of zero has no
impact on the project’s success. For factors E1-E4, 0 means no experience in the subject, 3 means
average, and 5 means expert. For E5, 0 means no motivation for the project, 3 means average, and
5 means high motivation. For E6, 0 means unchanging requirements, 3 means average amount of
change expected, and 5 means extremely unstable requirements. For E7, 0 means no part-time
technical staff, 3 means on average half of the team is part-time, and 5 means all of the team is

Table 4-6: Technical complexity factors for the case study of home access (see Section 2.3).

Technical
factor

Description Weight
Perceived
Complexity

Calculated Factor
(WeightPerceived
Complexity)

T1
Distributed, Web-based system, because
of ViewAccessHistory (UC-4)

2 3 23 = 6

T2
Users expect good performance but
nothing exceptional

1 3 13 = 3

T3
End-user expects efficiency but there are
no exceptional demands

1 3 13 = 3

T4 Internal processing is relatively simple 1 1 11 = 1
T5 No requirement for reusability 1 0 10 = 0

T6
Ease of install is moderately important
(will probably be installed by technician)

0.5 3 0.53 = 1.5

T7 Ease of use is very important 0.5 5 0.55 = 2.5

T8
No portability concerns beyond a desire
to keep database vendor options open

2 2 22 = 4

T9 Easy to change minimally required 1 1 11 = 1
T10 Concurrent use is required (Section 5.3) 1 4 14 = 4
T11 Security is a significant concern 1 5 15 = 5
T12 No direct access for third parties 1 0 10 = 0
T13 No unique training needs 1 0 10 = 0

Technical Factor Total: 31

Chapter 4 Software Measurement and Estimation 229

part-time. For E8, 0 means an easy-to-use programming language will be used, 3 means the
language is of average difficulty, and 5 means a very difficult language is planned for the project.

Each factor’s weight is multiplied by its perceived impact to produce its calculated factor. The
calculated factors are summed to produce the Environmental Factor Total. Larger values for the
Environment Factor Total will have a greater impact on the UCP equation. Table 4-8 calculates
the environmental factors for the case study project (home access control), assuming that the
project will be developed by a team of upper-division undergraduate students.

To produce the final ECF, two constants are computed with the Environmental Factor Total.
Similar to the TCF constants above, these constants were determined based on interviews with
expert developers. The constants constrain the impact the ECF has on the UCP equation from
0.425 (part-time workers and difficult programming language = 0, all other values = 5) to 1.4
(perceived impact is all 0). Therefore, the ECF can reduce the UCP by 57.5% and increase the
UCP by 40%, see Figure 4-2(b). The ECF has a greater potential impact on the UCP count than
the TCF. The formula is:

ECF = Constant-1 Constant-2 Environmental Factor Total =

8

1
21

i
ii FWCC (4.3)

where,

Constant-1 (C1) = 1.4

Constant-2 (C2) = 0.03

Wi = weight of ith environmental factor (Table 4-7)

Fi = perceived impact of ith environmental factor (Table 4-8)

Formula (4.3) is illustrated in Figure 4-2(b). Given the data in Table 4-8, the ECF = 1.4 +
(0.0311) = 1.07. For the sample case study, the team’s modest software development
experience resulted in an average EFT. All four factors E1-E4 scored relatively low. According to
equation (4.1), this results in an increase of the UCP by 7%.

Table 4-7: Environmental complexity factors and their weights.
Environmental factor Description Weight
E1 Familiar with the development process (e.g., UML-based) 1.5
E2 Application problem experience 0.5
E3 Paradigm experience (e.g., object-oriented approach) 1
E4 Lead analyst capability 0.5
E5 Motivation 1
E6 Stable requirements 2
E7 Part-time staff 1
E8 Difficult programming language 1

Ivan Marsic Rutgers University 230

Calculating the Use Case Points (UCP)

As a reminder, the UCP equation (4.1) is copied here:

UCP = UUCP TCF ECF

From the above calculations, the UCP variables have the following values:

UUCP = 97

TCF = 0.91

ECF = 1.07

For the sample case study, the final UCP is the following:

UCP = 97 0.91 1.07 = 94.45 or 94 use case points.

Note for the sample case study, the combined effect of TCF and ECF was to increase the UUCP
by approximately 3 percent (94/97100 100 = 3%). This is a minor adjustment and can be
ignored given that many other inputs into the calculation are subjective estimates.

Discussion of the UCP Metric

Notice that the UCP equation (4.1) is not consistent with measurement theory, because the counts
are on a ratio scale and the scores for the adjustment factors are on an ordinal scale (see Section
4.1.1). However, such formulas are often used in practice.

It is worth noticing that UUCW (Unadjusted Use Case Weight) is calculated simply by adding up
the perceived weights of individual use cases (Table 4-3). This assumes that all use cases are
completely independent, which usually is not the case. The merit of linear summation of size
measures was already discussed in Sections 1.2.5 and 2.2.3.

Table 4-8: Environmental complexity factors for the case study of home access (Section 2.3).

Environmental
factor

Description Weight
Perceived
Impact

Calculated Factor
(Weight
Perceived Impact)

E1
Beginner familiarity with the UML-
based development

1.5 1 1.51 = 1.5

E2
Some familiarity with application
problem

0.5 2 0.52 = 1

E3
Some knowledge of object-oriented
approach

1 2 12 = 2

E4 Beginner lead analyst 0.5 1 0.51 = 0.5

E5
Highly motivated, but some team
members occasionally slacking

1 4 14 = 4

E6 Stable requirements expected 2 5 25 = 5
E7 No part-time staff will be involved 1 0 10 = 0

E8
Programming language of average
difficulty will be used 1 3 13 = 3

Environmental Factor Total: 11

Chapter 4 Software Measurement and Estimation 231

UCP appears to be based on a great deal of subjective and seemingly arbitrary parameters,
particularly the weighting coefficients. For all its imperfections, UCP has become widely adopted
because it provides valuable estimate early on in the project, when many critical decisions need to
be made. See the bibliographical notes (Section 4.7) for literature on empirical evidence about the
accuracy of UCP-based estimation.

UCP measures how “big” the software system will be in terms of functionality. The software size
is the same regardless of who is building the system or the conditions under which the system is
being built. For example, a project with a UCP of 100 may take longer than one with a UCP of
90, but we do not know by how much. From the discussion in Section 1.2.5, we know that to
calculate the time to complete the project using equation (1.2) we need to know the team’s
velocity. How to factor in the team velocity (productivity) and compute the estimated number of
hours will be described later in Section 4.6.

4.2.2 Cyclomatic Complexity

One of the most common areas of complexity in a program lies in complex conditional logic (or,
control flow). Thomas McCabe [1974] devised a measure of cyclomatic complexity, intended to
capture the complexity of a program’s conditional logic. A program with no branches is the least
complex; a program with a loop is more complex; and a program with two crossed loops is more
complex still. Cyclomatic complexity corresponds roughly to an intuitive idea of the number of
different paths through the program—the greater the number of different paths through a
program, the higher the complexity.

McCabe’s metric is based on graph theory, in which you calculate the cyclomatic number of a
graph G, denoted by V(G), by counting the number of linearly independent paths within a
program. Cyclomatic complexity is

 V(G) = e n 2 (4.4)

where e is the number of edges, n is the number of nodes.

Converting a program into a graph is illustrated in Figure 4-3. It follows that cyclomatic
complexity is also equal to the number of binary decisions in a program plus 1. If all decisions are
not binary, a three-way decision is counted as two binary decisions and an n-way case (select or
switch) statement is counted as n 1 binary decisions. The iteration test in a looping statement is
counted as one binary decision.

Ivan Marsic Rutgers University 232

The cyclomatic complexity is additive. The complexity of several graphs considered as a group is
equal to the sum of individual graphs’ complexities.

There are two slightly different formulas for calculating cyclomatic complexity V(G) of a graph
G. The original formula by McCabe [1974] is

 V(G) = e n 2p (4.5)

where e is the number of edges, n is the number of nodes, and p is the number of connected
components of the graph. Alternatively, [Henderson-Sellers & Tegarden, 1994] propose a
linearly-independent cyclomatic complexity as

 VLI(G) = e n p 1 (4.6)

Because cyclomatic complexity metric is based on decisions and branches, which is consistent
with the logic pattern of design and programming, it appeals to software professionals. But it is
not without its drawbacks. Cyclomatic complexity ignores the complexity of sequential
statements. In other words, any program with no conditional branching has zero cyclomatic
complexity! Also, it does not distinguish different kinds of control flow complexity, such as loops
vs. IF-THEN-ELSE statements or selection statements vs. nested IF-THEN-ELSE statements.

Cyclomatic complexity metric was originally designed to indicate a program’s testability and
understandability. It allows you to also determine the minimum number of unique tests that must
be run to execute every executable statement in the program. One can expect programs with
higher cyclomatic complexity to be more difficult to test and maintain, due to their higher
complexity, and vice versa. To have good testability and maintainability, McCabe recommends
that no program module should exceed a cyclomatic complexity of 10. Many software

if expression1 then
statement2

else
statement3

end if
statement4

switch expr1
case 1:

statement2
case 2:

statm3
case 3:

statm4
end switch
statm5

(a)

(b)

do
statement1

while expr2
end do
statement3

(c)

CODE FLOWCHART GRAPH

T F
expr1

?

statm4

statm2 statm3

2

1 3
expr1

?

statm5

statm3statm2 statm4

n1

n2 n3

n4

n1

n2 n3

n4

n1

n2 n4

n5

n3

n1

n2 n4

n5

n3

T

F

expr2
?

statm3

statm1 n1

n2

n3

n1

n2

n3

Figure 4-3: Converting software code into an abstract graph.

Chapter 4 Software Measurement and Estimation 233

refactorings are aimed at reducing the complexity of a program’s conditional logic [Fowler, 2000;
Kerievsky, 2005].

4.3 Measuring Module Cohesion

Cohesion is defined as a measure of relatedness or consistency in the functionality of a software
unit. It is an attribute that identifies to which degree the parts within that unit belong together or
are related to each other. In an object-oriented paradigm, a class can be a unit, the data can be
attributes, and the methods can be parts. Modules with high cohesion are usually robust, reliable,
reusable, and easy to understand while modules with low cohesion are associated with
undesirable traits such as being difficult to understand, test, maintain, and reuse. Cohesion is an
ordinal type of measurement and is usually expressed as “high cohesion” or “low cohesion.”

We already encountered the term cohesion in Chapter 2, where it was argued that each unit of
design, whether it is at the modular level or class level, should be focused on a single purpose.
This means that it should have very few responsibilities that are logically related. Terms such as
“intramodular functional relatedness” or “modular strength” have been used to address the notion
of design cohesion.

4.3.1 Internal Cohesion or Syntactic Cohesion

Internal cohesion can best be understood as syntactic cohesion evaluated by examining the code
of each individual module. It is thus closely related to the way in which large programs are
modularized. Modularization can be accomplished for a variety of reasons and in a variety of
ways.

A very crude modularization is to require that each module should not exceed certain size, e.g.,
50 lines of code. This would arbitrarily quantize the program into blocks of about 50 lines each.
Alternatively, we may require that each unit of design has certain prescribed size. For example, a
package is required to have certain number of classes, or each class a certain number of attributes
and operations. We may well end up with the unit of design or code which is performing
unrelated tasks. Any cohesion here would be accidental or coincidental cohesion.

Coincidental cohesion does not usually occur in an initial design. However, as the design goes
through multiple changes and modifications, e.g., due to requirements changes or bug fixes, and
is under schedule pressures, the original design may evolve into a coincidental one. The original
design may be patched to meet new requirements, or a related design may be adopted and
modified instead of a fresh start. This will easily result in multiple unrelated elements in a design
unit.

Ivan Marsic Rutgers University 234

An Ordinal Scale for Cohesion Measurement

More reasonable design would have the contents of a module bear some relationship to each
other. Different relationships can be created for the contents of each module. By identifying
different types of module cohesion we can create a nominal scale for cohesion measurement. A
stronger scale is an ordinal scale, which can be created by asking an expert to assess subjectively
the quality of different types of module cohesion and create a rank-ordering. Here is an example
ordinal scale for cohesion measurement:

Rank Cohesion type Quality
6 Functional cohesion Good

Bad

5 Sequential cohesion
4 Communication cohesion
3 Procedural cohesion
2 Temporal cohesion
1 Logical cohesion
0 Coincidental cohesion

Functional cohesion is judged to provide a tightest relationship because the design unit (module)
performs a single well-defined function or achieves a single goal.

Sequential cohesion is judged as somewhat weaker, because the design unit performs more than
one function, but these functions occur in an order prescribed by the specification, i.e., they are
strongly related.

Communication cohesion is present when a design unit performs multiple functions, but all are
targeted on the same data or the same sets of data. The data, however, is not organized in an
object-oriented manner as a single type or structure.

Procedural cohesion is present when a design unit performs multiple functions that are
procedurally related. The code in each module represents a single piece of functionality defining
a control sequence of activities.

Temporal cohesion is present when a design unit performs more than one function, and they are
related only by the fact that they must occur within the same time span. An example would be a
design that combines all data initialization into one unit and performs all initialization at the same
time even though it may be defined and utilized in other design units.

Logical cohesion is characteristic of a design unit that performs a series of similar functions. At
first glance, logical cohesion seems to make sense in that the elements are related. However, the
relationship is really quite weak. An example is the Java class java.lang.Math, which
contains methods for performing basic numeric operations such as the elementary exponential,
logarithm, square root, and trigonometric functions. Although all methods in this class are
logically related in that they perform mathematical operations, they are entirely independent of
each other.

Ideally, object-oriented design units (classes) should exhibit the top two types of cohesion
(functional or sequential), where operations work on the attributes that are common for the class.

A serious issue with this cohesion measure is that the success of any module in attaining high-
level cohesion relies purely on human assessment.

Chapter 4 Software Measurement and Estimation 235

Interval Scales for Cohesion Measurement

We are mainly interested in the cohesion of object-oriented units of software, such as classes.
Class cohesion captures relatedness between various members of a class: attributes and
operations (or, methods). Class cohesion metrics can be broadly classified into two groups:

1. Interface-based metrics compute class cohesion from information in method signatures

2. Code-based metrics compute class cohesion in terms of attribute accesses by methods

We can further classify code-based cohesion metrics into four sub-types based on the methods of
quantification of cohesion:

2.a) Disjoint component-based metrics count the number of disjoint sets of methods or
attributes in a given class.

2.b) Pairwise connection-based metrics compute cohesion as a function of number of
connected and disjoint method pairs.

2.c) Connection magnitude-based metrics count the accessing methods per attribute and
indirectly find an attribute-sharing index in terms of the count (instead of computing
direct attribute-sharing between methods).

2.d) Decomposition-based metrics compute cohesion in terms of recursive decompositions of
a given class. The decompositions are generated by removal of pivotal elements that keep
the class connected.

These metrics compute class cohesion using manipulations of class elements. The key elements
of a class C are its a attributes A1, …, Aa, m methods M1, …, Mm, and the list of p parameter (or,
argument) types of the methods P1, …, Pm. The following sections describe various approaches to
computing class cohesion.

Many existing metrics qualify the class as either “cohesive” or “not cohesive,” and do not capture
varying strengths of cohesion. However, this approach makes it hard to compare two cohesive or
two non cohesive classes, or to know whether a code modification increased or reduced the
degree of cohesiveness. If one wishes to compare the cohesion of two different versions of
software, it is necessary to use a metric that can calculate not just whether a module is cohesive or
not cohesive but also the degree of its cohesiveness. Assuming that both the versions of our
software are cohesive, this would enable us to judge which version is better designed and more
cohesive.

4.3.2 Interface-based Cohesion Metrics

Interface-based cohesion metrics are design metrics that help evaluate cohesion among methods
of a class early in the analysis and the design phase. These metrics evaluate the consistency of
methods in a class’s interface using the lists of parameters of the methods. They can be applied on
class declarations that only contain method prototypes (method types and parameter types) and do
not require the class implementation code. One such metric is Cohesion Among Methods of
Classes (CAMC). The CAMC metric is based on the assumption that the parameters of a method
reasonably define the types of interaction that method may implement.

Figure 4-4

Ivan Marsic Rutgers University 236

To compute the CAMC metric value, we determine a union of all parameters of all the methods
of a class. A set Mi of parameter object types for each method is also determined. An intersection
(set Pi) of Mi with the union set T is computed for all methods in the class. A ratio of the size of
the intersection (Pi) set to the size of the union set (T) is computed for all methods. The
summation of all intersection sets Pi is divided by product of the number of methods and the size
of the union set T, to give a value for the CAMC metric. Formally, the metric is

kl
o

kl
CCAMC

k

i

l

j
ij

 1 1

1
)((4.7)

4.3.3 Cohesion Metrics using Disjoint Sets of Elements

An early metric of this type is the Lack of Cohesion of Methods (LCOM1). This metric counts the
number of pairs of methods that do not share their class attributes. It considers how many disjoint
sets are formed by the intersection of the sets of the class attributes used by each method. Under
LCOM1, the perfect cohesion achieved when all methods access all attributes. Because of perfect
cohesion, we expect the lack-of-cohesion value to be 0. At the opposite end of the spectrum, each
method accesses only a single attribute (assuming that m = a). In this case, we expect LCOM = 1,
which indicates extreme lack of cohesion.

A formal definition of LCOM1 follows. Consider a set of methods {Mi} (i = 1, …, m} accessing a
set of attributes {Aj} (j = 1, …, a}. Let the number of attributes accessed by each method, Mi, be
denoted as (Mi) and the number of methods which access each attribute be (Aj). Then the lack
of cohesion of methods for a class Ci is given formally as

1

1

)LCOM1(C
1

i

m

A
a

m
a

j
j

 (4.8)

This version of LCOM is labeled as LCOM1 to allow for subsequent variations, LCOM2,
LCOM3, and LCOM4. Class cohesion, LCOM3, is measured as the number of connected

DeviceCtrl

devStatuses_ : Vector

+ activate(dev : String) : boolean
+ deactivate(dev :String) : boolean
+ getStatus(dev : String) : Object

DeviceCtrl

devStatuses_ : Vector

+ activate(dev : String) : boolean
+ deactivate(dev :String) : boolean
+ getStatus(dev : String) : Object

(a) (b)

DeviceCtrl

activate

deactivate

getStatus

1

StringSerialPort

0

1

1

1

0

0

0

O

DeviceCtrl

activate

deactivate

getStatus

1

StringSerialPort

0

1

1

1

0

0

0

O

methods

parameter types

Figure 4-4: Class (a) and its parameter occurrence matrix (b).

Chapter 4 Software Measurement and Estimation 237

components in the graph. LCOM2 calculates the difference between the number of method pairs
that do or do not share their class attributes. LCOM2 is classified as a Pairwise Connection-Based
metric (Section ____). See the bibliographical notes (Section 4.7) for references on LCOM
metrics.

4.3.4 Semantic Cohesion

Cohesion or module “strength” refers to the notion of a module level “togetherness” viewed at the
system abstraction level. Thus, although in a sense it can be regarded as a system design concept,
we can more properly regard cohesion as a semantic concern expressed of a module evaluated
externally to the module.

Semantic cohesion is an externally discernable concept that assesses whether the abstraction
represented by the module (class in object-oriented approach) can be considered to be a “whole”
semantically. Semantic complexity metrics evaluate whether an individual class is really an
abstract data type in the sense of being complete and also coherent. That is, to be semantically
cohesive, a class should contain everything that one would expect a class with those
responsibilities to possess but no more.

It is possible to have a class with high internal, syntactic cohesion but little semantic cohesion.
Individually semantically cohesive classes may be merged to give an externally semantically
nonsensical class while retaining internal syntactic cohesion. For example, imagine a class that
includes features of both a person and the car the person owns. Let us assume that each person
can own only one car and that each car can only be owned by one person (a one-to-one
association). Then person_id car_id, which would be equivalent to data normalization.
However, classes have not only data but operations to perform various actions. They provide
behavior patterns for (1) the person aspect and (2) the car aspect of our proposed class. Assuming
no intersecting behavior between PERSON and CAR, then what is the meaning of our class,
presumably named CAR_PERSON? Such a class could be internally highly cohesive, yet
semantically as a whole class seen from outside the notion expressed (here of the thing known as
a person-car) is nonsensical.

4.4 Coupling

Coupling metrics are a measure of how interdependent different modules are of each other. High
coupling occurs when one module modifies or relies on the internal workings of another module.
Low coupling occurs when there is no communication at all between different modules in a
program. Coupling is contrasted with cohesion. Both cohesion and coupling are ordinal
measurements and are defined as “high” or “low.” It is most desirable to achieve low coupling
and high cohesion.

Tightly coupled vs. loosely coupled

Ivan Marsic Rutgers University 238

4.5 Psychological Complexity

“Then he explained that what can be observed is really determined by the theory. He said, you cannot first
know what can be observed, but you must first know a theory, or produce a theory, and then you can

define what can be observed.” —Heisenberg’s recollection of his first meeting with Einstein

“I have had my results for a long time: but I do not yet know how I am to arrive at them.”
—Karl Friedrich Gauss

One frustration with software complexity measurement is that, unlike placing a physical object on
a scale and measuring its weight, we cannot put a software object on a “complexity scale” and
read out the amount. Complexity seems to be an interpreted measure, much like person’s health
condition and it has to be stated as an “average case.” Your doctor can precisely measure your
blood pressure, but a specific number does not necessarily correspond to good or bad health. The
doctor will also measure your heart rate, body temperature, and perhaps several other parameters,
before making an assessment about your health condition. Even so, the assessment will be the
best guess, merely stating that on average such and such combination of physiological
measurements corresponds to a certain health condition. Perhaps we should define software
object complexity similarly: as a statistical inference based on a set of directly measurable
variables.

4.5.1 Algorithmic Information Content

I already mentioned that our abstractions are unavoidably approximate. The term often used is
“coarse graining,” which means that we are blurring detail in the world picture and single out
only the phenomena we believe are relevant to the problem at hand. Hence, when defining
complexity it is always necessary to specify the level of detail up to which the system is
described, with finer details being ignored.

One way of defining the complexity of a program or system is by means of its description, that is,
the length of the description. I discussed above the merits of using size metrics as a complexity

(a) (b)

Figure 4-5: Random arrays illustrate information complexity vs. depth. See text for details.

Chapter 4 Software Measurement and Estimation 239

measure. Some problems mentioned above include: size could be measured differently; it
depends on the language in which the program code (or any other accurate description of it) is
written; and, the program description can be unnecessarily stuffed to make it appear complex. A
way out is to ignore the language issue and define complexity in terms of the description length.

Suppose that two persons wish to communicate a system description at distance. Assume they are
employing language, knowledge, and understanding that both parties share (and know they share)
beforehand. The crude complexity of the system can be defined as the length of the shortest
message that one party needs to employ to describe the system, at a given level of coarse
graining, to the distant party.

A well-known such measure is called algorithmic information content, which was introduced in
1960s independently by Andrei N. Kolmogorov, Gregory Chaitin, and Ray Solomonoff. Assume
an idealized general-purpose computer with an infinite storage capacity. Consider a particular
message string, such as “aaaaabbbbbbbbbb.” We want to know: what is the shortest possible
program that will print out that string and then stop computing? Algorithmic information
content (AIC) is defined as the length of the shortest possible program that prints out a given
string. For the example string, the program may look something like: P a{5}b{10}, which
means “Print 'a' five times and 'b' ten times.”

Information Theory

Logical Depth and Crypticity

“...I think it better to write a long letter than incur loss of time...” —Cicero

“I apologize that this letter is so long. I did not have the time to make it short.” —Mark Twain

“If I had more time, I would have written a shorter letter.”
—variously attributed to Cicero, Pascal, Voltaire, Mark Twain, George Bernard Shaw, and T.S. Elliot

“The price of reliability is the pursuit of the utmost simplicity. It is a price which the very rich may find hard
to pay.” —C.A.R. Hoare

I already mentioned that algorithmic information content (AIC) does not exactly correspond to
everyday notion of complexity because under AIC random strings appear as most complex. But
there are other aspects to consider, as well. Consider the following description: “letter X in a
random array of letters L.” Then the description “letter T in a random array of letters L” should
have about the same AIC. Figure 4-5 pictures both descriptions in the manner pioneered by my
favorite teacher Bela Julesz. If you look at both arrays, I bet that you will be able to quickly
notice X in Figure 4-5(a), but you will spend quite some time scanning Figure 4-5(b) to detect the
T! There is no reason to believe that human visual system developed a special mechanism to
recognize the pattern in Figure 4-5(a), but failed to do so for the pattern in Figure 4-5(b). More
likely, the same general pattern recognition mechanism operates in both cases, but with much less
success on Figure 4-5(b). Therefore, it appears that there is something missing in the AIC notion

Ivan Marsic Rutgers University 240

of complexity—an apparently complex description has low AIC. The solution is to include the
computation time.

Charles Bennett defined logical depth of a description to characterize the difficulty of going from
the shortest program that can print the description to the actual description of the system.
Consider not just the shortest program to print out the string, but a set of short programs that have
the same effect. For each of these programs, determine the length of time (or number of steps)
needed to compute and print the string. Finally, average the running times so that shorter
programs are given greater weight.

4.6 Effort Estimation

“Adding manpower to a late software project makes it later.”
—Frederick P. Brooks, Jr., The Mythical Man-Month

“A carelessly planned project will take only twice as long.”
—The law of computerdom according to Golub

“The first 90 percent of the tasks takes 10 percent of the time and the last 10 percent takes the other 90
percent.” —The ninety-ninety rule of project schedules

Working memory

Chunking unit
Chunking unit

Intelligent
system

Input sequence from the world (time-varying)

Figure 4-6: A model of a limited working memory.

Chapter 4 Software Measurement and Estimation 241

4.6.1 Deriving Project Duration from Use Case Points

Use case points (UCP) are a measure of software size (Section 4.2.1). We can use equation (1.2)
given in Section 1.2.5 to derive the project duration. For this purpose we need to know the team’s
velocity, which represents the team’s rate of progress through the use cases (or, the team’s
productivity). Here is the equation that is equivalent to equation (1.2), but using a Productivity
Factor (PF):

Duration = UCP PF (4.9)

The Productivity Factor is the ratio of development person-hours needed per use case point.
Experience and statistical data collected from past projects provide the data to estimate the initial
PF. For instance, if a past project with a UCP of 112 took 2,550 hours to complete, divide 2,550
by 112 to obtain a PF of 23 person-hours per use case point.

If no historical data has been collected, the developer can consider one of these options:

1. Establish a baseline by computing the UCP for projects previously completed by your
team (if such are available).

2. Use a value for PF between 15 and 30 depending on the development team’s overall
experience and past accomplishments (Do they normally finish on time? Under budget?
etc.). For a team of beginners, such as undergraduate students, use the highest value (i.e.,
30) on the first project.

A different approach was proposed by Schneider and Winters [2001]. Recall that the
environmental factors (Table 4-7) measure the experience level of the people on your project and
the stability of your project. Any negatives in this area mean that you will have to spend time
training people or fixing problems due to instability (of requirements). The more negatives you
have, the more time you will spend fixing problems and training people and less time you will
have to devote to your project.

Schneider and Winters suggested counting the number of environmental factors among E1
through E6 (Table 4-8) that have the perceived impact less than 3 and those among E7 and E8
with the impact greater than 3. If the total count is 2 or less, assume 20 hours per use case point.
If the total is 3 or 4, assume 28 hours per use case. Any total greater than 4 indicates that there are
too many environmental factors stacked against the project. The project should be put on hold
until some environmental factors can be improved.

Probably the best solution for estimating the Productivity Factor is to calculate your
organization’s own historical average from past projects. This is why collecting historic data is
important for improving effort estimation on future projects. After a project completes, divide the
number of actual hours it took to complete the project by the UCP number. The result becomes
the new PF that can be used in the future projects.

When estimating the duration in calendar time, is important to avoid assuming ideal working
conditions. The estimate should account for corporate overhead—answering email, attending
meetings, and so on. Suppose our past experience suggests a PF of 23 person-hours per use case
point and our current project has 94 use case points (as determined Section 4.2.1). Equation (4.9)

Ivan Marsic Rutgers University 242

gives the duration as 94 23 = 2162 person-hours. Obviously, this does not imply that the project
will be completed in 2162 / 24 90 days! A reasonable assumption is that each developer will
spend about 30 hours per week on project tasks and the rest of their time will be taken by
corporate overhead. With a team of four developers, this means the team will make 4 30 = 120
hours per week. Dividing 2162 person-hours by 120 hours per week we obtain a total of
approximately 18 weeks to complete this project.

4.7 Summary and Bibliographical Notes

In this chapter I described two kinds of software measurements. One kind works with scarce
artifacts that are available early on in a project, such as customer statement of requirements for
the planned system. There is a major subjective component to these measurements, and it works
mainly based on guessing and past experience with similar projects. The purpose of this kind of
measurements is to estimate the project duration and cost of the effort, so to negotiate the terms
of the contract with the customer who is sponsoring the project.

The other kind of software measurements works with actual software artifacts, such as UML
designs or source code. It aims to measure intrinsic properties of the software and avoid
developer’s subjective guesses. Because it requires that the measured artifacts already exist in a
completed or nearly completed condition, it cannot be applied early on in a project. The purpose
of this kind of measurements is to evaluate the product quality. It can serve as a test of whether
the product is ready for deployment, or to provide feedback to the development team about the
potential weaknesses that need to be addressed.

An early project effort estimate helps managers, developers, and testers plan for the resources a
project requires. The use case points (UCP) method has emerged as one such method. It is a
mixture of intrinsic software properties, measured by Unadjusted Use Case Points (UUCP) as
well as technical (TCF) and environmental factors (ECF), which depend on developer’s
subjective estimates. The UCP method quantifies these subjective factors into equation variables
that can be adjusted over time to produce more precise estimates. Industrial case studies indicate
that the UCP method can produce an early estimate within 20% of the actual effort.

Section 4.2: What to Measure?

[Henderson-Sellers, 1996] provides a condensed review of software metrics up to the publication
date, so it is somewhat outdated. It is technical and focuses on metrics of structural complexity.

Horst Zuse, History of Software Measurement, Technische Universität Berlin, Online at:
http://irb.cs.tu-berlin.de/~zuse/sme.html

[Halstead, 1977] distinguishes software science from computer science. The premise of software
science is that any programming task consists of selecting and arranging a finite number of
program “tokens,” which are basic syntactic units distinguishable by a compiler: operators and
operands. He defined several software metrics based on these tokens. However, software science

Chapter 4 Software Measurement and Estimation 243

has been controversial since its introduction and has been criticized from many fronts. Halstead’s
work has mainly historical importance for software measurement because it was instrumental in
making metrics studies an issue among computer scientists.

Use case points (UCP) were first described by Gustav Karner [1993], but his initial work on the
subject is closely guarded by Rational Software, Inc. Hence, the primary sources describing
Karner’s work are [Schneider & Winters, 2001] and [Ribu, 2001]. UCP was inspired by Allan
Albrecht’s “Function Point Analysis” [Albrecht, 1979]. The weighted values and constraining
constants were initially based on Albrecht, but subsequently modified by people at Objective
Systems, LLC, based on their experience with Objectory—a methodology created by Ivar
Jacobson for developing object-oriented applications.

My main sources for use case points were [Schneider & Winters, 2001; Ribu, 2001; Cohn, 2005].
[Kusumoto, et al., 2004] describes the rules for a system that automatically computes the total
UCP for given use cases. I believe these rules are very useful for a beginner human when
computing UCPs for a project.

Many industrial case studies verified the estimation accuracy of the UCP method. These case
studies found that the UCP method can produce an early estimate within 20% of the actual effort,
and often closer to the actual effort than experts or other estimation methodologies. Mohagheghi
et al. [2005] described the UCP estimate of an incremental, large-scale development project that
was within 17% of the actual effort. Carroll [2005] described a case study over a period of five
years and across more than 200 projects. After applying the process across hundreds of sizable
software projects (60 person-months average), they achieved estimating accuracy of less than 9%
deviation from actual to estimated cost on 95% of the studied projects. To achieve greater
accuracy, Carroll’s estimation method includes a risk coefficient in the UCP equation.

Section 4.3: Measuring Module Cohesion

The ordinal scale for cohesion measurement with seven levels of cohesion was proposed by
Yourdon and Constantine [1979].

[Constantine et al., 1974; Eder et al., 1992; Allen & Khoshgoftaar, 1999; Henry & Gotterbarn,
1996; Mitchell & Power, 2005]

See also: http://c2.com/cgi/wiki?CouplingAndCohesion

B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, “Coupling and cohesion: Towards a
valid suite of object-oriented metrics,” Object-Oriented Systems, vol. 3, no. 3, 143-158, 1996.

[Joshi & Joshi, 2010; Al Dallal, 2011] investigated the discriminative power of object-oriented
class cohesion metrics.

Section 4.4: Coupling

Ivan Marsic Rutgers University 244

Section 4.5: Psychological Complexity

[Bennett, 1986; 1987; 1990] discusses definition of complexity for physical systems and defines
logical depth.

Section 4.6: Effort Estimation

Problems

Problem 4.1

Problem 4.2

Problem 4.3

(CYCLOMATIC/MCCABE COMPLEXITY) Consider the following quicksort sorting algorithm:

QUICKSORT(A, p, r)
1 if p < r
2 then q PARTITION(A, p, r)
3 QUICKSORT(A, p, q 1)
4 QUICKSORT(A, q 1, r)

where the PARTITION procedure is as follows:

PARTITION(A, p, r)
1 x A[r]
2 i p 1
3 for j p to r 1
4 do if A[j] x
5 then i i 1
6 exchange A[i] A[j]
7 exchange A[i 1] A[r]
8 return i 1

(a) Draw the flowchart of the above algorithm.
(b) Draw the corresponding graph and label the nodes as n1, n2, … and edges as e1, e2, …
(c) Calculate the cyclomatic complexity of the above algorithm.

Chapter 4 Software Measurement and Estimation 245

Problem 4.4

246

Contents
5.1 Indirect Communication: Publisher-

Subscriber
5.1.1 Control Flow
5.1.2 Pub-Sub Pattern Initialization
5.1.3
5.1.4
5.1.5

5.2 More Patterns
5.2.1 Command
5.2.2 Decorator
5.2.3 State
5.2.4 Proxy

5.3 Concurrent Programming
5.3.1 Threads
5.3.2 Exclusive Resource Access—Exclusion

Synchronization
5.3.3 Cooperation between Threads—Condition

Synchronization
5.3.4
5.2.3

5.4 Broker and Distributed Computing
5.4.1 Broker Pattern
5.4.2 Java Remote Method Invocation (RMI)
5.4.3
5.4.4

5.5 Information Security
5.5.1 Symmetric and Public-Key Cryptosystems
5.5.2 Cryptographic Algorithms
5.5.3 Authentication
5.5.4

5.6 Summary and Bibliographical Notes

Problems

Chapter 5
Design with Patterns

“It is not the strongest of the species that survive, nor the most
intelligent, but the one most responsive to change.”

—Charles Darwin

“Man has a limited biological capacity for change. When this
capacity is overwhelmed, the capacity is in future shock.”

—Alvin Toffler

Design patterns are convenient solutions for software design
problems commonly employed by expert developers. The
power of design patterns derives from reusing proven solution
“recipes” from similar problems. In other words, patterns are
codifying practice rather than prescribing practice, or, they are
capturing the existing best practices, rather than inventing
untried procedures. Patterns are used primarily to improve
existing designs or code by rearranging it according to a
“pattern.” By reusing a pattern, the developer gains
efficiency, by avoiding a lengthy process of trials and errors in
search of a solution, and predictability because this solution is
known to work for a given problem.

Design patterns can be of different complexities and for
different purposes. In terms of complexity, the design pattern
may be as simple as a naming convention for object methods
in the JavaBeans specification (see Chapter 7) or can be a
complex description of interactions between the multiple
classes, some of which will be reviewed in this chapter. In
terms of the purpose, a pattern may be intended to facilitate
component-based development and reusability, such as in the
JavaBeans specification, or its purpose may be to prescribe the
rules for responsibility assignment to the objects in a system,
as with the design principles described in Section 2.5.

As pointed earlier, finding effective representation(s) is a recurring theme of software
engineering. By condensing many structural and behavioral aspects of the design into a few
simple concepts, patterns make it easier for team members to discuss the design. As with any
symbolic language, one of the greatest benefits of patterns is in chunking the design knowledge.
Once team members are familiar with the pattern terminology, the use of this terminology shifts

Chapter 5 Design with Patterns 247

the focus to higher-level design concerns. No time is spent in describing the mechanics of the
object collaborations because they are condensed into a single pattern name.

This chapter reviews some of the most popular design patterns that will be particularly useful in
the rest of the text. What follows is a somewhat broad and liberal interpretation of design
patterns. The focus is rather on the techniques of solving specific problems; nonetheless, the
“patterns” described below do fit the definition of patterns as recurring solutions. These patterns
are conceptual tools that facilitate the development of flexible and adaptive applications as well
as reusable software components.

Two important observations are in order. First, finding a name that in one or few words conveys
the meaning of a design pattern is very difficult. A similar difficulty is experienced by user
interface designers when trying to find graphical icons that convey the meaning of user interface
operations. Hence, the reader may find the same or similar software construct under different
names by different authors. For example, The Publisher-Subscriber design pattern, described in
Section 5.1, is most commonly called Observer [Gamma et al., 1995], but [Larman, 2005] calls it
Publish-Subscribe. I prefer the latter because I believe that it conveys better the meaning of the
underlying software construct1. Second, there may be slight variations in what different authors
label with the same name. The difference may be due to the particular programming language
idiosyncrasies or due to evolution of the pattern over time.

Common players in a design pattern usage are shown in Figure 5-1. A Custodian object
assembles and sets up a pattern and cleans up after the pattern’s operation is completed. A client
object (can be the same software object as the custodian) needs and uses the services of the
pattern. The design patterns reviewed below generally follow this usage “pattern.”

5.1 Indirect Communication: Publisher-
Subscriber

1 The Publish-Subscribe moniker has a broader use than presented here and the interested reader should

consult [Eugster et al. 2003].

ClientClient asks for service

CustodianCustodian initializes the pattern

Instantiation of the
Design Pattern

Instantiation of the
Design Pattern

collection of objects
working to provide service

Figure 5-1: The players in a design pattern usage.

Ivan Marsic Rutgers University 248

“If you find a good solution and become attached to it, the solution may become your next problem.”
—Robert Anthony

“More ideas to choose from mean more complexity … and more opportunities to choose wrongly.”
—Vikram Pandit

Publisher-subscriber design pattern (see Figure 5-2) is used to implement indirect communication
between software objects. Indirect communication is usually used when an object cannot or does
not want to know the identity of the object whose method it calls. Another reason may be that it
does not want to know what the effect of the call will be. The most popular use of the pub-sub
pattern is in building reusable software components.

1) Enables building reusable components

2) Facilitates separation of the business logic (responsibilities, concerns) of objects

Centralized vs. decentralized execution/program-control method—spreads responsibilities for
better balancing. Decentralized control does not necessarily imply concurrent threads of
execution.

The problem with building reusable components can be illustrated on our case-study example. Let
us assume that we want to reuse the KeyChecker object in an extended version of our case-study
application, one that sounds alarm if someone is tampering with the lock. We need to modify the
method unlock() not only to send message to LockCtrl but also to AlarmCtrl, or to introduce a
new method. In either case, we must change the object code, meaning that the object is not
reusable as-is.

Subscribers Publisher

Figure 5-2: The concept of indirect communication in a Publisher/Subscriber system.

Chapter 5 Design with Patterns 249

Information source acquires information in some way and we assume that this information is
important for other objects to do the work they are designed for. Once the source acquires
information (becomes “information expert”), it is logical to expect it to pass this information to
others and initiate their work. However, this tacitly implies that the source object “knows” what
the doer object should do next. This knowledge is encoded in the source object as an “IF-THEN-
ELSE” rule and must be modified every time the doer code is modified (as seen earlier in Section
2.5).

Request- vs. event-based communication, Figure 5-4: In the former case, an object makes an
explicit request, whereas in the latter, the object expresses interest ahead of time and later gets
notified by the information source. In a way, the source is making a method request on the object.
Notice also that “request-based” is also synchronous type of communication, whereas event based
is asynchronous.

Another way to design the KeyChecker object is to make it become a publisher of events
as follows. We need to define two class interfaces: Publisher and Subscriber (see Figure
5-3). The first one, Publisher, allows any object to subscribe for information that it is the
source of. The second, Subscriber, has a method, here called receive(), to let the
Publisher publish the data of interest.

Listing 5-1: Publish-Subscribe class interfaces.

public interface Subscriber {
 public void receive(Content content);
}

(a) (b)

Publisher
Knowing Responsibilities:

• Knows event source(s)
• Knows interested obj’s (subscribers)

Doing Responsibilities:
• Registers/Unregisters subscribers
• Notifies the subscribers of events

Subscriber
Knowing Responsibilities:

• Knows event types of interest
• Knows publisher(s)

Doing Responsibilities:
• Registers/Unregisters with publishers
• Processes received event notifications

Type1Subscriber

+ receive()

«interface»
Subscriber

+ receive()

«interface»
Publisher

+ subscribe()
+ unsubscribe()

Type1Publisher

+ subscribe()
+ unsubscribe()

Type2Publisher

+ subscribe()
+ unsubscribe()

subscribers

*

Figure 5-3: Publisher/Subscriber objects employee cards (a), and the class diagram of their
collaborations (b).

Ivan Marsic Rutgers University 250

import java.util.ArrayList;
public class Content {
 public Publisher source_;
 public ArrayList data_;

 public Content(Publisher src, ArrayList dat) {
 source_ = src;
 data_ = (ArrayList) dat.clone(); // for write safety...
 } // ...avoid aliasing and create a new copy
}

public interface Publisher {
 public subscribe(Subscriber subscriber);
 public unsubscribe(Subscriber subscriber);
}

A Content object contains only data, no business logic, and is meant to transfer data from
Publisher to Subscriber. The actual classes then implement those two interfaces. In our
example, the key Checker object would then implement the Publisher, while DeviceCtrl
would implement the Subscriber.

Listing 5-2: Refactored the case-study code of using the Publisher-Subscriber design
pattern. Here, the class DeviceCtrl implements the Subscriber interface and the
class Checker implements the Publisher interface.

public class DeviceCtrl implements Subscriber {
 protected LightBulb bulb_;
 protected PhotoSObs sensor_;

 public DeviceCtrl(Publisher keyChecker, PhotoSObs sensor, ...) {
 sensor_ = sensor;
 keyChecker.subscribe(this);
 ...
 }

Info
Src

Info
Src DoerDoer

Request: doSomething(info) Request: getInfo()

Info
Src

Info
Src DoerDoerinfo

(1) Request: subscribe()

Info
Src

Info
Src DoerDoer

(2) event (info)

(a) (b) (c)

Figure 5-4: Request- vs. event-based communication among objects. (a) Direct request—
information source controls the activity of the doer. (b) Direct request—the doer controls
its own activity, information source is only for lookup, but doer must know when is the
information ready and available. (c) Indirect request—the doer controls its own activity
and does not need to worry when the information is ready and available—it gets prompted
by the information source.

Chapter 5 Design with Patterns 251

 public void receive(Content content) {
 if (content.source_ instanceof Checker) {
 if (((String)content.data_).equals("valid")) {
 // check the time of day; if daylight, do nothing
 if (!sensor_.isDaylight()) bulb_.setLit(true);
 }
 } else (check for another source of the event ...) {
 ...
 }
 }
}

import java.util.ArrayList;
import java.util.Iterator;

public class Checker implements Publisher {
 protected KeyStorage validKeys_;
 protected ArrayList subscribers_ = new ArrayList();

 public Checker(...) { }

 public subscribe(Subscriber subscriber) {
 subscribers_.add(subscriber); // could check whether this
 } // subscriber already subscribed

 public unsubscribe(Subscriber subscriber) {
 int idx = subscribers_.indexOf(subscriber);
 if (idx != -1) { subscribers_.remove(idx); }
 }

 public void checkKey(Key user_key) {
 boolean valid = false;
 ... // verify the user key against the "validKeys_" database

 // notify the subscribers
 Content cnt = new Content(this, new ArrayList());

 if (valid) { // authorized user
 cnt.data.add("valid");
 } else { // the lock is being tampered with
 cnt.data.add("invalid");
 }
 cnt.data.add(key);

 for (Iterator e = subscribers_.iterator(); e.hasNext();) {
 ((Subscriber) e.next()).receive(cnt);
 }
 }
}

Ivan Marsic Rutgers University 252

A Subscriber may be subscribed to several sources of data and each source may provide several
types of content. Thus, the Subscriber must determine the source and the content type before it
takes any action. If a Subscriber gets subscribed to many sources which publish different content,
the Subscriber code may become quite complex and difficult to manage. The Subscriber would
contain many if()or switch() statements to account for different options. A more object-
oriented solution for this is to use class polymorphism—instead of having one Subscriber, we
should have several Subscribers, each specialized for a particular source. The Subscribers may
also have more than one receive() method, each specialized for a particular data type. Here is
an example. We could implement a Switch by inheriting from the generic Subscriber
interface defined above, or we can define new interfaces specialized for our problem domain.

Listing 5-3: Subscriber interfaces for “key-is-valid” and “key-is-invalid” events.
public interface KeyIsValidSubscriber {
 public void keyIsValid(LockEvent event); // receive() method
}

public interface KeyIsInvalidSubscriber {
 public void keyIsInvalid(LockEvent event); // receive() method

soundAlarm()

opt

opt

k := create()

sk := getNext()

: Controller : Checker : KeyStorage : LockCtrl : Logger: PhotoSObs

dl := isDaylight()

alt

[else]

enterKey()

k : Key

checkKey(k) loop

: LightCtrl : AlarmCtrl

setLit(true)

valid == true

compare()

dl == false

keyIsValid()loop

keyIsValid()

loop keyIsInvalid()

keyIsInvalid()

keyIsValid()

for all KeyIsValid subscribers

for all KeyIsInvalid subscribers

keyIsInvalid()prompt:
"try again"

numOfAttempts++

numOfAttempts == maxNumOfAttempts

soundAlarm()

opt

opt

k := create()

sk := getNext()

: Controller : Checker : KeyStorage : LockCtrl : Logger: PhotoSObs

dl := isDaylight()

alt

[else]

enterKey()

k : Key

checkKey(k) loop

: LightCtrl : AlarmCtrl

setLit(true)

valid == true

compare()

dl == false

keyIsValid()loop

keyIsValid()

loop keyIsInvalid()

keyIsInvalid()

keyIsValid()

for all KeyIsValid subscribers

for all KeyIsInvalid subscribers

keyIsInvalid()prompt:
"try again"

numOfAttempts++

numOfAttempts == maxNumOfAttempts

Figure 5-5: Sequence diagram for publish-subscribe version of the use case “Unlock.”
Compare this with Figure 2-27.

Chapter 5 Design with Patterns 253

}

The new design for the Unlock use case is shown in Figure 5-5, and the corresponding code
might look as shown next. Notice that here the attribute numOfAttempts belongs to the
AlarmCtrl, unlike the first implementation in Listing 2-2 (Section 2.7), where it belonged to
the Controller. Notice also that the Controller is a KeyIsInvalidSubscriber so it
can prompt the user to enter a new key if the previous attempt was unsuccessful.

Listing 5-4: A variation of the Publisher-Subscriber design from Listing 5-2 using the
subscriber interfaces from Listing 5-3.
public class Checker implements LockPublisher {
 protected KeyStorage validKeys_;
 protected ArrayList keyValidSubscribers_ = new ArrayList();
 protected ArrayList keyInvalidSubscribers_ = new ArrayList();

 public Checker(KeyStorage ks) { validKeys_ = ks; }

 public void subscribeKeyIsValid(KeyIsValidSubscriber sub) {
 keyValidSubscribers_.add(sub);
 }

 public void subscribeKeyIsInvalid(KeyIsInvalidSubscriber sub) {
 keyInvalidSubscribers_.add(sub);
 }

 public void checkKey(Key user_key) {
 boolean valid = false;
 ... // verify the key against the database

 // notify the subscribers
 LockEvent evt = new LockEvent(this, new ArrayList());
 evt.data.add(key);

 if (valid) {
 for (Iterator e = keyValidSubscribers_.iterator();
 e.hasNext();) {
 ((KeyIsValidSubscriber) e.next()).keyIsValid(evt);
 }
 } else { // the lock is being tampered with
 for (Iterator e = keyInvalidSubscribers_.iterator();
 e.hasNext();) {
 ((KeyIsInvalidSubscriber) e.next()).keyIsInvalid(evt);
 }
 }
 }
}

public class DeviceCtrl implements KeyIsValidSubscriber {
 protected LightBulb bulb_;
 protected PhotoSObs photoObserver_;

 public DeviceCtrl(LockPublisher keyChecker, PhotoSObs sensor, ..)
 {
 photoObserver_ = sensor;

Ivan Marsic Rutgers University 254

 keyChecker.subscribeKeyIsValid(this);
 ...
 }

 public void keyIsValid(LockEvent event) {
 if (!photoObserver_.isDaylight()) bulb_.setLit(true);
 }
}

public class AlarmCtrl implements KeyIsInvalidSubscriber {
 public static final long maxNumOfAttempts_ = 3;
 public static final long interAttemptInterval_ =300000; //millisec
 protected long numOfAttempts_ = 0;
 protected long lastTimeAtempt_ = 0;

 public AlarmCtrl(LockPublisher keyChecker, ...) {
 keyChecker.subscribeKeyIsInvalid(this);
 ...
 }

 public void keyIsInvalid(LockEvent event) {
 long currTime = System.currentTimeMillis();
 if ((currTime – lastTimeAttempt_) < interAttemptInterval_) {
 if (++numOfAttempts_ >= maxNumOfAttempts_) {
 soundAlarm();
 numOfAttempts_ = 0; // reset for the next user
 }
 } else { // this must be a new user's first mistake ...
 numOfAttempts_ = 1;
 }
 lastTimeAttempt_ = currTime;
 }
}

It is of note that what we just did with the original design for the Unlock use case can be
considered refactoring. In software engineering, the term refactoring is often used to describe
modifying the design and/or implementation of a software module without changing its external
behavior, and is sometimes informally referred to as “cleaning it up.” Refactoring is often
practiced as part of the software development cycle: developers alternate between adding new
tests and functionality and refactoring the code to improve its internal consistency and clarity. In
our case, the design from Figure 2-27 has been transformed to the design in Figure 5-5.

There is a tradeoff between the number of receive() methods and the switch() statements.
On one hand, having a long switch() statement complicates the Subscriber’s code and makes
it difficult to maintain and reuse. On the other hand, having too many receive() statements
results in a long class interface, difficult to read and represent graphically.

5.1.1 Applications of Publisher-Subscriber

The Publisher-Subscriber design pattern is used in the Java AWT and Swing toolkits for
notification of the GUI interface components about user generated events. (This pattern in Java is
known as Source-Listener or delegation event model, see Chapter 7.)

Chapter 5 Design with Patterns 255

One of the main reasons for software components is easy visualization in integrated development
environments (IDEs), so the developer can visually assemble the components. The components
are represented as “integrated circuits” in analogy to hardware design, and different receive()
/ subscribe() methods represent “pins” on the circuit. If a component has too many pins, it
becomes difficult to visualize, and generates too many “wires” in the “blueprint.” The situation is
similar to determining the right number of pins on an integrated circuit. (See more about software
components in Chapter 7.)

Here I reiterate the key benefits of using the pub-sub design pattern and indirect communication
in general:

 The components do not need to know each other’s identity. For example, in the sample
code given in Listing 1-1 (Section 1.4.2), LockCtrl maintains a reference to a LightCtrl
object.

 The component’s business logic is contained within the component alone. In the same
example, LockCtrl explicitly invokes the LightCtrl’s method setLit(), meaning that it
minds LightCtrl’s business. In the worst case, even the checking of the time-of-day may
be delegated to LockCtrl in order to decide when to turn the light on.

Both of the above form the basis for component reusability, because making a component
independent of others makes it reusable. The pub-sub pattern is the most basic pattern for
reusable software components as will be discussed in Chapter 7.

In the “ideal” case, all objects could be made self-contained and thus reusable by applying the
pub-sub design pattern. However, there are penalties to pay. As visible from the examples above,
indirect communication requires much more code, which results in increased demand for memory
and decreased performance. Thus, if it is not likely that a component will need to be reused or if
performance is critical, direct communication should be applied and the pub-sub pattern should
be avoided.

When to apply the pub-sub pattern? The answer depends on whether you anticipate that the
component is likely to be reused in future projects. If yes, apply pub-sub. You should understand
that decoupled objects are independent, therefore reusable and easier to understand, while highly
interleaved objects provide fast inter-object communication and compact code. Decoupled objects
are better suited for global understanding, whereas interleaved objects are better suited for local
understanding. Of course, in a large system, global understanding matters more.

5.1.2 Control Flow

Figure 5-6 highlights the difference in control flow for direct and indirect communication types.
In the former case, the control is centralized and all flows emanate from the Controller. In the
latter case, the control is decentralized, and it is passed as a token around, cascading from object
to object. These diagrams also show the dynamic (behavioral) architecture of the system.

Ivan Marsic Rutgers University 256

Although in Figure 5-6(b) it appears as if the Checker plays a central role, this is not so because it
is not “aware” of being assigned such a role, i.e., unlike the Controller from Figure 5-6(a), this
Checker does not encode the requisite knowledge to play such a role. The outgoing method calls
are shown in dashed lines to indicate that these are indirect calls, through the Subscriber interface.

Whatever the rules of behavior are stored in one Controller or distributed (cascading) around in
many objects, the output (seen from outside of the system) is the same. Organization (internal
function) matters only if it simplifies the software maintenance and upgrading.

create()

getNext()

: Checker

: KeyStorage

: LockCtrl

: Logger

: PhotoSObs

: Key

checkKey()

: LightCtrl

: AlarmCtrl

: Controller
logTransaction()

setOpen()

isDaylight()

setLit()soundAlarm()

(a)

create() getNext(): Checker

: KeyStorage

: LockCtrl

: Logger

: PhotoSObs

: Key

checkKey()

: LightCtrl

: AlarmCtrl

: Controller keyIsValid()

isDaylight()

keyIsInvalid()

(b)

Figure 5-6: Flow control without (a) and with the Pub-Sub pattern (b). Notice that these
UML communication diagrams are redrawn from Figure 2-27 and Figure 5-5, respectively.

Chapter 5 Design with Patterns 257

5.1.3 Pub-Sub Pattern Initialization

Note that the “setup” part of the pattern, example shown in Figure 5-7, plays a major, but often
ignored, role in the pattern. It essentially represents the master plan of solving the problem using
the publish-subscribe pattern and indirect communication.

Most programs are not equipped to split hard problems into parts and then use divide-and-
conquer methods. Few programs, too, represent their goals, except perhaps as comments in their
source codes. However, a class of programs, called General Problem Solver (GPS), was
developed in 1960s by Allen Newel, Herbert Simon, and collaborators, which did have explicit
goals and subgoals and solved some significant problems [Newel & Simon, 1962].

I propose that goal representation in object-oriented programs be implemented in the setup part of
the program, which then can act at any time during the execution (not only at the initialization) to
“rewire” the object relationships.

5.2 More Patterns

Publisher-Subscriber belongs to the category of behavioral design patterns. Behavioral patterns
separate the interdependent behavior of objects from the objects themselves, or stated differently,
they separate functionality from the object to which the functionality applies. This promotes
reuse, because different types of functionality can be applied to the same object, as needed. Here I
review Command as another behavioral pattern.

Another category is structural patterns. An example structural pattern reviewed later is Proxy.

: Controller : Checker : LockCtrl : Logger: LightCtrl : AlarmCtrl

subscribeKeyIsValid()

subscribeKeyIsValid()

subscribeKeyIsInvalid()

subscribeKeyIsValid()

subscribeKeyIsInvalid()

create()

subscribeKeyIsInvalid() A method call
that passes a
reference to the
Checker

: Controller : Checker : LockCtrl : Logger: LightCtrl : AlarmCtrl

subscribeKeyIsValid()

subscribeKeyIsValid()

subscribeKeyIsInvalid()

subscribeKeyIsValid()

subscribeKeyIsInvalid()

create()

subscribeKeyIsInvalid() A method call
that passes a
reference to the
Checker

Figure 5-7: Initialization of the pub-sub for the lock control example.

Ivan Marsic Rutgers University 258

A common drawback of design patterns, particularly behavioral patterns, is that we are replacing
what would be a single method call with many method calls. This results in performance
penalties, which in certain cases may not be acceptable. However, in most cases the benefits of
good design outweigh the performance drawbacks.

5.2.1 Command

Objects invoke methods on other objects as depicted in Figure 1-22, which is abstracted in Figure
5-8(a). The need for the Command pattern arises if the invoking object (client) needs to reverse
the effect of a previous method invocation. Another reason is the ability to trace the course of the
system operation. For example, we may need to keep track of financial transactions for legal or
auditing reasons. The purpose of the Command patter is to delegate the functionality associated
with rolling back the server object’s state and logging the history of the system operation away
from the client object to the Command object, see Figure 5-8(b).

Instead of directly invoking a method on the Receiver (server object), the client object appoints a
Command for this task. The Command pattern (Figure 5-9) encapsulates an action or processing
task into an object thus increasing flexibility in calling for a service. Command represents
operations as classes and is used whenever a method call alone is not sufficient. The Command
object is the central player in the Command pattern, but as with most patterns, it needs other
objects to assist with accomplishing the task. At runtime, a control is passed to the execute()
method of a non-abstract-class object derived from Command.

Figure 5-9(c) shows a sequence diagram on how to create and execute a command. In addition to
executing requests, we may need to be able to trace the course of the system operation. For
example, we may need to keep track of financial transactions for legal or auditing reasons.
CommandHistory maintains history log of Commands in linear sequence of their execution.

Client
A

Client
A

Server
B

Server
B

doAction(params)

(a)

Client
A

Client
A

execute()

Receiver
B

Receiver
B

doAction(params)

CommandCommand

create(params)

(b)

unexecute()

Figure 5-8: Command pattern interposes Command (and other) objects between a client
and a server object. Complex actions about rolling back and forward the execution history
are delegated to the Command, away from the client object.

Chapter 5 Design with Patterns 259

It is common to use Command pattern in operating across the Internet. For example, suppose that
client code needs to make a function call on an object of a class residing on a remote server. It is
not possible for the client code to make an ordinary method call on this object because the remote
object cannot appear in the usual compile-execute process. It is also difficult to employ remote
method invocation (Section 5.4.2) here because we often cannot program the client and server at
the same time, or they may be programmed by different parties. Instead, the call is made from the
client by pointing the browser to the file containing the servlet (a server-side software
component). The servlet then calls its method service(HttpServletRequest,
HttpServletResponse). The object HttpServletRequest includes all the information
that a method invocation requires, such as the argument values, obtained from the “environment”
variables at standardized global locations. The object HttpServletResponse carries the
result of invoking service(). This technique embodies the basic idea of the Command design
pattern. (See also Listing 5-5.)

Web services allow a similar runtime function discovery and invocation, as will be seen in
Chapter 8.

(a) (b)

invokerinvoker «interface»
Command

+ execute()

ActionType1Cmd

+ execute()

ActionType2Cmd

+ execute()

Receiver1

+ doAction1()

Receiver2

+ doAction2()

receiver

receiver

Command
Knowing Responsibilities:

• Knows receiver of action request
• Optional: May know whether action is reversible

Doing Responsibilities:
• Executes an action
• Optional: May undo an action if it is reversible

custodian invoker cmd : Command

execute()

receiver

doAction(args)

create(receiver, args)

accept(cmd)

: CommandHistory

log(cmd)

custodian invoker cmd : Command

execute()

receiver

doAction(args)

create(receiver, args)

accept(cmd)

: CommandHistory

log(cmd)

(c)

Figure 5-9: (a) Command object employee card. (b) The Command design pattern (class
diagram). The base Command class is an interface implemented by concrete commands.
(c)Interaction diagram for creating and executing a command.

Ivan Marsic Rutgers University 260

Undo/Redo

The Command pattern may optionally be able to support rollback of user’s actions in an elegant
fashion. Anyone who uses computers appreciates the value of being able to undo their recent
actions. Of course, this feature assumes that a command’s effect can be reversed. In this case, the
Command interface would have two more operations (Figure 5-10(a)): isReversible() to
allow the invoker to find out whether this command can be undone; and unexecute() to undo
the effects of a previous execute() operation.

Figure 5-10(b) shows a sequence diagram on how to undo/redo a command, assuming that it is
undoable. Observe also that CommandHistory should decrement its pointer of the current
command every time a command is undone and increments it every time a command is redone.
An additional requirement on CommandHistory is to manage properly the undo/redo caches. For
example, if the user backs up along the undo queue and then executes a new command, the whole
redo cache should be flushed. Similarly, upon a context switching, both undo/redo caches should
be flushed. Obviously, this does not provide for long-term archiving of the commands; if that is
required, the archive should be maintained independently of the undo/redo caches.

In physical world, actions are never reversible (because of the laws of thermodynamics). Even an
approximate reversibility may not be realistic to expect. Consider a simple light switch. One
might thing that turning the switch off is exactly opposite of turning it on. Therefore, we could
implement a request to turn the switch off as an undo operation of the command to turn the switch
on. Unfortunately, this may not be true. For example, beyond the inability to recover the energy
lost during the period that the switch was on, it may also happen that the light bulb is burnt.
Obviously, this cannot be undone (unless the system has a means of automatically replacing a
burnt light bulb with a new one).

In digital world, if the previous state is stored or is easy to compute, then the command can be
undone. Even here we need to beware of potential error accumulation. If a number is repeatedly
divided and then multiplied by another number, rounding errors or limited number of bits for
number representation may yield a different number than the one we started with.

(a) (b)

opt

invoker : Command

undo()

receiver

isReversible()

: CommandHistory

reversible == true
unexecute()

doInverseAction()

setCurrentCmdPtr()

ActionType1Cmd

+ execute()
+ unexecute()
+ isReversible()

ActionType2Cmd

+ execute()
+ unexecute()
+ isReversible()

«interface»
Command

+ execute()
+ unexecute()
+ isReversible() : boolean

ActionType1Cmd

+ execute()
+ unexecute()
+ isReversible()

ActionType2Cmd

+ execute()
+ unexecute()
+ isReversible()

«interface»
Command

+ execute()
+ unexecute()
+ isReversible() : boolean

Figure 5-10: (a) Class diagram for commands that can be undone. (b) Interaction diagram
for undoing a (reversible) command. Compare to Figure 5-9.

Chapter 5 Design with Patterns 261

5.2.2 Decorator

The Decorator pattern is used to add non-essential behavior to key objects in a software design.

The embellished class (or, decoratee) is wrapped up by an arbitrary number of Decorator classes,
which provide special-case behaviors (embellishments).

Figure 5-11

Notice that the Decorator is an abstract class (the class and method names are italicized). The
reason for this choice is to collect the common things from all different decorators into a base
decorator class. In this case, the Decorator class will contain a reference to the next decorator.
The decorators are linked in a chain. The client has a reference to the start of the chain and the
chain is terminated by the real subject. Figure 5-11(c) illustrates how a request from the client
propagates forward through the chain until it reaches the real subject, and how the result
propagates back.

To decide whether you need to introduce Decorator, look for special-case behaviors
(embellishment logic) in your design.

Consider the following example, where we wish to implement the code that will allow the user to
configure the settings for controlling the household devices when the doors are unlocked or
locked. The corresponding user interface is shown in Figure 2-2 (Section 2.2). Figure 5-12 and

Decorator
Knowing Responsibilities:

• Knows next decorator or real subject
• Has same interface as real subject

Doing Responsibilities:
• Contributes a special-case processing
• Forwards the request to next object

in chain (decorator or real subject)

(a)

: ConcreteDecorator2 : RealSubject

addedProcessing()

result

moreAddedProcessing()

: ConcreteDecorator1client :

addedProcessing()request(args)

(c)

moreAddedProcessing()result?‡

request(args)

request(?args‡)

result?‡

 and ‡ denote
added special-
case processing

(b)

clientclient «interface»
Subject

+ request()

RealSubject

+ request()

RealSubject

+ request()

Decorator

+ request()

Decorator

+ request()

next object

ConcreteDecorator1

+ request()

ConcreteDecorator2

+ request()

Figure 5-11: (a) Decorator object employee card. (b) The Decorator design pattern (class
diagram). (c)Interaction diagram for the Decorator pattern.

Ivan Marsic Rutgers University 262

Figure 5-13 show UML diagrams that use the Decorator design pattern in solving this problem.
Notice the slight differences in the class diagrams in Figure 5-11(b) and Figure 5-12. As already
pointed out, the actual pattern implementation will not always strictly adhere to its generic
prototype.

In this example, the decorating functionalities could be added before or after the main function,
which is to activate the lock control. For example, in Figure 5-13 the decorating operation
LightCtrl.turnOnLight() is added before LockCtrl.activate(), but
MusicCtrl.turnOnMusicPlayer() is added after it. In this case all of these operations
are commutative and can be executed in any order. This may not always be the case with the
decorating functionalities.

5.2.3 State

The State design pattern is usually used when an object’s behavior depends on its state in a
complex way. In this case, the state determines a mode of operation. Recall that the state of a
software object is represented by the current values of its attributes. The State pattern externalizes
the relevant attributes into a State object, and this State object has the responsibility of managing
the state transitions of the original object. The original object is called “Context” and its attributes
are externalized into a State object (Figure 5-14).

A familiar example of object’s state determining its mode of operation includes tools in document
editors. Desktop computers normally have only keyboard and mouse as interaction devices. To
enable different manipulations of document objects, the document needs to be put in a proper
state or mode of operation. That is why we select a proper “tool” in a toolbar before performing a
manipulation. The selected tool sets the document state. Consider an example of a graphics
editor, such as Microsoft PowerPoint. When the user clicks the mouse pointer on a graphical
object and drags the mouse, what will happen depends on the currently selected tool. The default

ControllerController

«interface»
DeviceCtrl

+ activate()

LockCtrl

+ activate()
– disarmLock()

MusicCtrl

+ activate()
– turnOnMusicPlayer()

nextDevice

LightCtrl

+ activate()
– turnOnLight()

AlarmCtrl

+ activate()
– ...

Subject and
Decorator interface

client

RealSubject

Concrete Decorators

Figure 5-12: Example Decorator class diagram, for implementing the interface in Figure 2-2.

Chapter 5 Design with Patterns 263

tool will relocate the object to a new location; the rotation tool will rotate the object for an angle
proportional to the distance the mouse is dragged over; etc. Notice that the same action (mouse
click and drag) causes different behaviors, depending on the document state (i.e., the currently
selected tool).

The State pattern is also useful when an object implements complex conditional logic for
changing its state (i.e., the values of this object’s attributes). We say that the object is
transitioning from one state (one set of attribute values) to another state (another set of attribute
values). To simplify the state transitioning, we define a State interface and different classes that
implement this interface correspond to different states of the Context object (Figure 5-14(b)).

Each concrete State class implements the behavior of the Context associated with the state
implemented by this State class. The behavior includes calculating the new state of the Context.
Because specific attribute values are encapsulated in different concrete states, the current State
class just determines the next state and returns it to the Context. Let us assume that the UML state
diagram for the Context class is represented by the example in Figure 5-14(c). As shown in
Figure 5-14(d), when the Context receives a method call request() to handle an event, it calls
the method handle() on its currentState. The current state processes the event and

opt

activate()

: Controller

dl := isDaylight()

alt

[else]

enterKey()

val == true

numOfAttempts++

alt numOfAttempts == maxNumOfAttempts

activate()

denyMoreAttempts()

[else]

ref val := check the key validity

(see sequence fragment in Figure 2-20)

: LockCtrl: MusicCtrl : LightCtrl : AlarmCtrl: PhotoObsrv

activate()

turnOnMusicPlayer()

activate()

turnOnLight()
dl == false

disarmLock()

…

AlarmCtrl
preceded by
suitable decorators

Figure 5-13: Decorator sequence diagram for the class diagram in Figure 5-12.

Ivan Marsic Rutgers University 264

performs any action associated with the current state transition. Finally, it returns the next state to
the caller Context object. The Context sets this next state as the current state and the next
request will be handled by the new current state.

5.2.4 Proxy

The Proxy pattern is used to manage or control access to an object. Proxy is needed when the
logistics of accessing the subject’s services is overly complex and comparable or greater in size
than that of client’s primary responsibility. In such cases, we introduce a helper object (called
“proxy”) for management of the subject invocation. A Proxy object is a surrogate that acts as a
stand-in for the actual subject, and controls or enhances the access to it (Figure 5-15). The proxy
object forwards requests to the subject when appropriate, depending on whether the constraint of
the proxy is satisfied.

(a)

(b)

Context

+ request(evt : Event)

Context

+ request(evt : Event)

«interface»
State

+ handle()

ConcreteStateA

+ handle()

ConcreteStateB

+ handle()

currentStateState
Knowing Responsibilities:

• Knows one set of values (state) of
attributes of the Context object

Doing Responsibilities:
• Implement behavior associated
with this state of the Context

(c)

event-2 [condition] / action-2event-1

State-A State-B

: Context

request(event-1)

currentState : ConcreteStateA

handle(event-1)

result, nextState

result currentState := nextState

request(event-2)

opt condition == true

nextState := this

handle(event-2) perform action-2

result, nextState

currentState := nextState

nextState :=
ConcreteStateB(d)

Figure 5-14: (a) State object employee card. (b) The State design pattern (class diagram).
(c) Example state diagram for the Context object. (d)Interaction diagram for the state
diagram in (c).

Chapter 5 Design with Patterns 265

The causes of access complexity and the associated constraints include:

 The subject is located in a remote address space, e.g., on a remote host, in which case the
invocation (sending messages to it) requires following complex networking protocols.
Solution: use the Remote Proxy pattern for crossing the barrier between different
memory spaces

 Different access policies constrain the access to the subject. Security policies require that
access is provided only to the authorized clients, filtering out others. Safety policies may
impose an upper limit on the number of simultaneous accesses to the subject.
Solution: use the Protection Proxy pattern for additional housekeeping

 Deferred instantiation of the subject, to speed up the performance (provided that its full
functionality may not be immediately necessary). For example, a graphics editor can be
started faster if the graphical elements outside the initial view are not loaded until they
are needed; only if and when the user changes the viewpoint, the missing graphics will be
loaded. Graphical proxies make this process transparent for the rest of the program.
Solution: use the Virtual Proxy pattern for optimization in object creation

In essence we could say that proxy allows client objects to cross a barrier to server objects (or,
“subjects”). The barrier may be physical (such as network between the client and server
computers) or imposed (such as security policies to prevent unauthorized access). As a result, the
client cannot or should not access the server by a simple method call as when the barrier does not
exist. The additional functionality needed to cross the barrier is extraneous to the client’s business
logic. The proxy object abstracts the details of the logistics of accessing the subject’s services

Proxy
Knowing Responsibilities:

• Knows the real subject of requests
• Has same interface as real subject

Doing Responsibilities:
• Intercepts & preprocesses requests
• Ensures safe, efficient & correct

access to the real subject

(a) (b)

clientclient «interface»
Subject

+ request()

RealSubject

+ request()

RealSubject

+ request()

Proxy

+ request()

Proxy

+ request()

realSubject

client : : Proxy

result?

: RealSubject

preprocessRequest()

postprocessResult()

request(args)

request(args)

result(c)

opt constraint satisfied

 denotes possibly
preprocessed
input arguments

Figure 5-15: (a) Proxy object employee card. (b) The Proxy design pattern (class diagram).
(c)Interaction diagram for the Proxy pattern.

Ivan Marsic Rutgers University 266

across different barriers. It does this transparently, so the client has an illusion it is directly
communicating with the subject, and does not know that there is a barrier in the middle.

Proxy offers the same interface (set of methods and their signatures) as the real subject and
ensures correct access to the real subject. For this reason, the proxy maintains a reference to the
real subject (Figure 5-15(b)). Because of the identical interface, the client does not need to change
its calling behavior and syntax from that which it would use if there were no barrier involved.

The Remote Proxy pattern will be incorporated into a more complex Broker pattern (Section 5.4).
The rest of this section provides more detail on the Protection Proxy.

Protection Proxy

The Protection Proxy pattern can be used to implement different policies to constrain the access
to the subject. For example, a security policy may require that a defined service should be seen
differently by clients with different privileges. This pattern helps us customize the access, instead
of using conditional logic to control the service access. In other words, it is applicable where a
subset of capabilities or partial capability should be made available to different actors, based on
their roles and privileges.

For example, consider our case study system for secure home access. The sequence diagram for
use case UC-5: Inspect Access History is shown in Figure 2-26. Before the Controller calls the
method accessList := retrieve(params : string) on Database Connection, the
system should check that this user is authorized to access the requested data. (This fragment is not
shown in Figure 2-26.) Figure 5-16 depicts the Boolean logic for controlling the access to the data
in the system database. One way to implement this scheme is to write one large conditional IF-
THEN-ELSE statement. This approach would lead to a complex code that is difficult to
understand and extend if new policies or roles need to be considered (e.g., the Maintenance

[user == sys-admin]

[user == landlord]

[else]

Grant full access
to metadata and data

Grant read/write access
to all data

Grant read-only access to
personal data and activity
data for own apartment

Deny all access

[else]

[user == tenant]

[else]

Obtain user role
and credentials

Figure 5-16: Conditional logic for controlling access to the database of the secure home
access system.

Chapter 5 Design with Patterns 267

actor). In addition, it serves as a distraction from the main task of the client or server objects. This
is where protection proxy enters the picture in and takes on the authorization responsibility.

Figure 5-17 shows how Protection Proxy is implemented in the example of safe database access.
Each different proxy type specifies a set of legal messages from client to subject that are
appropriate for the current user’s access rights. If a message is not legal, the proxy will not
forward it to the real subject (the database connection object ConnectionImpl); instead, the
proxy will send an error message back to the caller (i.e., the client).

In this example, the Factory object acts as a custodian that sets up the Proxy pattern (see Figure
5-17 and Figure 5-18).

It turns out that in this example we need two types of proxies: (a) proxies that implement the
database connection interface, such as java.sql.Connection if Java is used; and (b)
proxies that implement the SQL statement interface, such as java.sql.Statement if Java is
used. The connection proxy guards access to the database metadata, while the statement proxy
guards access to the database data. The partial class diagram in Figure 5-17 shows only the
connection-proxy classes, and Figure 5-18 mentions the statement proxy only in the last method
call createStatmProxy(), by which the database proxy (DBConTenant) creates a
statement proxy and returns it.

client : Controllerclient : Controller

dBase

«interface»
java.sql.Connection

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

«interface»
java.sql.Connection

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

request() methods

Subject

ConnectionImpl

…

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

ConnectionImpl

…

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

RealSubjectRealSubject

dBc dBc
DBConTenant

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

DBConTenant

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

tenant’s Proxy

DBConAdmin

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

DBConAdmin

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

admin’s Proxy

Factory

+ getDbaseConnection(credentials : Object) : java.sql.Connection

Factory

+ getDbaseConnection(credentials : Object) : java.sql.Connection

factory

Factory pattern
for creating Connection
and wrapping with Proxy

Figure 5-17: Class diagram for the example proxy for enforcing authorized database access.
See the interactions in Figure 5-18. (Compare to Figure 5-15(b) for generic Proxy pattern.)

Ivan Marsic Rutgers University 268

Figure 5-18

Listing 5-5: Implementation of the Protection Proxy that provides safe access to the
database in the secure home access system.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.servlet.ServletConfig;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class WebDataAccessServlet extends HttpServlet {
 private String // database access parameters
 driverClassName = "com.mysql.jdbc.Driver",
 dbURL = "jdbc:mysql://localhost/homeaccessrecords",
 dbUserID = null,
 dbPassword = null;
 private Connection dBase = null;

dBase := getDbaseConnection(credentials)

: Controller factory : Factory

[credentls == "landlord"]

alt

proxyLL :
DBConLlord

dBc :
ConnectionImpl

proxyTN :
DBConTenant

[credentls == "admin"]

return proxyAD

return proxyLL

return proxyTN

[else]

[credentls == "tenant"]

return NULL

return SQL Statement Proxy

(a)

(b)

proxyAD :
DBConAdmin

dBc := java.sql.DriverManager.getConnection(…)

proxyLL := create(dBc)

proxyTN := create(dBc)

proxyAD := create(dBc)

query := createStatement(…)
statm := createStatement(…)

createStatmProxy(statm, …)

Figure 5-18: Example of Protection Proxy setup (a) and use (b) that solves the access-
control problem from Figure 5-16. (See the corresponding class diagram in Figure 5-17.)

Chapter 5 Design with Patterns 269

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 ...

 dbUserID = config.getInitParameter("userID");
 dbPassword = config.getInitParameter("password");
 Factory factory = new Factory(driverClassName, dbURL);
 dBase = factory.getDbaseConnection(dbUserID, dbPassword);
 }

 public void service(
 HttpServletRequest req, HttpServletResponse resp
) throws ServletException, java.io.IOException {
 Statement statm = dBase.createStatement();
 // process the request and prepare ...
 String sql = // ... an SQL statement from the user's request
 boolean ok = statm.execute(sql);

 ResultSet result = statm.getResultSet();
 // print the result into the response (resp argument)
 }
}

public class Factory {
 protected String dbURL_;
 protected Connection dBc_ = null;

 public Factory(String driverClassName, String dbURL) {
 // load the database driver class (the Driver class creates
 Class.forName(driverClassName); // an instance of itself)
 dbURL_ = dbURL;
 }

 public Connection getDbaseConnection(
 String dbUserID, String dbPassword
) {
 dBc_ = DriverManager.getConnection(
 dbURL_, dbUserID, dbPassword
);

 Connection proxy = null;

 int userType = getUserType(dbUserID, dbPassword);
 switch (userType) {
 case 1: // dbUserID is a system administrator
 proxy = new DBConAdmin(dBc_, dbUserID, dbPassword);
 case 2: // dbUserID is a landlord
 proxy = new DBConLlord(dBc_, dbUserID, dbPassword);
 case 3: // dbUserID is a tenant
 proxy = new DBConTenant(dBc_, dbUserID, dbPassword);
 default: // dbUserID cannot be identified
 proxy = null;
 }
 return proxy;
 }
}

Ivan Marsic Rutgers University 270

// Protection Proxy class for the actual java.sql.Connection
public class DBConTenant implements Connection {
 protected Connection dBc_ = null;
 protected String
 dbUserID = null,
 dbPassword = null;;

 public DBConTenant(
 Connection dBc, String dbUserID, String dbPassword
) {
 ...
 }

 public Statement createStatement() {
 statm = dBc_.createStatement();

 return createStatmProxy(statm, credentials_);
 }

 private Statement createStatmProxy(
 Statement statm, credentials_
) {
 // create a proxy of java.sql.Statement that is appropriate
 // for a user of the type "tenant"
 }
}

One may wonder if we should similarly use Protection Proxy to control the access to the locks in
a building, so the landlord has access to all apartments and a tenant only to own apartment. When
considering the merits of this approach, the developer first needs to compare it to a
straightforward conditional statement and see which approach would create a more complex
implementation.

The above example illustrated the use of Proxy to implement security policies for authorized data
access. Another example involves safety policies to limit the number of simultaneous accesses.
For example, to avoid inconsistent reads/writes, the policy may allow at most one client at a time
to access the subject, which in effect serializes the access to the subject. This constraint is
implemented by passing a token among clients—only the client in possession of the token can
access the subject, by presenting the token when requesting access.

The Protection Proxy pattern is structurally identical to the Decorator pattern (compare Figure
5-11 and Figure 5-15). We can also create a chain of Proxies, same as with the Decorators (Figure
5-11(c)). The key difference is in the intent: Protection Proxy protects an object (e.g., from
unauthorized access) while Decorator adds special-case behavior to an object.

SIDEBAR 5.1: Structure and Intention of Design Patterns

Chapter 5 Design with Patterns 271

 The reader may have noticed that many design patterns look similar to one another. For
example, Proxy is structurally almost identical to Decorator. The difference between them is in
their intention—what they are used for. The intention of Decorator is to add functionality,
while the intention of Proxy is to subtract functionality, particularly for Protection Proxy.

5.3 Concurrent Programming

“The test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and
still retain the ability to function.” —F. Scott Fitzgerald

The benefits of concurrent programming include better use of multiple processors and easier
programming of reactive (event-driven) applications. In event-driven applications, such as
graphical user interfaces, the user expects a quick response from the system. If the (single-
processor) system processes all requests sequentially, then it will respond with significant delays
and most of the requestors will be unhappy. A common technique is to employ time-sharing or
time slicing—a single processor dedicates a small amount of time for each task, so all of them
move forward collectively by taking turns on the processor. Although none of the tasks
progresses as fast as it would if it were alone, none of them has to wait as long as it could have if
the processing were performed sequentially. The task executions are really sequential but
interleaved with each other, so they virtually appear as concurrent. In the discussion below I
ignore the difference between real concurrency, when the system has multiple processors, and
virtual concurrency on a single-processor system. From the user’s viewpoint, there is no logical
or functional difference between these two options—the user would only see difference in the
length of execution time.

Computer process is, roughly speaking, a task being executed by a processor. A task is defined by
a temporally ordered sequence of instructions (program code) for the processor. In general, a
process consists of:

 Memory, which contains executable program code and/or associated data

 Operating system resources that are allocated to the process, such as file descriptors
(Unix terminology) or handles (Windows terminology)

 Security attributes, such as the identity of process owner and the process’s set of
privileges

 Processor state, such as the content of registers, physical memory addresses, etc. The
state is stored in the actual registers when the process is executing, and in memory
otherwise

Threads are similar to processes, in that both represent a single sequence of instructions executed
in parallel with other sequences, either by time slicing on a single processor or multiprocessing. A
process is an entirely independent program, carries considerable state information, and interacts
with other processes only through system-provided inter-process communication mechanisms.
Conversely, a thread directly shares the state variables with other threads that are part of the same

Ivan Marsic Rutgers University 272

process, as well as memory and other resources. In this section I focus on threads, but many
concepts apply to processes as well.

So far, although I promoted the metaphor of an object-based program as a “bucket brigade,” the
objects carried their tasks sequentially, one after another, so in effect the whole system consists of
a single worker taking the guises one-by-one of different software objects. Threads allow us to
introduce true parallelism in the system functioning.

Subdividing a problem to smaller problems (subtasks) is a common strategy in problem solving.
It would be all well and easy if the subtasks were always disjoint, clearly partitioned and
independent of each other. However, during the execution the subtasks often operate on the same
resources or depend on results of other task(s). This is what makes concurrent programming
complex: threads (which roughly correspond to subtasks) interact with each other and must
coordinate their activities to avoid incorrect results or undesired behaviors.

5.3.1 Threads

A thread is a sequence of processor instructions, which can share a single address space with
other threads—that is, they can read and write the same program variables and data structures.
Threads are a way for a program to split itself into two or more concurrently running tasks. It is a
basic unit of program execution. A common use of threads is in reactive applications, having one
thread paying attention to the graphical user interface, while others do long calculations in the
background. As a result, the application more readily responds to user’s interaction.

Figure 5-19 summarizes different states that a thread may go through in its lifetime. The three
main states and their sub-states are:

1. New: The thread object has been created, but it has not been started yet, so it cannot run

New

Alive

Runnable

Ready

Interrupted

i
n
t
e
r
r
u
p
t
(
)

Blocked

Waiting for
notification

Waiting for
rendezvous

Sleeping

Dead

start()

run() returns

notify() or
notifyAll()

wait()

Target finishes

join()

Time out

sleep()

interrupt()
/ throws InterruptedException

yield()

Waiting for
I/O or lock

Figure 5-19: State diagram representing the lifecycle of Java threads. (State diagram
notation is defined in Section 3.2.2.)

Chapter 5 Design with Patterns 273

2. Alive: After a thread is started, it becomes alive, at which point it can enter several different
sub-states (depending on the method called or actions of other threads within the same
process):

a. Runnable: The thread can be run when the time-slicing mechanism has CPU cycles
available for the thread. In other words, when there is nothing to prevent it from being
run if the scheduler can arrange it

b. Blocked: The thread could be run, but there is something that prevents it (e.g., another
thread is holding the resource needed for this thread to do its work). While a thread is in
the blocked state, the scheduler will simply skip over it and not give it any CPU time, so
the thread will not perform any operations. As visible from Figure 5-19, a thread can
become blocked for the following reasons:

i. Waiting for notification: Invoking the method wait() suspends the thread until the
thread gets the notify() or notifyAll() message

ii. Waiting for I/O or lock: The thread is waiting for an input or output operation to
complete, or it is trying to call a synchronized method on a shared object, and
that object’s lock is not available

iii. Waiting for rendezvous: Invoking the method join(target) suspends the thread
until the target thread returns from its run() method

iv. Sleeping: Invoking the method sleep(milliseconds) suspends the thread for
the specified time

3. Dead: This normally happens to a thread when it returns from its run() method. A dead
thread cannot be restarted, i.e., it cannot become alive again

The meaning of the states and the events or method invocations that cause state transitions will
become clearer from the example in Section 5.3.4.

A thread object may appear as any other software object, but there are important differences.
Threads are not regular objects, so we have to be careful with their interaction with other objects.
Most importantly, we cannot just call a method on a thread object, because that would execute the
given method from our current thread—neglecting the thread of the method’s object—which
could lead to conflict. To pass a message from one thread to another, we must use only the
methods shown in Figure 5-19. No other methods on thread objects should be invoked.

If two or more threads compete for the same “resource” which can be used by only one at a time,
then their access must be serialized, as depicted in Figure 5-20. One of them becomes blocked
while the other proceeds. We are all familiar with conflicts arising from people sharing resources.
For example, people living in a house/apartment share the same bathroom. Or, many people may
be sharing the same public payphone. To avoid conflicts, people follow certain protocols, and
threads do similarly.

Ivan Marsic Rutgers University 274

5.3.2 Exclusive Resource Access—Exclusion
Synchronization

If several threads attempt to access and manipulate the same data concurrently a race condition or
race hazard exists, and the outcome of the execution depends on the particular order in which the
access takes place. Consider the following example of two threads simultaneously accessing the
same banking account (say, husband and wife interact with the account from different branches):

Thread 1 Thread 2
oldBalance = account.getBalance(); ...
newBalance = oldBalance + deposit; oldBalance = account.getBalance();
account.setBalance(newBalance); newBalance =

 oldBalance - withdrawal;
... account.setBalance(newBalance);

The final account balance is incorrect and the value depends on the order of access. To avoid race
hazards, we need to control access to the common data (shared with other threads) and make the
access sequential instead of parallel.

A segment of code in which a thread may modify
shared data is known as a critical section or critical
region. The critical-section problem is to design a
protocol that threads can use to avoid interfering
with each other. Exclusion synchronization, or
mutual exclusion (mutex), see Figure 5-21, stops
different threads from calling methods on the same
object at the same time and thereby jeopardizing the
integrity of the shared data. If thread is executing in
its critical region then no other thread can be

Shared
Resource

Thread 1

Step 2: Use Step 3: Unlock

RAIL ROADCROSSING
RAIL ROADCROSSING
RAIL ROADCROSSING

RAIL ROADCROSSING
RAIL ROADCROSSING
RAIL ROADCROSSING

Thread 2

Step 1: Lock

RAIL ROADCROSSING

Step 1: Lock

RAIL ROADCROSSING
RAIL ROADCROSSING

Figure 5-20: Illustration of exclusion synchronization. The lock simply ensures that
concurrent accesses to the shared resource are serialized.

I THINK I CAN,
I THINK I CAN,
I THINK I CAN...DING

DING
DING

DING

I THINK I CAN,
I THINK I CAN,
I THINK I CAN...DING

DING
DING

DING

Chapter 5 Design with Patterns 275

executing in its critical region. Only one thread is allowed in a critical region at any moment.

Java provides exclusion synchronization through the keyword synchronized, which simply
labels a block of code that should be protected by locks. Instead of the programmer explicitly
acquiring or releasing the lock, synchronized signals to the compiler to do so. As illustrated
in Figure 5-22, there are two ways to use the keyword synchronized. First technique declares
class methods synchronized, Figure 5-22(a). If one thread invokes a synchronized
method on an object, that object is locked. Another thread invoking this or another
synchronized method on that same object will block until the lock is released.

Nesting method invocations are handled in the obvious way: when a synchronized method is
invoked on an object that is already locked by that same thread, the method returns, but the lock
is not released until the outermost synchronized method returns.

Second technique designates a statement or a block of code as synchronized. The
parenthesized expression must produce an object to lock—usually, an object reference. In the
simplest case, it could be this reference to the current object, like so
 synchronized (this) { /* block of code statements */ }

When the lock is obtained, statement is executed as if it were synchronized method on the
locked object. Examples of exclusion synchronization in Java are given in Section 5.3.4.

thrd1 : Thread shared_obj : Object

acquire lock

Successful:
thrd1 locks itself
in & does the work

thrd2 : Thread

release lock

acquire lock

Unsuccessful:
thrd2 blocked and

waiting for the
shared object to
become vacant

transfer lock

thrd2 acquires
the lock &

does the work

Critical region;
the code fragment
can have only one
thread executing it
at once.

region

Lock transfer
controlled by
operating system
and hardware

Figure 5-21: Exclusion synchronization pattern for concurrent threads.

public class SharedClass {
...
public synchronized void

method1(...) {
...

}
}

acquire
lock

release
lock

shared object public class AnyClass {
...
public void method2(...) {

...
synchronized (expression) {

statement
}
...

}
}

acquire
lock

release
lock

shared object

(a) (b)
Figure 5-22: Exclusion synchronization in Java: (a) synchronized methods, and
(b) synchronized statements.

Ivan Marsic Rutgers University 276

5.3.3 Cooperation between Threads—Condition
Synchronization

Exclusion synchronization ensures that threads “do not step on each other’s toes,” but other than
preventing them from colliding, their activities are completely independent. However, sometimes
one thread’s work depends on activities of another thread, so they must cooperate and coordinate.
A classic example of cooperation between threads is a Buffer object with methods put() and
get(). Producer thread calls put() and consumer thread calls get(). The producer must wait
if the buffer is full, and the consumer must wait if it is empty. In both cases, threads wait for a
condition to become fulfilled. Condition synchronization includes no assumption that the wait
will be brief; threads could wait indefinitely.

Condition synchronization (illustrated in Figure 5-23) complements exclusion synchronization. In
exclusion synchronization, a thread encountering an occupied shared resource becomes blocked
and waits until another thread is finished with using the resource. Conversely, in condition
synchronization, a thread encountering an unmet condition cannot continue holding the resource
on which condition is checked and just wait until the condition is met. If the tread did so, no other
thread would have access to the resource and the condition would never change—the resource
must be released, so another thread can affect it. The thread in question might release the resource
and periodically return to check it, but this would not be an efficient use of processor cycles.
Rather, the thread becomes blocked and does nothing while waiting until the condition changes,
at which point it must be explicitly notified of such changes.

In the buffer example, a producer thread, t, must first lock the buffer to check if it is full. If it is, t
enters the “waiting for notification” state, see Figure 5-19. But while t is waiting for the condition
to change, the buffer must remain unlocked so consumers can empty it by calling get().
Because the waiting thread is blocked and inactive, it needs to be notified when it is ready to go.

Every software object in Java has the methods wait() and notify() which makes possible
sharing and condition synchronization on every Java object, as explained next. The method
wait() is used for suspending threads that are waiting for a condition to change. When t finds
the buffer full, it calls wait(), which atomically releases the lock and suspends the thread (see
Figure 5-23). Saying that the thread suspension and lock release are atomic means that they
happen together, indivisibly from the application’s point of view. After some other thread notifies
t that the buffer may no longer be full, t regains the lock on the buffer and retests the condition.

The standard Java idiom for condition synchronization is the statement:

 while (conditionIsNotMet) sharedObject.wait();

Such a wait-loop statement must be inside a synchronized method or block. Any attempt to
invoke the wait() or notify() methods from outside the synchronized code will throw
IllegalMonitorStateException. The above idiom states that the condition test should
always be in a loop—never assume that being woken up means that the condition has been met.

The wait loop blocks the calling thread, t, for as long as the condition is not met. By calling
wait(), t places itself in the shared object’s wait set and releases all its locks on that object. (It
is of note that standard Java implements an unordered “wait set” rather than an ordered “wait
queue.” Real-time specification for Java—RTSJ—corrects this somewhat.)

Chapter 5 Design with Patterns 277

A thread that executes a synchronized method on an object, o, and changes a condition that
can affect one or more threads in o’s wait set must notify those threads. In standard Java, the call
o.notify() reactivates one arbitrarily chosen thread, t, in o’s wait set. The reactivated thread
then reevaluates the condition and either proceeds into the critical region or reenters the wait set.
The call to o.notifyAll() releases all threads in the o’s wait set. In standard Java this is the
only way to ensure that the highest priority thread is reactivated. This is inefficient, though,
because all the threads must attempt access while only one will succeed in acquiring the lock and
proceed.

The reader might have noticed resemblance between the above mechanism of wait/notify and the
publish/subscribe pattern of Section 5.1. In fact, they are equivalent conceptually, but there are
some differences due to concurrent nature of condition synchronization.

5.3.4 Concurrent Programming Example

The following example illustrates cooperation between threads.

Example 5.1 Concurrent Home Access

In our case-study, Figure 1-12 shows lock controls both on front and backyard doors. Suppose two
different tenants arrive (almost) simultaneously at the different doors and attempt the access, see
Figure 5-24. The single-threaded system designed in Section 2.7 would process them one-by-one,
which may cause the second user to wait considerable amount of time. A user unfamiliar with the
system intricacies may perceive this as a serious glitch. As shown in Figure 5-24, the processor is idle
most of the time, such as between individual keystrokes or while the user tries to recall the exact

 thrd1 : Thread shared_obj : Object

acquire lock

thrd2 : Thread

Does the work

acquire lock

alt Condition is met

Successful:

Checks condition

[else]

Atomically releases the
lock and waits blocked

wait()

Successful:
Does the work that can
affect the wait condition

notify()

transfer lock

loop

release lock

region

Lock transfer
controlled by
operating system
and hardware

region

release lock

thrd1 : Thread shared_obj : Object

acquire lock

thrd2 : Thread

Does the work

acquire lock

alt Condition is met

Successful:

Checks condition

[else]

Atomically releases the
lock and waits blocked

wait()

Successful:
Does the work that can
affect the wait condition

notify()

transfer lock

loop

release lock

region

Lock transfer
controlled by
operating system
and hardware

region

release lock

Figure 5-23: Condition synchronization pattern for concurrent threads.

Ivan Marsic Rutgers University 278

password after an unsuccessful attempt. Meanwhile, the second user is needlessly waiting. To improve
the user experience, let us design a multithreaded solution.

The solution is given next.

The first-round implementation in Section 2.7, considered the system with a single door lock. We
have not yet tackled the architectural issue of running a centralized or a distributed system. In the
former case, the main computer runs the system and at the locks we have only embedded
processors. We could add an extra serial port, daisy-chained with the other one, and the control
would remain as in Section 2.7. In the latter case of a distributed system, each lock would have a
proximal embedded computer. The embedded computers would communicate mutually or with
the main computer using a local area network. The main computer may even not be necessary,
and the embedded processors could coordinate in a “peer-to-peer” mode. Assume for now that we
implement the centralized PC solution with multiple serial ports. We also assume a single
photosensor and a single light bulb, for the sake of simplicity.

The first question to answer is, how many threads we need and which objects should be turned
into threads? Generally, it is not a good idea to add threads indiscriminately, because threads
consume system resources, such as computing cycles and memory space.

It may appear attractive to attach a thread to each object that operates physical devices, such as
LockCtrl and LightCtrl, but is this the right approach? On the other hand, there are only two users
(interacting with the two locks), so perhaps two threads would suffice? Let us roll back, see why
we consider introducing threads in the first place. The reason is to improve the user experience,
so two users at two different doors can access the home simultaneously, without waiting. Two
completely independent threads would work, which would require duplicating all the resources,
but this may be wasteful. Here is the list of resources they could share:

 KeyStorage, used to lookup the valid keys

 Serial port(s), to communicate with the devices

 System state, such as the device status or current count of unsuccessful attempts

Sharing KeyStorage seems reasonable—here it is just looked up, not modified. The serial port can
also be shared because the communication follows a well-defined RS-232 protocol. However,
sharing the system state needs to be carefully examined. Sharing the current count of

Time
User 1

User 2

Arrival Service

Arrival Waiting
Service

Total interaction time for both users

Average interaction time

Figure 5-24: Single-threaded, sequential servicing of users in Example 4.1.

Chapter 5 Design with Patterns 279

unsuccessful attempts seems to make no sense—there must be two counters, each counting
accesses for its corresponding door.

There are several observations that guide our design. From the system sequence diagram of
Figure 2-15(a), we can observe that the system juggles two distinct tasks: user interaction and
internal processing which includes controlling the devices. There are two copies (for the two
doors) of each task, which should be able to run in parallel. The natural point of separation
between the two tasks is the Controller object, Figure 2-27, which is the entry point of the domain
layer of the system. The Controller is a natural candidate for a thread object, so two internal
processing tasks can run in parallel, possibly sharing some resources. The threaded controller
class, ControllerThd, is defined below. I assume that all objects operating the devices
(LockCtrl, LightCtrl, etc.) can be shared as long as the method which writes to the serial port is
synchronized. LockCtrl must also know which lock (front or backyard) it currently operates.

Listing 5-6: Concurrent version of the main class for home access control. Compare to
Listing 2-1.
import javax.comm.*;
import java.io.IOException;
import java.io.InputStream;
import java.util.TooManyListenersException;

public class HomeAccessControlSystem_2x extends Thread
 implements SerialPortEventListener {
 protected ControllerThd contrlFront_; // front door controller
 protected ControllerThd contrlBack_; // back door controller
 protected InputStream inputStream_; // from the serial port
 protected StringBuffer keyFront_ = new StringBuffer();
 protected StringBuffer keyBack_ = new StringBuffer();
 public static final long keyCodeLen_ = 4; // key code of 4 chars

 public HomeAccessControlSystem_2x(
 KeyStorage ks, SerialPort ctrlPort
) {
 try {
 inputStream_ = ctrlPort.getInputStream();
 } catch (IOException e) { e.printStackTrace(); }

 LockCtrl lkc = new LockCtrl(ctrlPort);
 LightCtrl lic = new LightCtrl(ctrlPort);
 PhotoObsrv sns = new PhotoObsrv(ctrlPort);
 AlarmCtrl ac = new AlarmCtrl(ctrlPort);

 contrlFront_ = new ControllerThd(
 new KeyChecker(ks), lkc, lic, sns, ac, keyFront_
);
 contrlBack_ = new ControllerThd(
 new KeyChecker(ks), lkc, lic, sns, ac, keyBack_
);

 try {
 ctrlPort.addEventListener(this);
 } catch (TooManyListenersException e) {

Ivan Marsic Rutgers University 280

 e.printStackTrace(); // limited to one listener per port
 }
 start(); // start the serial-port reader thread
 }

 /** The first argument is the handle (filename, IP address, ...)
 * of the database of valid keys.
 * The second arg is optional and, if present, names
 * the serial port. */
 public static void main(String[] args) {
 ...
 // same as in Listing 2-1 above
 }

 /** Thread method; does nothing, just waits to be interrupted
 * by input from the serial port. */
 public void run() {
 while (true) {
 try { Thread.sleep(100); }
 catch (InterruptedException e) { /* do nothing */ }
 }
 }

 /** Serial port event handler.
 * Assume that the characters are sent one by one, as typed in.
 * Every character is preceded by a lock identifier (front/back).
 */
 public void serialEvent(SerialPortEvent evt) {
 if (evt.getEventType() == SerialPortEvent.DATA_AVAILABLE) {
 byte[] readBuffer = new byte[5]; // just in case, 5 chars

 try {
 while (inputStream_.available() > 0) {
 int numBytes = inputStream_.read(readBuffer);
 // could chk if numBytes == 2 (char + lockId) ...
 }
 } catch (IOException e) { e.printStackTrace(); }

 // Append the new char to a user key, and if the key
 // is complete, awaken the corresponding Controller thread
 if (inputStream_[0] == 'f') { // from the front door
 // If this key is already full, ignore the new chars
 if (keyFront_.length() < keyCodeLen_) {
 synchronized (keyFront_) { // CRITICAL REGION
 keyFront_.append(new String(readBuffer, 1,1));
 // If the key just got completed,
 // signal the condition to others
 if (keyFront_.length() >= keyCodeLen_) {
 // awaken the Front door Controller
 keyFront_.notify(); //only 1 thrd waiting
 }
 } // END OF THE CRITICAL REGION
 }
 } else if (inputStream_[0] == 'b') { // from back door
 if (keyBack_.length() < keyCodeLen_) {
 synchronized (keyBack_) { // CRITICAL REGION
 keyBack_.append(new String(readBuffer, 1, 1));

Chapter 5 Design with Patterns 281

 if (keyBack_.length() >= keyCodeLen_) {
 // awaken the Back door Controller
 keyBack_.notify();
 }
 } // END OF THE CRITICAL REGION
 } // else, exception ?!
 }
 }
}

Each Controller object is a thread, and it synchronizes with HomeAccessControlSystem_2x via
the corresponding user key. In the above method serialEvent(), the port reader thread fills
in the key code until completed; thereafter, it ignores the new keys until the corresponding
ControllerThd processes the key and resets it in its run() method, shown below. The reader
should observe the reuse of a StringBuffer to repeatedly build strings, which works here, but
in a general case many subtleties of Java StringBuffers should be considered.

Listing 5-7: Concurrent version of the Controller class. Compare to Listing 2-2.
import javax.comm.*;

public class ControllerThd implements Runnable {
 protected KeyChecker checker_;
 protected LockCtrl lockCtrl_;
 protected LightCtrl lightCtrl_;
 protected PhotoObsrv sensor_;
 protected AlarmCtrl alarmCtrl_;
 protected StringBuffer key_;
 public static final long maxNumOfAttempts_ = 3;
 public static final long attemptPeriod_ = 600000; // msec [=10min]
 protected long numOfAttempts_ = 0;

 public ControllerThd(
 KeyChecker kc, LockCtrl lkc, LightCtrl lic,
 PhotoObsrv sns, AlarmCtrl ac, StringBuffer key
) {
 checker_ = kc;
 lockCtrl_ = lkc; alarmCtrl_ = ac;
 lightCtrl_ = lic; sensor_ = sns; key_ = key;

 Thread t = new Thread(this, getName());
 t.start();
 }

 public void run() {
 while(true) { // runs forever
 synchronized (key_) { // CRITICAL REGION
 // wait for the key to be completely typed in
 while(key_.length() <
 HomeAccessControlSystem_2x.keyCodeLen_) {
 try {
 key_.wait();
 } catch(InterruptedException e) {
 throw new RuntimeException(e);

Ivan Marsic Rutgers University 282

 }
 }
 } // END OF THE CRITICAL REGION
 // Got the key, check its validity:
 // First duplicate the key buffer, then release old copy
 Key user_key = new Key(new String(key_));
 key_.setLength(0); // delete code, so new can be entered
 checker_.checkKey(user_key); // assume Publish-Subs. vers.
 }
 }
}

The reader should observe the thread coordination in the above code. We do not want the
Controller to grab a half-ready Key and pass it to the Checker for validation. The Controller will
do so only when notify() is invoked. Once it is done with the key, the Controller resets it to
allow the reader to fill it again.

You may wonder how is it that in ControllerThd.run() we obtain the lock and then loop
until the key is completely typed in—would this not exclude the port reader thread from the
access to the Key object, so the key would never be completed?! Recall that wait() atomically
releases the lock and suspends the ControllerThd thread, leaving Key accessible to the port
reader thread.

It is interesting to consider the last three lines of code in ControllerThd.run(). Copying a
StringBuffer to a new String is a thread-safe operation; so is setting the length of a
StringBuffer. However, although each of these methods acquires the lock, the lock is
released in between and another thread may grab the key object and do something bad to it. In our
case this will not happen, because HomeAccessControlSystem_2x.serialEvent()
checks the length of the key before modifying it, but generally, this is a concern.

Figure 5-25 summarizes the benefit achieved by a multithreaded solution. Notice that there still
may be micro periods of waiting for both users and servicing the user who arrived first may take
longer than in a single-threaded solution. However, the average service time per user is much
shorter, close to the single-user average service time.

Hazards and Performance Penalties

Ideally, we would like that the processor is never idle while there is a task waiting for execution.
As seen in Figure 5-25(b), even with threads the processor may be idle while there are users who
are waiting for service. The question of “granularity” of the shared resource. Or stated differently,
the key issue is how to minimize the length (i.e., processing time) of the critical region.

Solution: Try to narrow down the critical region by lock splitting or using finer-grain locks.

http://www.cs.panam.edu/~meng/Course/CS6334/Note/master/node49.html

http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci871100,00.html

http://en.wikipedia.org/wiki/Thread_(computer_programming)

Chapter 5 Design with Patterns 283

Control of access to shared resources itself can introduce problems, e.g., it can cause deadlock.

5.4 Broker and Distributed Computing

“If computers get too powerful, we can organize them into a committee—that will do them in.”
—Bradley’s Bromide

Let us assume that in our case-study example of home access control the tenants want to remotely
download the list of recent accesses. This requires network communication. The most basic
network programming uses network sockets, which can call for considerable programming skills
(see Appendix B for a brief review). To simplify distributed computing, a set of software
techniques have been developed. These generally go under the name of network middleware.

When both client and server objects reside in the same memory space, the communication is
carried out by simple method calls on the server object (see Figure 1-22). If the objects reside in
different memory spaces or even on different machines, they need to implement the code for
interprocess communication, such as opening network connections, sending messages across the
network, and dealing with many other aspects of network communication protocols. This
significantly increases the complexity of objects. Even worse, in addition to its business logic,
objects obtain responsibility for communication logic which is extraneous to their main function.

Time
User 1

User 2

Arrival Service

Arrival Waiting
Service

Total interaction time for both users

Average interaction time

(a)

Time
User 1

User 2

Arrival Service

Arrival

Waiting

Total interaction time for both users

Average interaction time

Service
(b)

Figure 5-25: Benefit of a multithreaded solution. (a) Sequential servicing, copied from
Figure 5-24. (b) Parallel servicing by two threads.

Ivan Marsic Rutgers University 284

Employing middleware helps to delegate this complexity away out of the objects, see Figure
5-26. A real world example of middleware is the post service—it deals with the intricacies of
delivering letters/packages to arbitrary distances. Another example is the use of different metric
systems, currencies, spoken languages, etc., in which case the functionality for conversion
between the systems is offloaded to middleware services. Middleware is a good software
engineering practice that should be applied any time the communication between objects becomes
complex and starts rivaling the object’s business logic in terms of the implementation code size.

Middleware is a collection of objects that offer a set of services related to object communication,
so that extraneous functionality is offloaded to the middleware. In general, middleware is
software used to make diverse applications work together smoothly. The process of deriving
middleware is illustrated in Figure 5-27. We start by introducing the proxies for both
communicating objects. (The Proxy pattern is described in Section 5.2.4.) The proxy object B of
B acts so to provide an illusion for A that it is directly communicating with B. The same is
provided to B by A. Having the proxy objects keeps simple the original objects, because the
proxies provide them with an illusion that nothing changed from the original case, where they
communicated directly with each other, as in Figure 5-27(a). In other words, proxies provide
location transparency for the objects—objects remain (almost) the same no matter whether they

Network

Marshaling

Unmarshaling

Middleware

Figure 5-26: Client object invokes a method on a server object. If the message sending
becomes too complex, introducing middleware offloads the communication intricacies off
the software objects. (Compare with Figure 1-22.)

Chapter 5 Design with Patterns 285

reside in the same address space or in different address spaces / machines. Objects A' and B'
comprise the network middleware.

Because it is not likely that we will develop middleware for only two specific objects
communicating, further division of responsibilities results in the Broker pattern.

Object
A

Object
A

Object
B

Object
B

Middleware

Object
A

Object
A

Object
B'

Object
B'

Object
A'

Object
A'

Object
B

Object
B

(a)

(b)

Figure 5-27: Middleware design. Objects A and B are the proxies of A and B, respectively.

Ivan Marsic Rutgers University 286

5.4.1 Broker Pattern

The Broker pattern is an architectural pattern used to structure distributed software systems with
components that interact by remote method calls, see Figure 5-28. The proxies are responsible
only for the functions specific to individual objects for which they act as substitutes. In a
distributed system the functions that are common to all or most of the proxies are delegated to the
Broker component, Figure 5-28(b). Figure 5-28(c) shows the objects constituting the Broker
pattern and their relationships. The proxies act as representatives of their corresponding objects in

(a)

Middleware
Broker component

SSS'S'CC Bclient
Bclient Bserver

Bserver C'C'

ServiceService ServiceService

Middleware
Broker component

SSS'S'CC Bclient
Bclient Bserver

Bserver C'C'

ServiceService ServiceService

Client

+ callServer()
useBrokerAPI()

«client proxy»
Skeleton

+ forwardRequest()
marshal()
unmarshal()

«server proxy»
Stub

+ request()
+ forwardResponse()
marshal()
unmarshal()

Broker

+ mainEventLoop()
+ registerService()
+ forwardRequest()
+ forwardResponse()
findServer()
findClient()

Server

+ initialize()
+ mainEventLoop()
+ request()
registerService()
useBrokerAPI()

MiddlewareService

(c)

Client

+ callServer()
useBrokerAPI()

Client

+ callServer()
useBrokerAPI()

«client proxy»
Skeleton

+ forwardRequest()
marshal()
unmarshal()

«client proxy»
Skeleton

+ forwardRequest()
marshal()
unmarshal()

«server proxy»
Stub

+ request()
+ forwardResponse()
marshal()
unmarshal()

«server proxy»
Stub

+ request()
+ forwardResponse()
marshal()
unmarshal()

Broker

+ mainEventLoop()
+ registerService()
+ forwardRequest()
+ forwardResponse()
findServer()
findClient()

Broker

+ mainEventLoop()
+ registerService()
+ forwardRequest()
+ forwardResponse()
findServer()
findClient()

Server

+ initialize()
+ mainEventLoop()
+ request()
registerService()
useBrokerAPI()

Server

+ initialize()
+ mainEventLoop()
+ request()
registerService()
useBrokerAPI()

MiddlewareServiceMiddlewareService

(c)

(b)

Broker
Knowing Responsibilities:

• Registry of name-to-reference mappings
Doing Responsibilities:

• Maintains the registry and provides lookup
• Instantiates proxies
• Network transport of request and result back

Broker
Knowing Responsibilities:

• Registry of name-to-reference mappings
Doing Responsibilities:

• Maintains the registry and provides lookup
• Instantiates proxies
• Network transport of request and result back

Figure 5-28: (a) The Broker component of middleware represents the intersection of
common proxy functions, along with middleware services. (b) Broker’s employee card. (c)
The Broker pattern class diagram. The server proxy, called Stub, resides on the same host
as the client and the client proxy, called Skeleton, resides on the same host as the server.

Chapter 5 Design with Patterns 287

the foreign address space and contain all the network-related code. The broker component is
responsible for coordinating communication and providing links to various middleware services.
Although Broker is shown as a single class in Figure 5-28(c), actual brokers consist of many
classes are provide many services.

To use a remote object, a client first finds the object through the Broker, which returns a proxy
object or Stub. As far as the client is concerned, the Stub appears and works like any other local
object because they both implement the same interface. But, in reality it only arranges the method
call and associated parameters into a stream of bytes using the method marshal(). Figure 5-29
shows the sequence diagram for remote method invocation (also called remote procedure call—
RPC) via a Broker. The Stub marshals the method call into a stream of bytes and invokes the
Broker, which forwards the byte stream to the client’s proxy, Skeleton, at the remote host. Upon
receiving the byte stream, the Skeleton rearranges this stream into the original method call and
associated parameters, using the method unmarshal(), and invokes this method on the server
which contains the actual implementation. Finally, the server performs the requested operation
and sends back the return value(s), if any.

The Broker pattern has been proven effective tool in distributed computing, because it leads to
greater flexibility, maintainability, and adaptability of the resulting system. By introducing new
components and delegating responsibility for communication intricacies, the system becomes
potentially distributable and scalable. Java Remote Method Invocation (RMI), which is presented
next, is an example of elaborating and implementing the Broker pattern.

: Client : Stub : Broker

forwardRequest()

: Skeleton

forwardRequest()

request()

: Server

callServer()

marshal()

findServer()

unmarshal()

request()

response

forwardResponse()

marshal()

forwardResponse()

findClient()

unmarshal()

response

: Client : Stub : Broker

forwardRequest()

: Skeleton

forwardRequest()

request()

: Server

callServer()

marshal()

findServer()

unmarshal()

request()

response

forwardResponse()

marshal()

forwardResponse()

findClient()

unmarshal()

response

Figure 5-29: Sequence diagram for a client call to the server (remote method invocation).

Ivan Marsic Rutgers University 288

5.4.2 Java Remote Method Invocation (RMI)

The above analysis indicates that the Broker component is common to all remotely
communicating objects, so it needs to be implemented only once. The proxies are object-specific
and need to be implemented for every new object. Fortunately, the process of implementing the
proxy objects can be made automatic. It is important to observe that the original object shares the
same interface with its Stub and Skeleton (if the object acts as a client, as well). Given the
object’s interface, there are tools to automatically generate source code for proxy objects. In the
general case, the interface is defined in an Interface Definition Language (IDL). Java RMI uses
plain Java for interface definition, as well. The basic steps for using RMI are:

1. Define the server object interface

2. Define a class that implements this interface

3. Create the server process

4. Create the client process

Going back to our case-study example of home access control, now I will show how a tenant
could remotely connect and download the list of recent accesses.

Step 1: Define the server object interface

The server object will be running on the home computer and currently offers a single method
which returns the list of home accesses for the specified time interval:

Listing 5-8: The Informant remote server object interface.
/* file Informant.java */
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Vector;

public interface Informant extends Remote {
 public Vector getAccessHistory(long fromTime, long toTime)
 throws RemoteException;
}

This interface represents a contract between the server and its clients. Our interface must extend
java.rmi.Remote which is a “tagging” interface that contains no methods. Any parameters
of the methods of our interface, such as the return type Vector in our case, must be serializable,
i.e., implement java.io.Serializable.

In the general case, an IDL compiler would generate a Stub and Skeleton files for the Informant
interface. With Java RMI, we just use the Java compiler, javac:

% javac Informant.java

Chapter 5 Design with Patterns 289

Step 2: Define a class that implements this interface

The implementation class must extend class java.rmi.server.RemoteObject or one of
its subclasses. In practice, most implementations extend the subclass
java.rmi.server.UnicastRemoteObject, because this class supports point-to-point
communication using the TCP protocol. The class diagram for this example is shown in Figure
5-30. The implementation class must implement the interface methods and a constructor (even if
it has an empty body). I adopt the common convention of adding Impl onto the name of our
interface to form the implementation class.

Listing 5-9: The class InformantImpl implements the actual remote server object.
/* file InformantImpl.java (Informant server implementation) */
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;

public class InformantImpl extends UnicastRemoteObject
 implements Informant {
 protected Vector accessHistory_ = new Vector();

 /** Constructor; currently empty. */
 public InformantImpl() throws RemoteException { }

 /** Records all the home access attempts.
 * Called from another class, e.g., from KeyChecker, Listing 2-2
 * @param access Contains the entered key, timestamp, etc.
 */
 public void recordAccess(String access) {
 accessHistory_.add(access);
 }

 /** Implements the "Informant" interface. */
 public Vector getAccessHistory(long fromTime, long toTime)
 throws RemoteException {
 Vector result = new Vector();
 // Extract from accessHistory_ accesses in the
 // interval [fromTime, toTime] into "result"

InformantImpl_Stub

+ getAccessHistory()

InformantImpl_Stub

+ getAccessHistory()

InformantImpl

+ getAccessHistory()

InformantImpl

+ getAccessHistory()

Informant

+ getAccessHistory()

Informant

+ getAccessHistory()

ClientClient

Remote UnicastRemoteObject

RemoteRef

Figure 5-30: Class diagram for the Java RMI example. See text for details.

Ivan Marsic Rutgers University 290

 return result;
 }
}

Here, we first use the Java compiler, javac, then the RMI compiler, rmic:
% javac InformantImpl.java
% rmic –v1.2 InformantImpl

The first statement compiles the Java file and the second one generates the stub and skeleton
proxies, called InformantImpl_Stub.class and InformantImpl_Skel.class,
respectively. It is noteworthy, although perhaps it might appear strange, that the RMI compiler
operates on a .class file, rather than on a source file. In JDK version 1.2 or higher (Java 2),
only the stub proxy is used; the skeleton is incorporated into the server itself so that there are no
separate entities as skeletons. Server programs now communicate directly with the remote
reference layer. This is why the command line option -v1.2 should be employed (that is, if you
are working with JDK 1.2 or higher), so that only the stub file is generated.

As shown in Figure 5-30, the stub is associated with a RemoteRef, which is a class in the RMI
Broker that represents the handle for a remote object. The stub uses a remote reference to carry
out a remote method invocation to a remote object via the Broker. It is instructive to look inside
the InformantImpl_Stub.java, which is obtained if the RMI compiler is run with the
option -keep. Here is the stub file (the server proxy resides on client host):

Listing 5-10: Proxy classes (Stub and Skeleton) are automatically generated by the Java
rmic compiler from the Informant interface (Listing 5-8).
// Stub class generated by rmic, do not edit.
// Contents subject to change without notice.

 1 public final class InformantImpl_Stub
 2 extends java.rmi.server.RemoteStub
 3 implements Informant, java.rmi.Remote
 4 {
 5 private static final long serialVersionUID = 2;
 6
 7 private static java.lang.reflect.Method
$method_getAccessHistory_0;
 8
 9 static {
10 try {
11 $method_getAccessHistory_0 =
Informant.class.getMethod("getAccessHistory", new java.lang.Class[]
{long.class, long.class});
12 } catch (java.lang.NoSuchMethodException e) {
13 throw new java.lang.NoSuchMethodError(
14 "stub class initialization failed");
15 }
16 }
17
18 // constructors
19 public InformantImpl_Stub(java.rmi.server.RemoteRef ref) {
20 super(ref);
21 }
22

Marshaling

Chapter 5 Design with Patterns 291

23 // methods from remote interfaces
24
25 // implementation of getAccessHistory(long, long)
26 public java.util.Vector getAccessHistory(long $param_long_1,
long $param_long_2)
27 throws java.rmi.RemoteException
28 {
29 try {
30 Object $result = ref.invoke(this,
$method_getAccessHistory_0, new java.lang.Object[] {new
java.lang.Long($param_long_1), new java.lang.Long($param_long_2)}, -
7208692514216622197L);
31 return ((java.util.Vector) $result);
32 } catch (java.lang.RuntimeException e) {
33 throw e;
34 } catch (java.rmi.RemoteException e) {
35 throw e;
36 } catch (java.lang.Exception e) {
37 throw new java.rmi.UnexpectedException("undeclared checked
exception", e);
38 }
39 }
40 }

The code description is as follows:

Line 2: shows that our stub extends the RemoteStub class, which is the common superclass
to client stubs and provides a wide range of remote reference semantics, similar to the broker
services in Figure 5-28(a).

Lines 7–15: perform part of the marshaling process of the getAccessHistory() method
invocation. Computational reflection is employed, which is described in Section 7.3.

Lines 19–21: pass the remote server’s reference to the RemoteStub superclass.

Line 26: starts the definition of the stub’s version of the getAccessHistory() method.

Line 30: sends the marshaled arguments to the server and makes the actual call on the remote
object. It also gets the result back.

Line 31: returns the result to the client.

The reader should be aware that, in terms of how much of the Broker component is revealed in a
stub code, this is only a tip of the iceberg. The Broker component, also known as Object Request
Broker (ORB), can provide very complex functionality and comprise many software objects.

Step 3: Create the server process

The server process instantiates object(s) of the above implementation class, which accept remote
requests. The first problem is, how does a client get handle of such an object, so to be able to
invoke a method on it? The solution is for the server to register the implementation objects with a
naming service known as registry. A naming registry is like a telephone directory. The RMI
Registry is a simple name repository which acts as a central management point for Java RMI. The
registry must be run before the server and client processes using the following command line:

Ivan Marsic Rutgers University 292

 % rmiregistry

It can run on any host, including the server’s or client’s hosts, and there can be several RMI
registries running at the same time. (Note: The RMI Registry is an RMI server itself.) For every
server object, the registry contains a mapping between the well-known object’s name and its
reference (usually a globally unique sequence of characters). The process of registration is called
binding. The client object can, thus, get handle of a server object by looking up its name in the
registry. The lookup is performed by supplying a URL with protocol rmi:

rmi://host_name:port_number/object_name

where host_name is the name or IP address of the host on which the RMI registry is running,
port_number is the port number of the RMI registry, and object_name is the name bound to the
server implementation object. If the host name is not provided, the default is assumed as
localhost. The default port number of RMI registry is 1099, although this can be changed as
desired. The server object, on the other hand, listens to a port on the server machine. This port is
usually an anonymous port that is chosen at runtime by the JVM or the underlying operating
system. Or, you can request the server to listen on a specific port on the server machine.

I will use the class HomeAccessControlSystem, defined in Listing 2-1, Section 2.7, as the
main server class. The class remains the same, except for several modifications:

Listing 5-11: Refactored HomeAccessControlSystem class (from Listing 2-1) to
instantiate remote server objects of type Informant.
 1 import java.rmi.Naming;
 2
 3 public class HomeAccessControlSystem extends Thread
 4 implements SerialPortEventListener {
 5 ...
 6 private static final String RMI_REGISTRY_HOST = "localhost";
 7
 8 public static void main(String[] args) throws Exception {
 9 ...
10 InformantImpl temp = new InformantImpl();
11 String rmiObjectName =
12 "rmi://" + RMI_REGISTRY_HOST + "/Informant";
13 Naming.rebind(rmiObjectName, temp);
14 System.out.println("Binding complete...");
15 ...
16 }
 ...
 }

The code description is as follows:

Lines 3–5: The old HomeAccessControlSystem class as defined in Section 2.7.

Line 6: For simplicity’s sake, I use localhost as the host name, which could be omitted
because it is default.

Line 8: The main() method now throws Exception to account for possible RMI-related
exceptions thrown by Naming.rebind().

Line 10: Creates an instance object of the server implementation class.

Chapter 5 Design with Patterns 293

Lines 11–12: Creates the string URL which includes the object’s name, to be bound with its
remote reference.

Line 13: Binds the object’s name to the remote reference at the RMI naming registry.

Line 14: Displays a message for our information, to know when the binding is completed.

The server is, after compilation, run on the computer located at home by invoking the Java
interpreter on the command line:
 % java HomeAccessControlSystem

If Java 2 is used, the skeleton is not necessary; otherwise, the skeleton class,
InformantImpl_Skel.class, must be located on the server’s host because, although not
explicitly used by the server, the skeleton will be invoked by Java runtime.

Step 4: Create the client process

The client requests services from the server object. Because the client has no idea on which
machine and to which port the server is listening, it looks up the RMI naming registry. What it
gets back is a stub object that knows all these, but to the client the stub appears to behave same as
the actual server object. The client code is as follows:

Listing 5-12: Client class InformantClient invokes services on a remote Informant
object.
 1 import java.rmi.Naming;
 2
 3 public class InformantClient {
 4 private static final String RMI_REGISTRY_HOST = " ... ";
 5
 6 public static void main(String[] args) {
 7 try {
 8 Informant grass = (Informant) Naming.lookup(
 9 "rmi://" + RMI_REGISTRY_HOST + "/Informant"
10);
11 Vector accessHistory =
12 grass.getAccessHistory(fromTime, toTime);
13
14 System.out.println("The retrieved history follows:");
15 for (Iterator i = accessHistory; i.hasNext();) {
16 String record = (String) i.next();
17 System.out.println(record);
18 }
19 } catch (ConnectException conEx) {
20 System.err.println("Unable to connect to server!");
21 System.exit(1);
22 } catch (Exception ex) {
23 ex.printStackTrace();
24 System.exit(1);
25 }
26 ...
27 }
 ...
 }

Ivan Marsic Rutgers University 294

The code description is as follows:

Line 4: Specifies the host name on which the RMI naming registry is running.

Line 8: Looks up the RMI naming registry to get handle of the server object. Because the
lookup returns a java.rmi.Remote reference, this reference must be typecast into an
Informant reference (not InformantImpl reference).

Lines 11–12: Invoke the service method on the stub, which in turn invokes this method on the
remote server object. The result is returned as a java.util.Vector object named
accessHistory.

Lines 14–18: Display the retrieved history list.

Lines 19–25: Handle possible RMI-related exceptions.

The client would be run from a remote machine, say from the tenant’s notebook or a PDA. The
InformantImpl_Stub.class file must be located on the client’s host because, although
not explicitly used by the client, a reference to it will be given to the client by Java runtime. A
security-conscious practice is to make the stub files accessible on a website for download. Then,
you set the java.rmi.server.codebase property equal to the website’s URL, in the
application which creates the server object (in our example above, this is
HomeAccessControlSystem). The stubs will be downloaded over the Web, on demand.

The reader should notice that distributed object computing is relatively easy using Java RMI. The
developer is required to do just slightly more work, essentially to bind the object with the RMI
registry on the server side and to obtain a reference to it on the client side. All the complexity
associated with network programming is hidden by the Java RMI tools.

SIDEBAR 5.2: How Transparent Object Distribution?

 The reader who experiments with Java RMI, see e.g., Problem 5.22, and tries to implement
the same with plain network sockets (see Appendix B), will appreciate how easy it is to work
with distributed objects. My recollection from using some CORBA object request brokers was
that some provided even greater transparency than Java RMI. Although this certainly is an
advantage, there are perils of making object distribution so transparent that it becomes too
easy.

The problem is that people tended to forget that there is a network between distributed objects
and built applications that relied on fine-grained communication across the network. Too many
round-trip communications led to poor performance and reputation problems for CORBA. An
interesting discussion of object distribution issues is available in [Waldo et al., 1994] from the
same developers who authored Java RMI [Wollrath et al., 1996].

Chapter 5 Design with Patterns 295

5.5 Information Security

“There is nothing special about security; it’s just part of getting the job done.” —Rob Short

Information security is a nonfunctional property of the system, it is an emergent property. Owing
to different types of information use, there are two main security disciplines. Communication
security is concerned with protecting information when it is being transported between different
systems. Computer security is related to protecting information within a single system, where it
can be stored, accessed, and processed. Although both disciplines must work in accord to
successfully protect information, information transport faces greater challenges and so
communication security has received greater attention. Accordingly, this review is mainly
concerned with communication security. Notice that both communication- and computer security
must be complemented with physical (building) security as well as personnel security. Security
should be thought of as a chain that is as strong as its weakest link.

The main objectives of information security are:

 Confidentiality: ensuring that information is not disclosed or revealed to unauthorized
persons

 Integrity: ensuring consistency of data, in particular, preventing unauthorized creation,
modification, or destruction of data

 Availability: ensuring that legitimate users are not unduly denied access to resources,
including information resources, computing resources, and communication resources

 Authorized use: ensuring that resources are not used by unauthorized persons or in
unauthorized ways

To achieve these objectives, we institute various safeguards, such as concealing (encryption)
confidential information so that its meaning is hidden from spying eyes; and key management
which involves secure distribution and handling of the “keys” used for encryption. Usually, the
complexity of one is inversely proportional to that of the other—we can afford relatively simple
encryption algorithm with a sophisticated key management method.

Ivan Marsic Rutgers University 296

Figure 5-31 illustrates the problem of transmitting a confidential message by analogy with
transporting a physical document via untrusted carrier. The figure also lists the security needs of
the communicating parties and the potential threats posed by intruders. The sender secures the
briefcase, and then sends it on. The receiver must use a correct key in order to unlock the
briefcase and read the document. Analogously, a sending computer encrypts the original data
using an encryption algorithm to make it unintelligible to any intruder. The data in the original
form is known as plaintext or cleartext. The encrypted message is known as ciphertext. Without
a corresponding “decoder,” the transmitted information (ciphertext) would remain scrambled and
be unusable. The receiving computer must regenerate the original plaintext from the ciphertext
with the correct decryption algorithm in order to read it. This pair of data transformations,
encryption and decryption, together forms a cryptosystem.

There are two basic types of cryptosystems: (i) symmetric systems, where both parties use the
same (secret) key in encryption and decryption transformations; and, (ii) public-key systems, also
known as asymmetric systems, where the parties use two related keys, one of which is secret and
the other one can be publicly disclosed. I first review the logistics of how the two types of
cryptosystems work, while leaving the details of encryption algorithms for the next section.

Sender Receiver

Padlock
and shared
key copy

Shared
key copy

Content

Message
Intermediary

Threats posed by intruder/adversary:
• forge the key and view the content
• damage/substitute the padlock
• damage/destroy the message
• observe characteristics of messages
(statistical and/or metric properties)

Receiver needs:
• receive securely a shared key copy
• positively identify the message sender
• detect any tampering with messages

Sender needs:
• receive securely a copy of the shared key
• positively identify the message receiver

Figure 5-31: Communication security problem: Sender needs to transport a confidential
document to Receiver over an untrusted intermediary.

Chapter 5 Design with Patterns 297

5.5.1 Symmetric and Public-Key Cryptosystems

In symmetric cryptosystems, both parties use the same key in encryption and decryption
transformations. The key must remain secret and this, of course, implies trust between the two
parties. This is how cryptography traditionally works and prior to the late 1970s, these were the
only algorithms available.

The system works as illustrated in Figure 5-31. In order to ensure the secrecy of the shared key,
the parties need to meet prior to communication. In this case, the fact that only the parties
involved know the secret key implicitly identifies one to the other.

Using encryption involves two basic steps: encoding a message, and decoding it again. More
formally, a code takes a message M and produces a coded form f(M). Decoding the message

requires an inverse function 1f , such that)(1 Mff = M. For most codes, anyone who

knows how to perform the first step also knows how to perform the second, and it would be
unthinkable to release to the adversary the method whereby a message can be turned into code.
Merely by “undoing” the encoding procedures, the adversary would be able to break all
subsequent coded messages.

In the 1970s Ralph Merkle, Whitfield Diffie, and Martin Hellman realized that this need not be
so. The weasel word above is “merely.” Suppose that the encoding procedure is very hard to
undo. Then it does no harm to release its details. This led them to the idea of a trapdoor function.

We call f a trapdoor function if f is easy to compute, but 1f is very hard, indeed impossible for

practical purposes. A trapdoor function in this sense is not a very practical code, because the
legitimate user finds it just as hard to decode the message as the adversary does. The final twist is

Sender Receiver

1. Sender secures the briefcase
with his/her padlock and sends

2. Receiver additionally secures
the briefcase with his/her
padlock and returns

3. Sender removes his/her
padlock and sends again

4. Receiver removes his/her
padlock to access the content

Sender’s
padlock

Receiver’s
padlock

Figure 5-32: Secure transmission via untrustworthy carrier. Note that both sender and
receiver keep their own keys with them all the time—the keys are never exchanged.

Ivan Marsic Rutgers University 298

to define f in such a way that a single extra piece of information makes the computation of 1f

easy. This is the only bit of information that must be kept secret.

This alternative approach is known as public-key cryptosystems. To understand how it works, it is
helpful to examine the analogy illustrated in Figure 5-32. The process has three steps. In the first
step, the sender secures the briefcase with his or her padlock and sends. Second, upon receiving
the briefcase, the receiver secures it additionally with their own padlock and returns. Notice that
the briefcase is now doubly secured. Finally, the sender removes his padlock and re-sends. Hence,
sender manages to send a confidential document to the receiver without needing the receiver’s
key or surrendering his or her own key.

There is an inefficiency of sending the briefcase back and forth, which can be avoided as
illustrated in Figure 5-33. Here we can skip steps 1 and 2 if the receiver distributed his/her
padlock (unlocked, of course!) ahead of time. When the sender needs to send a document, i.e.,
message, he/she simply uses the receiver’s padlock to secure the briefcase and sends. Notice that,
once the briefcase is secured, nobody else but receiver can open it, not even the sender. Next I
describe how these concepts can be implemented for electronic messages.

5.5.2 Cryptographic Algorithms

Encryption has three aims: keeping data confidential; authenticating who sends data; and,
ensuring data has not been tampered with. All cryptographic algorithms involve substituting one
thing for another, which means taking a piece of plaintext and then computing and substituting
the corresponding ciphertext to create the encrypted message.

Sender

Receiver

Receiver distributes his/her padlock (unlocked)
to sender ahead of time, but keeps the key

Sender uses the receiver’s padlock
to secure the briefcase and sends

Receiver removes his/her
padlock to access the content

Receiver’s
padlock (unlocked)

Receiver’s
key

“Public key” “Private key”

Figure 5-33: Public-key cryptosystem simplifies the procedure from Figure 5-32.

Chapter 5 Design with Patterns 299

Symmetric Cryptography

The Advanced Encryption Standard has a fixed block size of 128 bits and a key size of 128, 192,
and 256 bits.

Public-Key Cryptography

As stated above, f is a trapdoor function if f is easy to compute, but 1f is very hard or

impossible for practical purposes. An example of such difficulty is factorizing a given number n
into prime numbers. An encryption algorithm that depends on this was invented by Ron Rivest,
Adi Shamir, and Leonard Adelman (RSA system) in 1978. Another example algorithm, designed
by Taher El Gamal in 1984, depends on the difficulty of the discrete logarithm problem.

In the RSA system, the receiver does as follows:

1. Randomly select two large prime numbers p and q, which always must be kept secret.

2. Select an integer number E, known as the public exponent, such that (p 1) and E have
no common divisors, and (q 1) and E have no common divisors.

3. Determine the product n = pq, known as public modulus.

4. Determine the private exponent, D, such that (ED 1) is exactly divisible by both (p 1)
and (q 1). In other words, given E, we choose D such that the integer remainder when
ED is divided by (p 1)(q 1) is 1.

5. Release publicly the public key, which is the pair of numbers n and E, K = (n, E). Keep
secret the private key, K = (n, D).

Because a digital message is a sequence of digits, break it into blocks which, when considered as
numbers, are each less than n. Then it is enough to encode block by block.

Encryption works so that the sender substitutes each plaintext block B by the ciphertext C = BE %
n, where % symbolizes the modulus operation. (The modulus of two integer numbers x and y,
denoted as x % y, is the integer remainder when x is divided by y.)

Then the encrypted message C (ciphertext) is transmitted. To decode, the receiver uses the
decoding key D, to compute B = CD % n, that is, to obtain the plaintext B from the ciphertext C.

Example 5.2 RSA cryptographic system

As a simple example of RSA, suppose the receiver chooses p = 5 and q = 7. Obviously, these are too
small numbers to provide any security, but they make the presentation manageable. Next, the receiver
chooses E = 5, because 5 and (5 1)(7 1) have no common factors. Also, n = pq = 35. Finally, the
receiver chooses D = 29, because 624

144
64

1295
)1()1(

1

qp

DE , i.e., they are exactly divisible. The

receiver’s public key is K = (n, E) = (35, 5), which is made public. The private key K = (n, D) = (35,
29) is kept secret.

Now, suppose that the sender wants to send the plaintext “hello world.” The following table shows the
encoding of “hello.” I assign to letters a numeric representation, so that a=1, b=2, …, y=25, and z=26,
and I assume that block B is one letter long. In an actual implementation, letters are represented as
binary numbers, and the blocks B are not necessarily aligned with letters, so that plaintext “l” will not
always be represented as ciphertext “12.”

Ivan Marsic Rutgers University 300

Plaintext letter
Plaintext numeric

representation
BE Ciphertext BE % n

h 8 85 = 32768 85 % 35 = 8
e 5 55 = 3125 55 % 35 = 10
l 12 125 = 248832 125 % 35 = 17
l 12 248832 17
o 15 155 = 759375 155 % 35 = 15

The sender transmits this ciphertext to the receiver: 8, 10, 17, 17, 15. Upon the receipt, the receiver
decrypts the message as shown in the following table.

Ciphertext CD B = CD % n
Plaintext

letter
8 829 = 154742504910672534362390528 829 % 35 = 8 h

10 100000000000000000000000000000 5 e
17 481968572106750915091411825223071697 12 l
17 481968572106750915091411825223071697 12 l
15 12783403948858939111232757568359375 15 o

We can see that even this toy example produces some extremely large numbers.

The point is that while the adversary knows n and E, he or she does not know p and q, so they
cannot work out (p 1)(q 1) and thereby find D. The designer of the code, on the other hand,
knows p and q because those are what he started from. So does any legitimate receiver: the
designer will have told them. The security of this system depends on exactly one thing: the
notoriously difficulty of factorizing a given number n into primes. For example, given n = 267 1
it took three years working on Sundays for F. N. Cole to find by hand in 1903 p and q for n = pq
= 193707721 761838257287. It would be waste of time (and often combinatorially self-
defeating) for the program to grind through all possible options.

Encryption strength is measured by the length of its “key,” which is expressed in bits. The larger
the key, the greater the strength of the encryption. Using 112 computers, a graduate student
decrypted one 40-bit encrypted message in a little over 7 days. In contrast, data encrypted with a
128-bit key is 309,485,009,821,345,068,724,781,056 times stronger than data encrypted with a
40-bit key. RSA Laboratories recommends that the product of p and q be on the order of 1024
bits long for corporate use and 768 bits for use with less valuable information.

5.5.3 Authentication

5.5.4 Program Security

A virus is malicious code carried from one computer to another by some medium—often an
“infected” file. Any operating system that allows third-party programs to run can theoretically run
viruses. Some operating systems are more secure than others; earlier versions of Microsoft

Chapter 5 Design with Patterns 301

Windows did not even provide something as simple as maintain memory space separation. Once
on a computer, a virus is executed when its carrier file is “opened” in some meaningful way by
software on that system. When the virus executes, it does something unwanted, such as causing
software on the host system to send more copies of infected files to other computers over the
network, infecting more files, and so on. In other words, a virus typically maximizes its
likelihood of being passed on, making itself contagious.

Viral behavior relies on security vulnerabilities that exist in software running on the host system.
For example, in the past, viruses have often exploited security vulnerabilities in Microsoft Office
macro scripting capabilities. Macro viruses are no longer among the most common virus types.
Many viruses take advantage of Trident, the rendering engine behind Internet Explorer and
Windows Explorer that is also used by almost every piece of Microsoft software. Windows
viruses often take advantage of image-rendering libraries, SQL Server’s underlying database
engine, and other components of a complete Windows operating system environment as well.

Viruses are typically addressed by antivirus software vendors. These vendors produce virus
definitions used by their antivirus software to recognize viruses on the system. Once a specific
virus is detected, the software attempts to quarantine or remove the virus—or at least inform the
user of the infection so that some action may be taken to protect the system from the virus.

This method of protection relies on knowledge of the existence of a virus, however, which means
that most of the time a virus against which you are protected has, by definition, already infected
someone else’s computer and done its damage. The question you should be asking yourself at this
point is how long it will be until you are the lucky soul who gets to be the discoverer of a new
virus by way of getting infected by it.

It’s worse than that, though. Each virus exploits a vulnerability — but they don’t all have to
exploit different vulnerabilities. In fact, it’s common for hundreds or even thousands of viruses to
be circulating “in the wild” that, between them, only exploit a handful of vulnerabilities. This is
because the vulnerabilities exist in the software and are not addressed by virus definitions
produced by antivirus software vendors.

These antivirus software vendors’ definitions match the signature of a given virus — and if
they’re really well-designed might even match similar, but slightly altered, variations on the virus
design. Sufficiently modified viruses that exploit the same vulnerability are safe from recognition
through the use of virus definitions, however. You can have a photo of a known bank robber on
the cork bulletin board at the bank so your tellers will be able to recognize him if he comes in —
but that won’t change the fact that if his modus operandi is effective, others can use the same
tactics to steal a lot of money.

By the same principle, another virus can exploit the same vulnerability without being recognized
by a virus definition, as long as the vulnerability itself isn’t addressed by the vendor of the
vulnerable software. This is a key difference between open source operating system projects and
Microsoft Windows: Microsoft leaves dealing with viruses to the antivirus software vendors, but
open source operating system projects generally fix such vulnerabilities immediately when
they’re discovered.

Thus, the main reason you don’t tend to need antivirus software on an open source system, unless
running a mail server or other software that relays potentially virus-laden files between other
systems, isn’t that nobody’s targeting your open source OS; it’s that any time someone targets it,

Ivan Marsic Rutgers University 302

chances are good that the vulnerability the virus attempts to exploit has been closed up — even if
it’s a brand-new virus that nobody has ever seen before. Any half-baked script-kiddie has the
potential to produce a new virus that will slip past antivirus software vendor virus definitions, but
in the open source software world one tends to need to discover a whole new vulnerability to
exploit before the “good guys” discover and patch it.

Viruses need not simply be a “fact of life” for anyone using a computer. Antivirus software is
basically just a dirty hack used to fill a gap in your system’s defenses left by the negligence of
software vendors who are unwilling to invest the resources to correct certain classes of security
vulnerabilities.

The truth about viruses is simple, but it’s not pleasant. The truth is that you’re being taken to the
cleaners — and until enough software users realize this, and do something about it, the software
vendors will continue to leave you in this vulnerable state where additional money must be paid
regularly to achieve what protection you can get from a dirty hack that simply isn’t as effective as
solving the problem at the source would be.

However, we should not forget that security comes at a cost.

In theory, application programs are supposed to access hardware of the computer only through
the interfaces provided by the operating system. But many application programmers who dealt
with small computer operating systems of the 1970s and early 1980s often bypassed the OS,
particularly in dealing with the video display. Programs that directly wrote bytes into video
display memory run faster than programs that didn't. Indeed, for some applications—such as
those that needed to display graphics on the video display—the operating system was totally
inadequate.

What many programmers liked most about MS-DOS was that it “stayed out of the way” and let
programmers write programs as fast as the hardware allowed. For this reason, popular software
that ran on the IBM PC often relied upon idiosyncrasies of the IBM PC hardware.

5.6 Summary and Bibliographical Notes

Design patterns are heuristics for structuring the software modules and their interactions that are
proven in practice. They yield in design for change, so the change of the computing environment
has as minimal and as local effect on the code as possible.

Key Points:

 Pattern use must be need-driven: use a pattern only when you need it to improve your
software design, not because it can be used, or you simply like hitting nails with your
new hammer.

Chapter 5 Design with Patterns 303

 Using the Broker pattern, a client object invokes methods of a remote server object,
passing arguments and receiving a return value with each call, using syntax similar to
local method calls. Each side requires a proxy that interacts with the system’s runtime.

There are many known design patterns and I have reviewed above only few of the major ones.
The text that most contributed to the popularity of patterns is [Gamma et al., 1995]. Many books
are available, perhaps the best known are [Gamma et al., 1995] and [Buschmann et al., 1996].
The reader can also find a great amount of useful information on the web. In particular, a great
deal of information is available in Hillside.net’s Patterns Library: http://hillside.net/patterns/ .

R. J. Wirfs-Brock, “Refreshing patterns,” IEEE Software, vol. 23, no. 3, pp. 45-47, May/June
2006.

Section 5.1: Indirect Communication: Publisher-Subscriber

Section 5.2: More Patterns

Section 5.3: Concurrent Programming

Concurrent systems are a large research and practice filed and here I provide only the
introductory basics. Concurrency methods are usually not covered under design patterns and it is
only for the convenience sake that here they appear in the section on software design patterns. I
avoided delving into the intricacies of Java threads—by no means is this a reference manual for
Java threads. Concurrent programming in Java is extensively covered in [Lea, 2000] and a short
review is available in [Sandén, 2004].

[Whiddett, 1987]

Pthreads tutorial: http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html

Pthreads tutorial from CS6210 (by Phillip Hutto):
http://www.cc.gatech.edu/classes/AY2000/cs6210_spring/pthreads_tutorial.htm

Section 5.4: Broker and Distributed Computing

The Broker design pattern is described in [Buschmann et al., 1996; Völter et al., 2005].

Java RMI:

Sun Developer Network (SDN) jGuru: “Remote Method Invocation (RMI),” Sun Microsystems,
Inc., Online at: http://java.sun.com/developer/onlineTraining/rmi/RMI.html

http://www.javaworld.com/javaworld/jw-04-2005/jw-0404-rmi.html

http://www.developer.com/java/ent/article.php/10933_3455311_1

Ivan Marsic Rutgers University 304

Although Java RMI works only if both client and server processes are coded in the Java
programming language, there are other systems, such as CORBA (Common Object Request
Broker Architecture), which work with arbitrary programming languages, including Java. A
readable appraisal of the state of affairs with CORBA is available in [Henning, 2006].

Section 5.5: Information Security

In an increasingly networked world, all computer users are at risk of having their personally
identifying information and private access data intercepted. Even if information is not stolen,
computing resources may be misused for criminal activities facilitated by unauthorized access to
others’ computer systems.

Kerckhoffs’ Principle states that a cryptosystem should remain secure even if everything about it
other than the key is public knowledge. The security of a system’s design is in no way dependent
upon the secrecy of the design, in and of itself. Because system designs can be intercepted, stolen,
sold, independently derived, reverse engineered by observations of the system’s behavior, or just
leaked by incompetent custodians, the secrecy of its design can never really be assumed to be
secure itself. Hence, the “security through obscurity” security model by attempting to keep
system design secret Open source movement even advocates widespread access to the design of a
system because more people can review the system’s design and detect potential problems.
Transparency ensures that the security problems tend to arise more quickly, and to be addressed
more quickly. Although an increased likelihood of security provides no guarantees of success, it
is beneficial nonetheless.

There is an entire class of software, known as “fuzzers,” that is used to quickly detect potential
security weaknesses by feeding abusive input at a target application and observing its behavior
under that stress. These are the tools that malicious security crackers use all the time to find ways
to exploit software systems. Therefore, it is not necessary to have access to software design (or its
source code) to be able to detect its security vulnerabilities. This should not be surprising, given
that software defects are rarely found by looking at source code. (Recall the software testing
techniques from Section 2.7.) Where access to source code becomes much more important is
when trying to determine why a particular weakness exists, and how to remove it. One might
conclude, then, that the open source transparency does not contribute as much to detecting
security problems as it does to fixing them.

Cryptography [Menezes et al., 1997], which is available for download, entirely, online at
http://www.cacr.math.uwaterloo.ca/hac/.

ICS 54: History of Public-Key Cryptography:
http://www.ics.uci.edu/~ics54/doc/security/pkhistory.html

http://www.netip.com/articles/keith/diffie-helman.htm

http://www.rsasecurity.com/rsalabs/node.asp?id=2248

http://www.scramdisk.clara.net/pgpfaq.html

http://postdiluvian.org/~seven/diffie.html

http://www.sans.org/rr/whitepapers/vpns/751.php

http://www.fors.com/eoug97/papers/0356.htm

Chapter 5 Design with Patterns 305

Class iaik.security.dh.DHKeyAgreement

http://www.cs.utexas.edu/users/chris/cs378/f98/resources/iaikdocs/iaik.security.dh.DHKeyAgree
ment.html

Bill Steele, “‘Fabric’ would tighten the weave of online security,” Cornell Chronicle (09/30/10):
Fabric’s programming language, which is based on Java, builds in security as the program is
written. Myers says most of what Fabric does is transparent to the programmer.
http://www.news.cornell.edu/stories/Sept10/Fabric.html

P. Dourish, R. E. Grinter, J. Delgado de la Flor, and M. Joseph, “Security in the wild: user
strategies for managing security as an everyday, practical problem,” Personal and Ubiquitous
Computing (ACM/Springer), vol. 8, no. 6, pp. 391-401, November 2004.

M. J. Ranum, “Security: The root of the problem,” ACM Queue (Special Issue: Surviving
Network Attacks), vol. 2, no. 4, pp. 44-49, June 2004.

H. H. Thompson and R. Ford, “Perfect storm: The insider, naivety, and hostility,” ACM Queue
(Special Issue: Surviving Network Attacks), vol. 2, no. 4, pp. 58-65, June 2004.
introducing trust and its pervasiveness in information technology

Microsoft offers integrated hardware-level security such as data execution prevention, kernel
patch protection and its free Security Essentials software:
http://www.microsoft.com/security_essentials/

Microsoft's 'PassPort' Out, Federation Services In
In 2004 Microsoft issued any official pronouncements on "TrustBridge," its collection of
federated identity-management technologies slated to go head-to-head with competing
technologies backed by the Liberty Alliance.
http://www.eweek.com/c/a/Windows/Microsofts-Passport-Out-Federated-Services-In/

Problems

Problem 5.1

Problem 5.2

Consider the online auction site described in Problem 2.31 (Chapter 2). Suppose you want to
employ the Publish-Subscribe (also known as Observer) design pattern in your design solution for
Problem 2.31. Which classes should implement the Publisher interface? Which classes should

Ivan Marsic Rutgers University 306

implement the Subscriber interface? Explain your answer. (Note: You can introduce new classes
or additional methods on the existing classes if you feel it necessary for solution.)

Problem 5.3

In the patient-monitoring scenario of Problem 2.35 (Chapter 2), assume that multiple recipients
must be notified about the patient condition. Suppose that your software is to use the Publish-
Subscribe design pattern. Identify the key software objects and draw a UML interaction diagram
to represent how software objects in the system could accomplish the notification problem.

Problem 5.4

Problem 5.5

Problem 5.6: Elevator Control

Consider the elevator control problem defined in Problem 3.7 (Chapter 3). Your task is
to determine whether the Publisher-Subscriber design pattern can be applied in this
design. Explain clearly your answer. If the answer is yes, identify which classes are
suitable for the publisher role and which ones are suitable for the subscriber role.
Explain your choices, list the events generated by the Publishers, and state explicitly
for each Subscriber to which events it is subscribed to.

Problem 5.7

Problem 5.8

Problem 5.9

Consider the automatic patient monitoring system described in Problem 2.35. Carefully
examine the draft UML sequence diagram in Figure 2-45. Check if the given design
already uses some patterns and explain your claim. Identify as many opportunities as you
can to improve the design by applying design patterns. Consider how an unnecessary
application of some design patterns would make this design worse. Draw UML sequence
diagrams or write pseudo-code to describe the proposed design. Always describe your motivation
for adopting or rejecting design modifications.

L 2 3 4 5 6 7
Down Up

L 2 3 4 5 6 7
Down Up

L 2 3 4 5 6 7
Down Up

Chapter 5 Design with Patterns 307

Problem 5.10

Consider the system for inventory management grocery supermarket from Problem 2.15. Suppose
you are provided with an initial software design as follows. This design is based on a basic
version of the inventory system, but the reader should be aware of extensions that are discussed in
the solution of Problem 2.15(c) and Problem 2.16. The software consists of the following classes:

ReaderIface:

This class receives messages from RFID readers that specific tags moved in or out of
coverage.

DBaseConn:

This class provides a connection to a relational database that contains data about shelf
stock and inventory tasks. The database contains several tables, including
ProductsInfo[key = tagID], PendingTasks[key = userID],
CompletedTasks, and Statistics[key = infoType] for various information
types, such as the count of erroneous messages from RFID readers and the count of
reminders sent for individual pending tasks.

Dispatcher:

This class manages inventory tasks by opening new tasks when needed and generates
notifications to the concerned store employees.

Monitor:

This class periodically keeps track of potentially overdue tasks. It retrieves the list of
pending tasks from the database and generates reminders to the concerned store
employees.

Messenger:

This class sends email notifications to the concerned store employees. (The notifications
are generated by other classes.)

Assume that email notifications are used as a supplementary tool, but the system must keep an
internal record of sent notifications and pending tasks, so it can take appropriate actions.

Notice that the current design has a single timer for the whole system. The software designer
noticed that sending notifications for overdue tasks does not need to be exactly timed in this
system. Delays up to a certain period (e.g., hour or even day) are tolerable. Maintaining many
timers would be overkill and would significantly slow down the system. It would not be able to
do important activities, such as processing RFID events in a timely fashion. Therefore, the
software is designed so that, when a new pending task is created, there is no explicit activation of
an associated timer. Instead, the task is simply added to the list of pending tasks. The Monitor
object periodically retrieves this list and checks for overdue tasks, as seen below in the design for
the use case UC-5 SendReminder.

Another simplification is to check only for “out-of-stock” events and not for “low-stock” events.
If the customer demands that “low-stock” events be included, then the design of the software-to-
be will become somewhat more complex.

Ivan Marsic Rutgers University 308

The UML sequence diagrams for all the use cases are shown in the following figures. Notice that
use cases UC-3, UC-4, and UC-6 «include» UC-7: Login (user authentication), which is not
shown to avoid clutter.

prodInfo := getProductInfo(tagID)

: Messenger : DBaseConn: Dispatcher
rfid :

ReaderIface

receive(event)

opt recordStatistics("error: unknown tagID")[prodInfo == nil]

return

decrement(prodCount)

[prodCount Threshold]

alt [prodCount < 0]

[else]

send("error: negative prodCount")

recordStatistics("error: negative prodCount")

return

email to store manager

createTask("out-of-stock")

email to store manager

send(“alert: out-of-stock")

recordPendingTask(task info)

recordProductInfo(updated product count)

recordProductInfo(updated product count)

return

Pending Task Info:
Task-type = "out-of-stock"
Assigned-time = current time
Assigned-to = Store Manager

UC1: RemoveItem

In the design for UC-1, the system may check if a pending task for the given product already
exists in the database; if yes, it should not generate a new pending task for the same product.

Chapter 5 Design with Patterns 309

UC2: AddItem

prodInfo := getProductInfo(tagID)

rfid :
ReaderIface

receive(event)

recordStatistics("error: unknown tagID")
[prodInfo == nil]

return

increment(prodCount)

alt

[else]

recordProductInfo(updated product count)

return

: DBaseConn

UC3: ViewPendingWork

: Dispatcher : DBaseConnuser interface :

view pending

[userID == manager]

tasksList := getPendingTasks(ALL)

show tasks

[else]

show error

alt

[userID == associate]

tasksList := getPendingTasks(associateID)

return error

return tasksList

getPendingTasks(userID)

ref

UC4: AssignReplenishTask

Extension:
Store Manager may
optionally run UC4
to assign a pending task

Ivan Marsic Rutgers University 310

UC4: AssignReplenishTask

: Messenger : DBaseConn: Dispatcher

view pending

[taskInfo != nil && taskType == "out-of-stock"]

email to store associate

show result

taskInfo := getPendingTaskInfo(taskID)

send("alert: task assigned")

user interface :

ref

UC3: ViewPendingWork

assign task
assignTask(taskID, associateID, …)

opt

removePendingTask(taskID)

recordPendingTask(task info)

return result

Store Manager runs
UC3 to view pending tasks
and selects one to assign

seq

Pending Task Info:
Task-type = "replenish-shelf"
Assigned-time = current time
Assigned-to = Store Associate

The [seq] interaction fragment specifies that the interactions contained within the fragment box
must occur exactly in the given order. The reason for using this constraint in UC-4 is that the
system may crash while the task is being converted from unassigned to pending. If
removePendingTask() were called first, and the system crashed after it but before
recordPendingTask(), then all information about this task would be lost! Depending on the
database implementation, it may be possible to perform these operations as atomic for they
update the same table in the database. To deal with crash scenarios where a task ends up in both
tables, the Monitor object in UC-5 SendReminder should be extended to perform a database
clean-up after a crash. It should remove those tasks from the PendingTasks table that are
marked both as unassigned and pending.

Chapter 5 Design with Patterns 311

return

pendingList := getPendingTasks()

: DBaseConn: Dispatcher

wakeup

[(currentTime task.assignTime) thresholdPendingInterval]

sendReminder(receivers, task)

: Messenger: Monitor

loop [for every task in pendingList]

email to receivers

send(“alert:: " + task.ID + " overdue")

recordStatistics(task reminder alert info)

recordPendingTask(task info)

increment task.remindAttempts

increment task.remindAttempts

UC5: SendReminder

set sleep period

opt

[task.remindAttempts < maxAttempts]alt

receivers := task.assignedTo

receivers := ALL employees (system-wide)

Note that the Monitor discards the list of pending tasks before going to sleep, so it starts every
cycle with a fresh list of pending tasks, retrieved from the database, because our assumption is
that the database contains the most current information (possibly updated by other objects).

By examining the design for the use case UC-5 SendReminder, we see that the Monitor has to do
a lot of subtractions and comparisons every time it wakes up, but this can be done at leisure
because seconds or minutes are not critical for this activity. The computing power should be
better used for other use cases. Of course, we must ensure that the Monitor still works fast enough
not to introduce delays on the order of hours or days during each cycle!

In addition, we need to handle the case where the time values are not incrementing constantly
upwards, such as when a full 24 hours passes and a new day starts, the time resets to zero. In
Java, using java.lang.System.currentTimeMillis() returns the current time in
milliseconds as a long integer.

Ivan Marsic Rutgers University 312

In the solution of Problem 2.16 we discussed using adaptive timeout calculation to adjust the
frequency of reminders for busy periods. Another option is to have shorter sleep periods, but
during each wakeup, process only part of the list of pending tasks, and leave the rest for
subsequent wakeups. Then cycle again from the head of the list. This way, the reminders will be
spread over time and not all reminders will be generated at once (avoid generating one “bulk”
notification each period).

seq

UC6: ReplenishCompleted

taskInfo := getPendingTask(taskID)

: Messenger : DBaseConn: Dispatcher

close(taskID)

[taskInfo == nil]

return error

send("alert: task completed")

prodInfo := getProductInfo(taskInfo.getProductID())

email to store manager

return

[else]

[prodCount Threshold]alt

return error

[else]

recordCompletedTask(taskInfo)

alt

removePendingTask(taskID)

The logic of UC-6 is that it first retrieves the task, checks if such a task exists, makes sure it is
really done, and finally marks it as completed. The [seq] interaction fragment specifies that the
interactions contained within the fragment box must occur exactly in the given order. Similar to
UC-4 AssignReplenishTask, this constraint is needed in case the system crashes while the task is
being closed. If removePendingTask() were called first, and the system crashed after it but
before recordCompletedTask(), then all information about this task would be lost! These
operations cannot be performed as atomic, because they work on different tables in the database.
To deal with crash scenarios where a task ends up in both tables, the Monitor object in UC-5
should be modified to perform a database clean-up after a crash. It should remove those tasks
from the PendingTasks table that are already in the CompletedTasks table.

Chapter 5 Design with Patterns 313

Notice also that the Monitor runs in a separate thread, so while UC-6 is in the process of closing a
task, the Monitor may send an unnecessary reminder about this task (in UC-5).

arefully examine the existing design and identify as many opportunities as you can to
improve the design by applying design patterns. Note that the existing design ignores the

issue of concurrency, but we will leave the multithreading issue aside for now and focus only on
the patterns that improve the quality of software design. (The concurrency issues will be
considered later in Problem 5.20.)

(a) If you introduce a pattern, first provide arguments why the existing design may be
problematic.

(b) Provide as much details as possible about how the pattern will be implemented and how the
new design will work (draw UML sequence diagrams or write pseudo-code).

(c) Explain how the pattern improved the design (i.e., what are the expected benefits compared to
the original design).

If considering future evolution and extensions of the system when proposing a modification, then
describe explicitly what new features will likely be added and how the existing design would be
inadequate to cope with resulting changes. Then introduce a design pattern and explain how the
modified version is better.

If you believe that the existing design (or some parts of it) is sufficiently good then explain how
the application of some design patterns would make the design worse. Use concrete examples and
UML diagrams or pseudo-code to illustrate and refer to specific qualities of software design.

Problem 5.11

Problem 5.12

Problem 5.13

Problem 5.14

Problem 5.15

In Section 5.3, it was stated that the standard Java idiom for condition synchronization is the
statement:

while (condition) sharedObject.wait();

(a) Is it correct to substitute the yield() method call for wait()? Explain your answer
and discuss any issues arising from the substitution.

C

Ivan Marsic Rutgers University 314

(b) Suppose that if substitutes for while, so we have:
 if (condition) sharedObject.wait()
Is this correct? Explain your answer.

Problem 5.16

Parking lot occupancy monitoring, see Figure 5-34. Consider a parking lot with the total number
of spaces equal to capacity. There is a single barrier gate with two poles, one for the entrance
and the other for the exit. A computer in the barrier gate runs a single program which controls
both poles. The program counts the current number of free spaces, denoted by occupancy, such
that

0 occupancy capacity

 When a new car enters, the occupancy is incremented by one; conversely, when a car exits, the
occupancy is decremented by one. If occupancy equals capacity, the red light should turn
on to indicate that the parking is full.

In order to be able to serve an entering and an exiting patron in parallel, you should design a
system which runs in two threads. EnterThread controls the entrance gate and ExitThread
controls the exit gate. The threads share the occupancy counter so to correctly indicate the
parking-full state. Complete the UML sequence diagram in Figure 5-35 that shows how the two
threads update the shared variable, i.e., occupancy.

FULLFULL

Figure 5-34: Parking lot occupancy monitoring, Problem 5.16.

Chapter 5 Design with Patterns 315

Hint: Your key concern is to maintain the consistent shared state (occupancy) and indicate
when the parking-full sign should be posted. Extraneous actions, such as issuing the ticket for an
entering patron and processing the payment for an exiting patron, should not be paid attention—
only make a high-level remark where appropriate.

Problem 5.17

Consider a restaurant scenario shown in Figure 5-36. You are to write a simulation in Java such
that each person runs in a different thread. Assume that each person takes different amount of
time to complete their task. The egg tray and the pickup counter have limited capacities, Neggs and
Nplates, respectively. The supplier stocks the egg tray but must wait if there are no free slots.
Likewise, the cooks must hold the prepared meal if the pickup counter is full.

Problem 5.18

A priority inversion occurs when a higher-priority thread is waiting for a lower-priority thread to
finish processing of a critical region that is shared by both. Although higher-priority threads
normally preempt lower-priority threads, this is not possible when both share the same critical
region. While the higher-priority thread is waiting, a third thread, whose priority is between the
first two, but it does not share the critical region, preempts the low-priority thread. Now the

Car

: EnterThread : ExitThread

Car

: SharedState

requestEntry()
requestExit()

Figure 5-35: UML diagram template for parking lot occupancy monitoring, Problem 5.16.

Supplier

Egg tray
Cook 1

Cook 2

Pickup
counter

Waiter

Figure 5-36: Concurrency problem in a restaurant scenario, Problem 5.17.

Ivan Marsic Rutgers University 316

higher-priority thread is waiting for more than one lower-priority thread. Search the literature and
describe precisely a possible mechanism to avoid priority inversion.

Problem 5.19

Assume that the patient device described in Problem 2.3 (at the end of Chapter 2) runs in a multi-
threaded mode, where different threads acquire and process data from different sensors. (See also
Problem 2.35 and its solution on the back of this book.) What do you believe is the optimal
number of threads? When designing this system, what kind of race conditions or other
concurrency issues can you think of? Propose a specific solution for each issue that you identify
(draw UML sequence diagrams or write pseudo-code).

Problem 5.20

Consider the supermarket inventory management system from Problem 5.10. A first observation
is that the existing design ignores the issue of concurrency—there will be many users
simultaneously removing items, and/or several associates may be simultaneously restocking the
shelves. Also, it is possible that several employees may simultaneously wish to view pending
tasks, assign replenishment tasks, or report replenishment completed. Clearly, it is necessary to
introduce multithreading even if the present system will never be extended with new features.
Modify the existing design and introduce multithreading.

Problem 5.21

Problem 5.22

Use Java RMI to implement a distributed Publisher-Subscriber design pattern.

Requirements: The publisher and subscribers are to be run on different machines. The naming
server should be used for rendezvous only; after the first query to the naming server, the publisher
should cache the contact information locally.

Handle sudden (unannounced) departures of subscribers by implementing a heartbeat protocol.

Problem 5.23

Suppose that you are designing an online grocery store. The only supported payment method will
be using credit cards. The information exchanges between the parties are shown in Figure 5-37.
After making the selection of items for purchase, the customer will be prompted to enter
information about his/her credit card account. The grocery store (merchant) should obtain this
information and relay it to the bank for the transaction authorization.

In order to provide secure communication, you should design a public-key cryptosystem as
follows. All messages between the involved parties must be encrypted for confidentiality, so that
only the appropriate parties can read the messages. Even the information about the purchased
items, payment amount, and the outcome of credit-card authorization request should be kept
confidential. Only the initial catalog information is not confidential.

Chapter 5 Design with Patterns 317

The credit card information must be encrypted by the customer so that only the bank can read it—
the merchant should relay it without being able to view the credit card information. For the sake
of simplicity, assume that all credit cards are issued by a single bank.

The message from the bank containing binary decision (“approved” or “rejected”) will be sent to
the merchant, who will forward it securely to the customer. Both the merchant and customer
should be able to read it.

Answer the following questions about the cryptosystem that is to be developed:
(a) What is the (minimum) total number of public-private key pairs (

iK ,
iK) that must be

issued? In other words, which actors need to possess a key pair, or perhaps some actors
need more than one pair?

(b) For each key pair i, specify which actor should issue this pair, to whom the public key

iK should be distributed, and at what time (prior to each shopping session or once for

multiple sessions). Provide an explanation for your answer!
(c) For each key pair i, show which actor holds the public key

iK and which actor holds the
private key

iK .
(d) For every message in Figure 5-37, show exactly which key

iK /
iK should be used in the

encryption of the message and which key should be used in its decryption.

Customer Merchant Bank

place order (“selected items")

enter credit card info (“payment amount“)

process payment (“card info")

enter selection (“items catalog“)

approve transaction (“card info“, “payment amount")

notify outcome (“result value“)

notify outcome (“result value“)

Figure 5-37: Information exchanges between the relevant parties. The quoted variables in
the parentheses represent the parameters that are passed on when the operation is invoked.

Ivan Marsic Rutgers University 318

Problem 5.24

In the Model-View-Controller design pattern, discuss the merits of having Model subscribe to the
Controller using the Publish-Subscribe design pattern? Argue whether Controller should
subscribe to the View?

319

Contents
6.1 Structure of XML Documents

6.1.1 Syntax
6.1.2 Document Type Definition (DTD)
6.1.3 Namespaces
6.1.4 XML Parsers

6.2 XML Schemas
6.2.1 XML Schema Basics
6.2.2 Models for Structured Content
6.2.3 Datatypes
6.2.4 Reuse
6.2.5 RELAX NG Schema Language

6.3 Indexing and Linking
6.3.1 XPointer and Xpath
6.3.2 XLink
6.3.3
6.2.4

6.4 Document Transformation and XSL
6.4.1
6.4.2
6.4.3
6.4.4

6.5
6.5.1
6.5.2
6.5.3
6.5.4

6.6
6.6.1
6.6.2
6.6.3

6.7 Summary and Bibliographical Notes

Problems

Chapter 6
XML and Data Representation

“Description is always a bore, both to the describer and the
describee.”

—Disraeli

XML defines a standard way to add markup to documents,
which facilitates representation, storage, and exchange of
information. A markup language is a mechanism to identify
parts of a document and to describe their logical relationships.
XML stands for “eXtensible Markup Language” (extensible
because it is not a fixed set of markup tags like HTML—
HyperText Markup Language). The language is standardized
by the World Wide Web Consortium (W3C), and all relevant
information is available at: http://www.w3.org/XML/.

Structured information contains both content (words, pictures,
etc.) and metadata describing what role that content plays (for
example, content in a section heading has a different meaning
from content in a footnote, which means something different
than content in a figure caption or content in a database table,
etc.).

XML is not a single, predefined markup language: it is a meta-
language—language for defining other languages—which lets
you design your own markup language. A predefined markup
language like HTML defines a specific vocabulary and
grammar to describe information, and the user is unable to
modify or extend either of these. Conversely, XML, being a
meta-language for markup, lets you design a new markup
language, with tags and the rules of their nesting that best suite
your problem domain.

Why cover XML in a basic software engineering text? Because so far we dealt only with program
development, but neglected data. [Brooks’s comment about code vs. data.] If you are writing
software, you are inevitably representing structured information, whether it is a configuration file,
documentation, or program’s input/output data. You need to specify how data is represented and
exchanged, i.e., the data format. But there is more to it.

Ivan Marsic Rutgers University 320

The perception and nature of the term “document” has changed over the time. In the past, a
document was a container of static information and it was often an end result of an application.
Recently, the nature of documents changed from passive to active. The documents themselves
became “live” applications. Witness the client-side event-handling scripting languages in Web
browsers, such as JavaScript. Moreover, great deal of a program’s business logic can be encoded
separately, as data, rather than hard-coded as instructions. Cf. data-driven design and reflection,
Chapter 7 below.

Structured Documents and Markup

The word “document” refers not only to traditional documents, like a book or an article, but also
to the numerous of other “data collections.” These include vector graphics, e-commerce
transactions, mathematical equations, object meta-data, server APIs, and great many other kinds
of structured information. Generally, structured document is a document in which individual parts
are identified and they are arranged in a certain pattern. Documents having structured information
include both the content as well as what the content stands for. Consider these two documents:

Unstructured Document Structured Document

Mr. Charles Morse
13 Takeoff Lane
Talkeetna, AK 99676

29 February, 1997

Mrs. Robinson
1 Entertainment Way
Los Angeles, CA 91011

Dear Mrs. Robinson,

Here’s part of an update on my first day at
the edge. I hope to relax and sow my wild
oats.

<letter>
 <sender>
 <name>Mr. Charles Morse</name>
 <address>
 <street>13 Takeoff Lane</street>
 <city>Talkeetna</city> <state>AK</state>
 <postal-code>99676</postal-code>
 </address>
 </sender>
 <date>29 February, 1997</date>
 <recipient>
 <name>Mrs. Robinson</name>
 <address>
 <street>1 Entertainment Way</street>
 <city>Los Angeles</city> <state>CA</state>
 <postal-code>91011</postal-code>
 </address>
 </recipient>
 <salutation>Dear Mrs. Robinson,</ salutation>
 <body>
 Here’s part of an update …
 </body>
 <closing>Sincerely,</closing>
 <signature>Charlie</signature>
</letter>

You probably guessed that the document on the left is a correspondence letter, because you are
familiar with human conventions about composing letters. (I highlighted the prominent parts of
the letter by gray boxes.) Also, postal addresses adhere to certain templates as well. Even if you
never heard of a city called Talkeetna, you can quickly recognize what part of the document
appears to represent a valid postal address. But, if you are a computer, not accustomed to human
conventions, you would not know what the text contains. On the other hand, the document on the

se
nd

er
’s

ad

dr
es

s
re

ci
pi

en
t’s

ad

dr
es

s

date

salutation

closing

signature

le
tte

r’s
 b

od
y

Chapter 6 XML and Data Representation 321

right has clearly identified (marked) parts and their sub-parts. Parts are marked up with tags that
indicate the nature of the part they surround. In other words, tags assign meaning/semantics to
document parts. Markup is a form of metadata, that is, document’s dictionary capturing
definitions of document parts and the relationships among them.

Having documents marked up enables automatic data processing and analysis. Computer can be
applied to extract relevant and novel information and present to the user, check official forms
whether or not they are properly filled out by users, etc. XML provides a standardized platform to
create and exchange structured documents. Moreover, XML provides a platform for specifying
new tags and their arrangements, that is, new markup languages.

XML is different from HTML, although there is a superficial similarity. HTML is a concrete and
unique markup language, while XML is a meta-language—a system for creating new markup
languages. In a markup language, such as HTML, both the tag set and the tag semantics are fixed
and only those will be recognized by a Web browser. An <h1> is always a first level heading and
the tag <letter> is meaningless. The W3C, in conjunction with browser vendors and the
WWW community, is constantly working to extend the definition of HTML to allow new tags to
keep pace with changing technology and to bring variations in presentation (stylesheets) to the
Web. However, these changes are always rigidly confined by what the browser vendors have
implemented and by the fact that backward compatibility is vital. And for people who want to
disseminate information widely, features supported only by the latest release of a particular
browser are not useful.

XML specifies neither semantics nor a tag set. The tags and grammar used in the above example
are completely made up. This is the power of XML—it allows you to define the content of your
data in a variety of ways as long as you conform to the general structure that XML requires. XML
is a meta-language for describing markup languages. In other words, XML provides a facility to
define tags and the structural relationships between them. Since there is no predefined tag set,
there cannot be any preconceived semantics. All of the semantics of XML documents will be
defined by the applications that process them.

A document has both a logical and a physical structure. The logical structure allows a document
to be divided into named parts and sub-parts, called elements. The physical structure allows
components of the document, called entities, to be named and stored separately, sometimes in
other data files so that information can be reused and non-textual data (such as images) can be
included by reference. For example, each chapter in a book may be represented by an element,
containing further elements that describe each paragraph, table and image, but image data and
paragraphs that are reused (perhaps from other documents) are entities, stored in separate files.

XML Standard

XML is defined by the W3C in a number of related specifications available here:
http://www.w3.org/TR/. Some of these include:

 Extensible Markup Language (XML), current version 1.1 (http://www.w3.org/XML/Core/) –
Defines the syntax of XML, i.e., the base XML specification.

Ivan Marsic Rutgers University 322

 Namespaces (http://www.w3.org/TR/xml-names11) – XML namespaces provide a simple
method for qualifying element and attribute names used in Extensible Markup Language
documents by associating them with namespaces identified by URI references.

 Schema (http://www.w3.org/XML/Schema) – The schema language, which is itself
represented in XML, provides a superset of the capabilities found in XML document type
definitions (DTDs). DTDs are explained below.

 XML Pointer Language (XPointer) (http://www.w3.org/TR/xptr/) and XML Linking
Language (XLink) (http://www.w3.org/TR/xlink/) – Define a standard way to represent links
between resources. In addition to simple links, like HTML’s <A> tag, XML has
mechanisms for links between multiple resources and links between read-only resources.
XPointer describes how to address a resource, XLink describes how to associate two or
more resources.

 XML Path Language (XPath) (http://www.w3.org/TR/xpath20/) – Xpath is a language for
addressing parts of an XML document, designed to be used by both XSLT and XPointer.

 Extensible Stylesheet Language (XSL) (http://www.w3.org/TR/xsl/) and XSL
Transformations (XSLT) (http://www.w3.org/TR/xslt/) – Define the standard stylesheet
language for XML.

Unlike programming languages, of which there are many, XML is universally accepted by all
vendors. The rest of the chapter gives a brief overview and relevant examples.

6.1 Structure of XML Documents

6.1.1 Syntax

Syntax defines how the words of a language are arranged into phrases and sentences and how
components (like prefixes and suffixes) are combined to make words. XML documents are
composed of markup and content—content (text) is hierarchically structured by markup tags.
There are six kinds of markup that can occur in an XML document: elements, entity references,
comments, processing instructions, marked sections, and document type declarations. The
following subsections introduce each of these markup concepts.

Elements

Elements indicate logical parts of a document and they are the most common form of markup. An
element is delimited by tags which are surrounded by angle brackets (“<”, “>” and “</”, “/>”).
The tags give a name to the document part they surround—the element name should be given to
convey the nature or meaning of the content. A non-empty element begins with a start-tag,
<tag>, and ends with an end-tag, </tag>. The text between the start-tag and end-tag is called
the element’s content. In the above example of a letter document, the element

Chapter 6 XML and Data Representation 323

<salutation>Dear Mrs. Robinson,</salutation> indicates the salutation part of
the letter. Rules for forming an element name are:

 Must start with a letter character

 Can include all standard programming language identifier characters, i.e.,
[0-9A-Za-z] as well as underscore _, hyphen -, and colon :

 Is case sensitive, so <name> and <Name> are different element names

Some elements may be empty, in which case they have no content. An empty element can begin
and end at the same place in which case it is denoted as <tag/>. Elements can contain sub-
elements. The start tag of an element can have, in addition to the element name, related (attribute,
value) pairs. Elements can also have mixed content where character data can appear alongside
subelements, and character data is not confined to the deepest subelements. Here is an example:

 <salutation>Dear <name>Mrs. Robinson</name>, </salutation>

Notice the text appearing between the element <salutation> and its child element <name>.

Attributes

Attributes are name-value pairs that occur inside start-tags after the element name. A start tag can
have zero or more attributes. For example,

<date format="English_US">

is an element named date with the attribute format having the value English_US, meaning
that month is shown first and named in English. Attribute names are formed using the same rules
as element names (see above). In XML, all attribute values must be quoted. Both single and
double quotes can be used, provided they are correctly matched.

Entities and Entity References

XML reserves some characters to distinguish markup from plain text (content). The left angle
bracket, <, for instance, identifies the beginning of an element’s start- or end-tag. To support the
reserved characters as part of content and avoid confusion with markup, there must be an
alternative way to represent them. In XML, entities are used to represent these reserved
characters. Entities are also used to refer to often repeated or varying text and to include the
content of external files. In this sense, entities are similar to macros.

Every entity must have a unique name. Defining your own entity names is discussed in the
section on entity declarations (Section 6.1.2 below). In order to use an entity, you simply
reference it by name. Entity references begin with the ampersand and end with a semicolon, like
this &entityname;. For example, the lt entity inserts a literal < into a document. So to
include the string <non-element> as plain text, not markup, inside an XML document all
reserved characters should be escaped, like so <non-element>.

A special form of entity reference, called a character reference, can be used to insert arbitrary
Unicode characters into your document. This is a mechanism for inserting characters that cannot
be typed directly on your keyboard.

Ivan Marsic Rutgers University 324

Character references take one of two forms: decimal references, ℞, and hexadecimal
references, ℞. Both of these refer to character number U+211E from Unicode (which is
the standard Rx prescription symbol).

Comments

A comment begins with the characters <!-- and ends with -->. A comment can span multiple
lines in the document and contain any data except the literal string “--.” You can place
comments anywhere in your document outside other markup. Here is an example:
 <!-- ********************
 My comment is imminent.
 -->

Comments are not part of the textual content of an XML document and the parser will ignore
them. The parser is not required to pass them along to the application, although it may do so.

Processing Instructions

Processing instructions (PIs) allow documents to contain instructions for applications that will
import the document. Like comments, they are not textually part of the XML document, but this
time around the XML processor is required to pass them to an application.

Processing instructions have the form: <?name pidata?>. The name, called the PI target,
identifies the PI to the application. For example, you might have <?font start italic?>
and <?font end italic?>, which indicate the XML processor to start italicizing the text
and to end, respectively.

Applications should process only the targets they recognize and ignore all other PIs. Any data that
follows the PI target is optional; it is for the application that recognizes the target. The names
used in PIs may be declared as notations in order to formally identify them. Processing instruction
names beginning with xml are reserved for XML standardization.

CDATA Sections

In a document, a CDATA section instructs the parser to ignore the reserved markup characters. So,
instead of using entities to include reserved characters in the content as in the above example of
<non-element>, we can write:

 <![CDATA[<non-element>]]>

Between the start of the section, <![CDATA[and the end of the section,]]>, all character data
are passed verbatim to the application, without interpretation. Elements, entity references,
comments, and processing instructions are all unrecognized and the characters that comprise them
are passed literally to the application. The only string that cannot occur in a CDATA section is
“]]>”.

Chapter 6 XML and Data Representation 325

Document Type Declarations (DTDs)

Document type declarations (DTDs) are reviewed in Section 6.1.2 below. DTD is used mainly to
define constraints on the logical structure of documents, that is, the valid tags and their
arrangement/ordering.

This is about as much as an average user needs to know about XML. Obviously, it is simple and
concise. XML is designed to handle almost any kind of structured data—it constrains neither the
vocabulary (set of tags) nor the grammar (rules of how the tags combine) of the markup language
that the user intends to create. XML allows you to create your own tag names. Another way to
think of it is that XML only defines punctuation symbols and rules for forming “sentences” and
“paragraphs,” but it does not prescribe any vocabulary of words to be used. Inventing the
vocabulary is left to the language designer.

But for any given application, it is probably not meaningful for tags to occur in a completely
arbitrary order. From a strictly syntactic point of view, there is nothing wrong with such an XML
document. So, if the document is to have meaning, and certainly if you are writing a stylesheet or
application to process it, there must be some constraint on the sequence and nesting of tags,
stating for example, that a <chapter> that is a sub-element of a <book> tag, and not the other
way around. These constraints can be expressed using an XML schema (Section 6.2 below).

XML Document Example

The letter document shown initially in this chapter can be represented in XML as follows:

Listing 6-1: Example XML document of a correspondence letter.
 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!-- Comment: A personal letter marked up in XML. -->
 3 <letter language="en-US" template="personal">
 4 <sender>
 5 <name>Mr. Charles Morse</name>
 6 <address kind="return">
 7 <street>13 Takeoff Lane</street>
 8 <city>Talkeetna</city><state>AK</state>
 9 <postal-code>99676</postal-code>
10 </address>
11 </sender>
12 <date format="English_US">February 29, 1997</date>
13 <recipient>
14 <name>Mrs. Robinson</name>
15 <address kind="delivery">
16 <street>1 Entertainment Way</street>
17 <city>Los Angeles</city><state>CA</state>
18 <postal-code>91011</postal-code>
19 </address>
20 </recipient>
21 <salutation style="formal">Dear Mrs. Robinson,</ salutation>
22 <body>
23 Here's part of an update ...
24 </body>
25 <closing>Sincerely,</closing>

Ivan Marsic Rutgers University 326

26 <signature>Charlie</signature>
27 </letter>

Line 1 begins the document with a processing instruction <?xml ... ?>. This is the XML
declaration, which, although not required, explicitly identifies the document as an XML
document and indicates the version of XML to which it was authored.

A variation on the above example is to define the components of a postal address (lines 6–9 and
14–17) as element attributes:
 <address kind="return" street="13 Takeoff Lane" city="Talkeetna"
 state="AK" postal-code="99676" />

Notice that this element has no content, i.e., it is an empty element. This produces a more concise
markup, particularly suitable for elements with well-defined, simple, and short content.

One quickly notices that XML encourages naming the elements so that the names describe the
nature of the named object, as opposed to describing how it should be displayed or printed. In this
way, the information is self-describing, so it can be located, extracted, and manipulated as
desired. This kind of power has previously been reserved for organized scalar information
managed by database systems.

You may have also noticed a potential hazard that comes with this freedom—since people may
define new XML languages as they please, how can we resolve ambiguities and achieve common
understanding? This is why, although the core XML is very simple, there are many XML-related
standards to handle translation and specification of data. The simplest way is to explicitly state
the vocabulary and composition rules of an XML language and enforce those across all the
involved parties. Another option, as with natural languages, is to have a translator in between, as
illustrated in Figure 6-1. The former solution employs XML Schemas (introduced in Section 6.2
below), and the latter employs transformation languages (introduced in Section 6.4 below).

Well-Formedness

A text document is an XML document if it has a proper syntax as per the XML specification.
Such document is called a well-formed document. An XML document is well-formed if it
conforms to the XML syntax rules:

 Begins with the XML declaration <?xml ... ?>

 Has exactly one root element, called the root or document, and no part of it can appear in
the content of any other element

XML language for letters, variant 1

<address kind="return“
street="13 Takeoff Lane“
city="Talkeetna"
state="AK“
zip="99676" />

<address kind="return“
street="13 Takeoff Lane“
city="Talkeetna"
state="AK“
zip="99676" />

<address kind="return">
<street>13 Takeoff Lane</street>
<city>Talkeetna</city>
<state>AK</state>
<postal-code>99676</postal-code>

</address>

<address kind="return">
<street>13 Takeoff Lane</street>
<city>Talkeetna</city>
<state>AK</state>
<postal-code>99676</postal-code>

</address>

XML language for letters, variant 2

Translator

Figure 6-1: Different XML languages can be defined for the same domain and/or concepts.
In such cases, we need a “translator” to translate between those languages.

Chapter 6 XML and Data Representation 327

 Contains one or more elements delimited by start-tags and end-tags (also remember that
XML tags are case sensitive)

 All elements are closed, that is all start-tags must match end-tags

 All elements must be properly nested within each other, such as
<outer><inner>inner content</inner></outer>

 All attribute values must be within quotations

 XML entities must be used for special characters. Each of the parsed entities that are
referenced directly or indirectly within the document is well-formed.

Even if documents are well-formed they can still contain errors, and those errors can have serious
consequences. XML Schemas (introduced in Section 6.2 below) provide further level of error
checking. A well-formed XML document may in addition be valid if it meets constraints
specified by an associated XML Schema.

Document- vs. Data-Centric XML

Generally speaking, there are two broad application areas of XML technologies. The first relates
to document-centric applications, and the second to data-centric applications. Because XML can
be used in so many different ways, it is important to understand the difference between these two
categories. (See more at http://www.xmleverywhere.com/newsletters/20000525.htm)

Initially, XML’s main application was in semi-structured document representation, such as
technical manuals, legal documents, and product catalogs. The content of these documents is
typically meant for human consumption, although it could be processed by any number of
applications before it is presented to humans. The key element of these documents is semi-
structured marked-up text. A good example is the correspondence letter in Listing 6-1 above.

By contrast, data-centric XML is used to mark up highly structured information such as the
textual representation of relational data from databases, financial transaction information, and
programming language data structures. Data-centric XML is typically generated by machines and
is meant for machine consumption. It is XML’s natural ability to nest and repeat markup that
makes it the perfect choice for representing these types of data.

Key characteristics of data-centric XML:

 The ratio of markup to content is high. The XML includes many different types of tags.
There is no long-running text.

 The XML includes machine-generated information, such as the submission date of a
purchase order using a date-time format of year-month-day. A human authoring an XML
document is unlikely to enter a date-time value in this format.

 The tags are organized in a highly structured manner. Order and positioning matter,
relative to other tags. For example, TBD

 Markup is used to describe what a piece of information means rather than how it should
be presented to a human.

Ivan Marsic Rutgers University 328

An interesting example of data-centric XML is the XML Metadata Interchange (XMI), which is
an OMG standard for exchanging metadata information via XML. The most common use of XMI
is as an interchange format for UML models, although it can also be used for serialization of
models of other languages (metamodels). XMI enables easy interchange of metadata between
UML-based modeling tools and MOF (Meta-Object Facility)-based metadata repositories in
distributed heterogeneous environments. For more information see here:
http://www.omg.org/technology/documents/formal/xmi.htm.

6.1.2 Document Type Definition (DTD)

Document Type Definition (DTD) is a schema language for XML inherited from SGML, used
initially, before XML Schema was developed. DTD is one of ways to define the structure of
XML documents, i.e., the document’s metadata.

Syntactically, a DTD is a sequence of declarations. There are four kinds of declarations in XML:
(1) element type declarations, used to define tags; (2) attribute list declarations, used to define tag
attributes; (3) entity declarations, used to define entities; and, (4) notation declarations, used to
define data type notations. Each declaration has the form of a markup representation, starting with
a keyword followed by the production rule that specifies how the content is created:

<!keyword production-rule>

where the possible keywords are: ELEMENT, ATTLIST (for attribute list), ENTITY, and
NOTATION. Next, I describe these declarations.

Element Type Declarations

Element type declarations identify the names of elements and the nature of their content, thus
putting a type constraint on the element. A typical element type declaration looks like this:

<!ELEMENT chapter (title, paragraph+, figure?)>
<!ELEMENT title (#PCDATA)>

Declaration type Element name Element’s content model (definition of allowed
content: list of names of child elements)

The first declaration identifies the element named chapter. Its content model follows the
element name. The content model defines what an element may contain. In this case, a chapter
must contain paragraphs and title and may contain figures. The commas between element names
indicate that they must occur in succession. The plus after paragraph indicates that it may be
repeated more than once but must occur at least once. The question mark after figure indicates
that it is optional (it may be absent). A name with no punctuation, such as title, must occur
exactly once. The following table summarizes the meaning of the symbol after an element:

Kleene symbol Meaning
none The element must occur exactly once

? The element is optional (zero or one occurrence allowed)
* The element can be skipped or included one or more times
+ The element must be included one or more times

Declarations for paragraphs, title, figures and all other elements used in any content model must
also be present for an XML processor to check the validity of a document. In addition to element

Chapter 6 XML and Data Representation 329

names, the special symbol #PCDATA is reserved to indicate character data. The PCDATA stands
for parseable character data.

Elements that contain only other elements are said to have element content. Elements that contain
both other elements and #PCDATA are said to have mixed content. For example, the definition
for paragraphs might be

<!ELEMENT paragraph (#PCDATA | quote)*>

The vertical bar indicates an “or” relationship, the asterisk indicates that the content is optional
(may occur zero or more times); therefore, by this definition, paragraphs may contain zero or
more characters and quote tags, mixed in any order. All mixed content models must have this
form: #PCDATA must come first, all of the elements must be separated by vertical bars, and the
entire group must be optional.

Two other content models are possible: EMPTY indicates that the element has no content (and
consequently no end-tag), and ANY indicates that any content is allowed. The ANY content model
is sometimes useful during document conversion, but should be avoided at almost any cost in a
production environment because it disables all content checking in that element.

Attribute List Declarations

Elements which have one or more attributes are to be specified in the DTD using attribute list
type declarations. An example for a figure element could be like so

<!ATTLIST figure caption CDATA #REQUIRED
 scaling CDATA #FIXED "100%">
Declaration type Name of the

associated
element

 Names of attributes Data type Keyword or default value

Repeat for each attribute of the element

The CDATA as before stands for character data and #REQUIRED means that the caption attribute
of figure has to be present. Other marker could be #FIXED with a value, which means this
attribute acts like a constant. Yet another marker is #IMPLIED, which indicates an optional
attribute. Some more markers are ID and enumerated data type like so

<!ATTLIST person sibling (brother | sister) #REQUIRED>

Enumerated attributes can take one of a list of values provided in the declaration.

Entity Declarations

As stated above, entities are used as substitutes for reserved characters, but also to refer to often
repeated or varying text and to include the content of external files. An entity is defined by its
name and an associated value. An internal entity is the one for which the parsed content
(replacement text) lies inside the document, like so:

<!ENTITY substitute "This text is often repeated.">

Declaration type Entity name Entity value (any literal) – single or double quotes can
be used, but must be properly matched

Once the above example entity is defined, it can be used in the XML document as
&substitute; anywhere where the full text should appear. Entities can contain markup as

Ivan Marsic Rutgers University 330

well as plain text. For example, this declaration defines &contact; as an abbreviation for
person’s contact information that may be repeated multiple times in one or more documents:

<!ENTITY contact '
 e-mail

telephone
<address>13 Takeoff Lane
 Talkeetna, AK 99676</address>
'>

Conversely, the content of the replacement text of an external entity resides in a file separate from
the XML document. The content can be accessed using either system identifier, which is a URI
(Uniform Resource Identifier, see Appendix C) address, or a public identifier, which serves as a
basis for generating a URI address. Examples are:

<!ENTITY contact SYSTEM "http://any.company.com/contact.xml">
<!ENTITY surrogate PUBLIC "-//home/mrsmith/text"

Declaration type Entity name SYSTEM or PUBLIC identifier, followed by the external ID (URI or other)

Notation Declarations

Notations are used to associate actions with entities. For example, a PDF file format can be
associated with the Acrobat application program. Notations identify, by name, the format of these
actions. Notation declarations are used to provide an identifying name for the notation. They are
used in entity or attribute list declarations and in attribute specifications. This is a complex and
controversial feature of DTD and the interested reader should seek details elsewhere.

DTD in Use

A DTD can be embedded in the XML document for which it describes the syntax rules and this is
called an internal DTD. The alternative is to have the DTD stored in one or more separate files,
called external DTD. External DTDs are preferable since they can be reused in different XML
documents by different users. The reader should be by now aware of the benefits of modular
design, a key one being able to (re-)use modules that are tested and fixed by previous users.
However, this also means that if the reused DTD module is changed, all documents that use the
DTD must be tested against the new DTD and possibly modified to conform to the changed DTD.
In an XML document, external DTDs are referred to with a DOCTYPE declaration in the second
line of the XML document (after the first line: <?xml ... ?>) as seen in Listing 6-3 below.

The following fragment of DTD code defines the production rules for constructing book
documents.

Listing 6-2: Example DTD for a postal address element. File name: address.dtd
 1 <!ELEMENT address (street+, city, state, postal-code)>
 2 <!ATTLIST address kind (return | delivery) #IMPLIED>
 3 <!ELEMENT street (#PCDATA)>
 4 <!ELEMENT city (#PCDATA)>
 5 <!ELEMENT state (#PCDATA)>
 6 <!ELEMENT postal-code (#PCDATA)>

Chapter 6 XML and Data Representation 331

Line 1 shows the element address definition, where all four sub-elements are required, and the
street sub-element can appear more than once. Line 2 says that address has an optional
attribute, kind, of the enumerated type.

We can (re-)use the postal address declaration as an external DTD, for example, in an XML
document of a correspondence letter as shown in Listing 6-3.

Listing 6-3: Example correspondence letter that uses an external DTD.
 1 <?xml version="1.0"?> <!-- Comment: Person DTD -->
 2 <!DOCTYPE letter SYSTEM "http://any.website.net/address.dtd" [
 3 <!ELEMENT letter (sender?, recipient+, body)>
 4 <!ATTLIST letter language (en-US | en-UK | fr) #IMPLIED
 4a template (personal | business) #IMPLIED>
 5 <!ELEMENT sender (name, address)>
 6 <!ELEMENT recipient (name, address)>
 7 <!ELEMENT name (#PCDATA)>
 8 <!ELEMENT body ANY>
 9]>
10
11 <letter language="en-US" template="personal">
12 <sender>
13 <name>Mr. Charles Morse</name>
14 <address kind="return">

 . . . <!-- continued as in Listing 6-1 above -->

In the above DTD document, Lines 2 – 9 define the DTD for a correspondence letter document.
The complete DTD is made up of two parts: (1) the external DTD subset, which in this case
imports a single external DTD named address.dtd in Line 2; and (2) the internal DTD subset
contained between the brackets in Lines 3 – 8. The external DTD subset will be imported at the
time the current document is parsed. The address element is used in Lines 5 and 6.

The content of the body of letter is specified using the keyword ANY (Line 8), which means that a
body element can contain any content, including mixed content, nested elements, and even other
body elements. Using ANY is appropriate initially when beginning to design the DTD and
document structure to get quickly to a working version. However, it is a very poor practice to use
ANY in finished DTD documents.

Limitations of DTDs

DTD provided the first schema for XML documents. Their limitations include:

 Language inconsistency since DTD uses a non-XML syntax

 Failure to support namespace integration

 Lack of modular vocabulary design

 Rigid content models (cannot derive new type definitions based on the old ones)

 Lack of integration with data-oriented applications

Ivan Marsic Rutgers University 332

 Conversely, XML Schema allows much more expressive and precise specification of the
content of XML documents. This flexibility also carries the price of complexity.

W3C is making efforts to phase DTDs out. XML Schema is described in Section 6.2 below.

6.1.3 Namespaces

Inventing new languages is an arduous task, so it will be beneficial if we can reuse (parts of) an
existing XML language (defined by a schema). Also, there are many occasions when an XML
document needs to use markups defined in multiple schemas, which may have been developed
independently. As a result, it may happen that some tag names may be non-unique.

For example, the word “title” is used to signify the name of a book or work of art, a form of
nomenclature indicating a person’s status, the right to ownership of property, etc. People easily
figure out context, but computers are very poor at absorbing contextual information. To simplify
the computer’s task and give a specific meaning to what might otherwise be an ambiguous term,
we qualify the term with and additional identifier—a namespace identifier.

An XML namespace is a collection of names, used as element names or attribute names, see
examples in Figure 6-2. The C++ programming language defines namespaces and Java package
names are equivalent to namespaces. Using namespaces, you can qualify your elements as
members of a particular context, thus eliminating the ambiguity and enabling namespace-aware
applications to process your document correctly. In other words:

Qualified name (QName) = Namespace identifier + Local name

A namespace is declared as an attribute of an element. The general form is as follows:

<bk:tagName xmlns :bk = "http://any.website.net/book" />

mandatory prefix namespace name

There are two forms of namespace declarations due to the fact that the prefix is optional. The first
form binds a prefix to a given namespace name. The prefix can be any string starting with a letter,
followed by any combination of digits, letters, and punctuation signs (except for the colon “:”
since it is used to separate the mandatory string xmlns from the prefix, which indicates that we
are referring to an XML namespace). The namespace name, which is the attribute value, must be
a valid, unique URI. However, since all that is required from the name is its uniqueness, a URL

http://any.website.net/book

title

author
chapter

paragraph

figure

caption

http://any.website.net/person

title

name
address

email

phone

gender

Figure 6-2: Example XML namespaces providing context to individual names.

Chapter 6 XML and Data Representation 333

such as http://any.website.net/schema also serves the purpose. Note that this does
not have to point to anything in particular—it is merely a way to uniquely label a set of names.

The namespace is in effect within the scope of the element for which it is defined as an attribute.
This means that the namespace is effective for all the nested elements, as well. The scoping
properties of XML namespaces are analogous to variable scoping properties in programming
languages, such as C++ or Java. The prefix is used to qualify the tag names, as in the following
example:

Listing 6-4: Example of using namespaces in an XML document.
 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <book>
 3 <bk:cover xmlns:bk="http://any.website.net/book">
 4 <bk:title>A Book About Namespaces</bk:title>
 5 <bk:author>Anonymous</bk:title>
 6 <bk:isbn number="1881378241"/>
 7 </bk:cover>
 8 <bk2:chapter xmlns:bk2="http://any.website.net/book"
 9 ch_name="Introduction">
10 <bk2:paragraph>
11 In this chapter we start from the beginning.
12 ...
13 </bk2:paragraph>
14 . . .
15 </bk2:chapter>

As can be seen, the namespace identifier must be declared only in the outermost element. In our
case, there are two top-level elements: <bk:cover> and <bk:chapter>, and their embedded
elements just inherit the namespace attribute(s). All the elements of the namespace are prefixed
with the appropriate prefix, in our case “bk.” The actual prefix’s name is not important, so in the
above example I define “bk” and “bk2” as prefixes for the same namespace (in different
scopes!). Notice also that an element can have an arbitrary number of namespace attributes, each
defining a different prefix and referring to a different namespace.

In the second form, the prefix is omitted, so the elements of this namespace are not qualified. The
namespace attribute is bound to the default namespace. For the above example (Listing 6-4), the
second form can be declared as:

Listing 6-5: Example of using a default namespace.
 1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 2 <book>
 3 <cover xmlns="http://any.website.net/book">
 4 <title>A Book About Namespaces</title>
 5 <author>Anonymous</title>
 6 <isbn number="1881378241"/>
 7 </cover>
 8 . . .

Notice that there can be at most one default namespace declared within a given scope. In Listing
6-5, we can define another default namespace in the same document, but its scope must not
overlap with that of the first one.

Sc
op

e
of

 "b
k"

Sc

op
e

of
 "b

k2
"

Sc
op

e
of

 d
ef

au
lt

n.
s.

Ivan Marsic Rutgers University 334

6.1.4 XML Parsers

The parsers define standard APIs to access and manipulate the parsed XML data. The two most
popular parser APIs are DOM (Document Object Model) based and SAX (Simple API for XML).
See Appendix E for a brief review of DOM.

SAX and DOM offer complementary paradigms to access the data contained in XML documents.
DOM allows random access to any part of a parsed XML document. To use DOM APIs, the
parsed objects must be stored in the working memory. Conversely, SAX provides no storage and
presents the data as a linear stream. With SAX, if you want to refer back to anything seen earlier
you have to implement the underlying mechanism yourself. For example, with DOM an
application program can import an XML document, modify it in arbitrary order, and write back
any time. With SAX, you cannot perform the editing arbitrarily since there is no stored document
to edit. You would have to edit it by filtering the stream, as it flows, and write back immediately.

Event-Oriented Paradigm: SAX

SAX (Simple API for XML) is a simple, event-based API for XML parsers. The benefit of an
event-based API is that it does not require the creation and maintenance of an internal
representation of the parsed XML document. This makes possible parsing XML documents that
are much larger than the available system memory would allow, which is particularly important
for small terminals, such as PDAs and mobile phones. Because it does not require storage behind
its API, SAX is complementary to DOM.

Chapter 6 XML and Data Representation 335

SAX provides events for the following structural information for XML documents:

 The start and end of the document

 Document type declaration (DTD)

 The start and end of elements

 Attributes of each element

 Character data

 Unparsed entity declarations

 Notation declarations

 Processing instructions

Object-Model Oriented Paradigm: DOM

DOM (Document Object Model)

Practical Issues

Additional features relevant for both event-oriented and object-model oriented parsers include:

 Validation against a DTD

Initiating the parser
. . .

Parser parser =
ParserFactory.makeParser
("com.sun.xml.parser.Parser");

parser.setDocumentHandler(new
DocumentHandlerImpl());

parser.parse (input);

. . .

DocumentHandler Interface

public void startDocument()throws
SAXException{}

public void endDocument()throws
SAXException{}

public void startElement(String name,
AttributeList attrs) throws
SAXException{}

public void endElement(String
name)throws SAXException{}

public void characters(char buf [],
int offset, int len)throws
SAXException{}

<?xml ...>

<element attr1=“val1”>

This is a test.

</element>

<element attr1=“val2”/>

end of the document

startDocument

startElement

characters

endElement

endDocument

Document
Handler

Event triggering in SAX parser:

Figure 6-3: SAX parser Java example.

Ivan Marsic Rutgers University 336

 Validation against an XML Schema

 Namespace awareness, i.e., the ability to determine the namespace URI of an element or
attribute

These features affect the performance and memory footprint of a parser, so some parsers do not
support all the features. You should check the documentation for the particular parser as to the list
of supported features.

6.2 XML Schemas

Although there is no universal definition of schema, generally scholars agree that schemas are
abstractions or generalizations of our perceptions of the world around us, which is molded by our
experience. Functionally, schemas are knowledge structures that serve as heuristics which help us
evaluate new information. An integral part of schema is our expectations of people, place, and
things. Schemas provide a mechanism for describing the logical structure of information, in the
sense of what elements can or should be present and how they can be arranged. Deviant news
results in violation of these expectations, resulting in schema incongruence.

In XML, schemas are used to make a class of documents adhere to a particular interface and thus
allow the XML documents to be created in a uniform way. Stated another way, schemas allow a
document to communicate meta-information to the parser about its content, or its grammar. Meta-
information includes the allowed sequence and arrangement/nesting of tags, attribute values and
their types and defaults, the names of external files that may be referenced and whether or not
they contain XML, the formats of some external (non-XML) data that may be referenced, and the
entities that may be encountered. Therefore, schema defines the document production rules.
XML documents conforming to a particular schema are said to be valid documents. Notice that
having a schema associated with a given XML document is optional. If there is a schema for a
given document, it must appear before the first element in the document.

Here is a simple example to motivate the need for schemas. In Section 6.1.1 above I introduced
an XML representation of a correspondence letter and used the tags <letter>, <sender>,
<name>, <address>, <street>, <city>, etc., to mark up the elements of a letter. What if
somebody used the same vocabulary in a somewhat different manner, such as the following?

Listing 6-6: Variation on the XML example document from Listing 6-1.
 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <letter>
 3 <sender>Mr. Charles Morse</sender>
 4 <street>13 Takeoff Lane</street>
 5 <city>Talkeetna, AK 99676</city>
 6 <date>29.02.1997</date>
 7 <recipient>Mrs. Robinson</recipient>
 8 <street>1 Entertainment Way</street>
 9 <city>Los Angeles, CA 91011</city>
10 <body>
11 Dear Mrs. Robinson,
12

Chapter 6 XML and Data Representation 337

13 Here's part of an update ...
14
15 Sincerely,
16 </body>
17 <signature>Charlie</signature>
18 </letter>

We can quickly figure that this document is a letter, although it appears to follow different rules
of production than the example in Listing 6-1 above. If asked whether Listing 6-6 represents a
valid letter, you would likely respond: “It probably does.” However, to support automatic
validation of a document by a machine, we must precisely specify and enforce the rules and
constraints of composition. Machines are not good at handling ambiguity and this is what
schemas are about. The purpose of a schema in markup languages is to:

 Allow machine validation of document structure

 Establish a contract (how an XML document will be structured) between multiple parties
who are exchanging XML documents

There are many other schemas that are used regularly in our daily activities. Another example
schema was encountered in Section 2.3.3—the schema for representing the use cases of a
system-to-be, Figure 2-13.

6.2.1 XML Schema Basics

XML Schema provides the vocabulary to state the rules of document production. It is an XML
language for which the vocabulary is defined using itself. That is, the elements and datatypes that

http://www.w3.org/2001/XMLSchema

schema

element

complexType

sequence

string

boolean

http://any.website.net/letter

letter

sender

address

street

name

salutation

This is the vocabulary that
XML Schema provides to define
your new vocabulary

recipient

city

<?xml version="1.0" encoding="UTF-8"?>
<lt:letter xmlns:lt ="http://any.website.net/letter"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://any.website.net/letter

http://any.website.net/letter/letter.xsd"
lt:language="English_US" lt:template="personal">

<lt:sender>
...

</lt:letter>

An instance document that conforms to the “letter” schema

Figure 6-4: Using XML Schema. Step 1: use the Schema vocabulary to define a new XML
language (Listing 6-7). Step 2: use both to produce valid XML documents (Listing 6-8).

Ivan Marsic Rutgers University 338

are used to construct schemas, such as <schema>, <element>, <sequence>, <string>,
etc., come from the http://www.w3.org/2001/XMLSchema namespace, see Figure 6-4.
The XML Schema namespace is also called the “schema of schemas,” for it defines the elements
and attributes used for defining new schemas.

The first step involves defining a new language (see Figure 6-4). The following is an example
schema for correspondence letters, an example of which is given in Listing 6-1 above.

Listing 6-7: XML Schema for correspondence letters (see an instance in Listing 6-1).
 1
 2
 2a
 2b
 2c
 3
 4
 5
 6
 6a
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27a
28
29
30
31
32
33
34

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://any.website.net/letter"
 xmlns="http://any.website.net/letter"
 elementFormDefault="qualified">
 <xsd:element name="letter">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="sender" type="personAddressType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="recipient" type="personAddressType"/>
 <xsd:element name="salutation" type="xsd:string"/>
 <xsd:element name="body" type="xsd:string"/>
 <xsd:element name="closing" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="language" type="xsd:language"/>
 <xsd:attribute name="template" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="personAddressType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element ref="address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="address">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="postal-code" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The graphical representation of document structure defined by this schema is shown in Figure
6-5. The explanation of the above listing is as follows:

Line 1: This indicates that XML Schemas are XML documents.

Chapter 6 XML and Data Representation 339

Line 2: Declares the xsd: namespace. A common convention is to use the prefix xsd: for
elements belonging to the schema namespace. Also notice that all XML Schemas have
<schema> as the root element—the rest of the document is embedded into this element.

Line 2a: Declares the target namespace as http://any.website.net/letter—the
elements defined by this schema are to go in the target namespace.

Line 2b: The default namespace is set to http://any.website.net/letter—same
as the target namespace—so the elements of this namespace do not need the namespace
qualifier/prefix (within this schema document).

Line 2c: This directive instructs the instance documents which conform to this schema that
any elements used by the instance document which were declared in this schema must be
namespace qualified. The default value of elementFormDefault (if not specified) is

lt:address

anonymous type

anonymous type

lt:letter

lt:signature

lt:closing

lt:body

lt:salutation

lt:recipient

lt:sender

lt:postal-code

lt:state

lt:city

lt:personAddressType

lt:sender

lt:name

lt:address

lt:template

lt:language

lt:street
+

?

?

lt:date
?

lt:address

anonymous type

anonymous type

lt:letterlt:letter

lt:signature

lt:closing

lt:body

lt:salutation

lt:recipient

lt:sender

lt:postal-code

lt:state

lt:city

lt:personAddressType

lt:senderlt:sender

lt:namelt:name

lt:addresslt:address

lt:template

lt:language

lt:street
+

?

?

lt:date
?

Kleene operators:

(no indicator) Required One and only one

? Optional None or one (minOccurs = 0, maxOccurs = 1)

 Optional, repeatable None, one, or more (minOccurs = 0, maxOccurs =)

+ Required, repeatable One or more (minOccurs = 1, maxOccurs =)

! Unique element values must be unique

<choice>

<sequence>

<all>

<element> reference

<element> immediately within <schema>, i.e. global

<element> not immediately within <schema>, i.e. local

<element> has sub-elements (not shown)

<element> has sub-elements (shown)

<attribute> of an <element>

XML Schema symbols

<group> of elements

<attributeGroup>
Kleene operators:

(no indicator) Required One and only one

? Optional None or one (minOccurs = 0, maxOccurs = 1)

 Optional, repeatable None, one, or more (minOccurs = 0, maxOccurs =)

+ Required, repeatable One or more (minOccurs = 1, maxOccurs =)

! Unique element values must be unique

<choice>

<sequence>

<all>

<element> reference<element> reference

<element> immediately within <schema>, i.e. global<element> immediately within <schema>, i.e. global

<element> not immediately within <schema>, i.e. local<element> not immediately within <schema>, i.e. local

<element> has sub-elements (not shown)<element> has sub-elements (not shown)

<element> has sub-elements (shown)<element> has sub-elements (shown)

<attribute> of an <element><attribute> of an <element>

XML Schema symbols

<group> of elements<group> of elements

<attributeGroup><attributeGroup>

Figure 6-5: Document structure defined by correspondence letters schema (see Listing 6-7).
NOTE: The symbolic notation is inspired by the one used in [McGovern et al., 2003].

Ivan Marsic Rutgers University 340

"unqualified". The corresponding directive about qualifying the attributes is
attributeFormDefault, which can take the same values.

Lines 3–17: Define the root element <letter> as a compound datatype
(xsd:complexType) comprising several other elements. Some of these elements, such as
<salutation> and <body>, contain simple, predefined datatype xsd:string. Others,
such as <sender> and <recipient>, contain compound type personAddressType
which is defined below in this schema document (lines 18–23). This complex type is also a
sequence, which means that all the named elements must appear in the sequence listed.

The letter element is defined as an anonymous type since it is defined directly within the
element definition, without specifying the attribute “name” of the <xsd:complexType>
start tag (line 4). This is called inlined element declaration. Conversely, the compound type
personAddressType, defined as an independent entity in line 18 is a named type, so it
can be reused by other elements (see lines 6 and 8).

Line 6a: The multiplicity attributes minOccurs and maxOccurs constrain the number of
occurrences of the element. The default value of these attributes equals to 1, so line 6a is
redundant and it is omitted for the remaining elements (but, see lines 7 and 27a). In general,
an element is required to appear in an instance document (defined below) when the value of
minOccurs is 1 or more.

Line 7: Element <date> is of the predefined type xsd:date. Notice that the value of
minOccurs is set to 0, which indicates that this element is optional.

Lines 14–15: Define two attributes of the element <letter>, that is, language and
template. The language attribute is of the built-in type xsd:language (Section 6.2.3
below).

Lines 18–23: Define our own personAddressType type as a compound type comprising
person’s name and postal address (as opposed to a business-address-type). Notice that the
postal <address> element is referred to in line 21 (attribute ref) and it is defined
elsewhere in the same document. The personAddressType type is extended as
<sender> and <recipient> in lines 6 and 8, respectively.

Lines 24–33: Define the postal <address> element, referred to in line 21. Of course, this
could have been defined directly within the personAddressType datatype, as an
anonymous sub-element, in which case it would not be reusable. (Although the element is not
reused in this schema, I anticipate that an external schema may wish to reuse it, see Section
6.2.4 below.)

Line 27a: The multiplicity attribute maxOccurs is set to “unbounded,” to indicate that the
street address is allowed to extend over several lines.

Notice that Lines 2a and 2b above accomplish two different tasks. One is to declare the
namespace URI that the letter schema will be associated with (Line 2a). The other task is to
define the prefix for the target namespace that will be used in this document (Line 2b). The reader
may wonder whether this could have been done in one line. But, in the spirit of the modularity
principle, it is always to assign different responsibilities (tasks) to different entities (in this case
different lines).

Chapter 6 XML and Data Representation 341

Schema

document
Instance

documents

conforms-toThe second step is to use the newly defined schema for production of valid
instance documents (see Figure 6-4). An instance document is an XML
document that conforms to a particular schema. To reference the above
schema in letter documents, we do as follows:

Listing 6-8: Referencing a schema in an XML instance document (compare to Listing 6-1)
 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!-- Comment: A personal letter marked up in XML. -->
 3 <lt:letter xmlns:lt ="http://any.website.net/letter"
 3a xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 3b xsi:schemaLocation="http://any.website.net/letter
 3c http://any.website.net/letter/letter.xsd"
 3d lt:language="en-US" lt:template="personal">
 4 <lt:sender>
 ... <!-- similar to Listing 6-1 -->
10 </lt:sender>
 ... <!-- similar to Listing 6-1 -->
25 </lt:letter>

The above listing is said to be valid unlike Listing 6-1 for which we generally only know that it is
well-formed. The two documents (Listings 6-1 and 6-8) are the same, except for referencing the
letter schema as follows:

Step 1 (line 3): Tell a schema-aware XML processor that all of the elements used in this
instance document come from the http://any.website.net/letter namespace. All
the element and attribute names will be prefaced with the lt: prefix. (Notice that we could
also use a default namespace declaration and avoid the prefix.)

Step 2 (line 3a): Declare another namespace, the XMLSchema-instance namespace, which
contains a number of attributes (such as schemaLocation, to be used next) that are part of
a schema specification. These attributes can be applied to elements in instance documents to
provide additional information to a schema-aware XML processor. Again, a usual convention
is to use the namespace prefix xsi: for XMLSchema-instance.

Step 3 (lines 3b–3c): With the xsi:schemaLocation attribute, tell the schema-aware
XML processor to establish the binding between the current XML document and its schema.
The attribute contains a pair of values. The first value is the namespace identifier whose
schema’s location is identified by the second value. In our case the namespace identifier is
http://any.website.net/letter and the location of the schema document is
http://any.website.net/letter/letter.xsd. (In this case, it would suffice to
only have letter.xsd as the second value, since the schema document’s URL overlaps
with the namespace identifier.) Typically, the second value will be a URL, but specialized
applications can use other types of values, such as an identifier in a schema repository or a
well-known schema name. If the document used more than one namespace, the
xsi:schemaLocation attribute would contain multiple pairs of values (all within a
single pair of quotations).

Notice that the schemaLocation attribute is merely a hint. If the parser already knows about
the schema types in that namespace, or has some other means of finding them, it does not have to
go to the location you gave it.

XML Schema defines two aspects of an XML document structure:

Ivan Marsic Rutgers University 342

1. Content model validity, which tests whether the arrangement and embedding of tags is
correct. For example, postal address tag must have nested the street, city, and postal-code
tags. A country tag is optional.

2. Datatype validity, which is the ability to test whether specific units of information are of
the correct type and fall within the specified legal values. For example, a postal code is a
five-digit number. Data types are the classes of data values, such as string, integer, or
date. Values are instances of types.

There are two types of data:

1. Simple types are elements that contain data but not attributes or sub-elements. Examples
of simple data values are integer or string, which do not have parts. New simple
types are defined by deriving them from existing simple types (built-in’s and derived).

2. Compound types are elements that allow sub-elements and/or attributes. An example is
personAddressType type defined in Listing 6-7. Complex types are defined by
listing the elements and/or attributes nested within them.

6.2.2 Models for Structured Content

As noted above, schema defines the content model of XML documents—the legal building blocks
of an XML document. A content model indicates what a particular element can contain. An
element can contain text, other elements, a mixture of text and elements, or nothing at all. Content
model defines:

 elements that can appear in a document

 attributes that can appear in a document

 which elements are child elements

 the order of child elements

 the multiplicity of child elements

 whether an element is empty or can include text

 data types for elements and attributes

 default and fixed values for elements and attributes

This section reviews the schema tools for specifying syntactic and structural constraints on
document content. The next section reviews datatypes of elements and attributes, and their value
constraints.

XML Schema Elements

XML Schema defines a vocabulary on its own, which is used to define other schemas. Here I
provide only a brief overview of XML Schema elements that commonly appear in schema
documents. The reader should look for the complete list here: http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/structures.html.

The <schema> element defines the root element of every XML Schema.

Chapter 6 XML and Data Representation 343

Syntax of the <schema> element Description (attributes are optional unless stated else)
<schema
 id=ID ……………………………………………
 attributeFormDefault=qualified | unqualified

 elementFormDefault=qualified | unqualified

 blockDefault=(#all |
 list of (extension | restriction | substitution))
 finalDefault=(#all |
 list of (extension | restriction | list | union))
 targetNamespace=anyURI …………………
 version=token
 xmlns=anyURI ………………………………

 any attributes
>

((include | import | redefine | annotation),
(((simpleType | complexType | group |
attributeGroup) | element | attribute |
notation), annotation))

</schema>

Specifies a unique ID for the element.
The form for attributes declared in the target namespace of this
schema. The value must be "qualified" or "unqualified". Default is
"unqualified". "unqualified" indicates that attributes from the target
namespace are not required to be qualified with the namespace
prefix. "qualified" indicates that attributes from the target namespace
must be qualified with the namespace prefix.
The form for elements declared in the target namespace of this
schema. The value must be "qualified" or "unqualified". Default is
"unqualified". "unqualified" indicates that elements from the target
namespace are not required to be qualified with the namespace
prefix. "qualified" indicates that elements from the target namespace
must be qualified with the namespace prefix.

A URI reference of the namespace of this schema.

Required. A URI reference that specifies one or more namespaces for
use in this schema. If no prefix is assigned, the schema components
of the namespace can be used with unqualified references.

Kleene operators ?, , and are defined in Figure 6-5.

The <element> element defines an element. Its parent element can be one of the following:
<schema>, <choice>, <all>, <sequence>, and <group>.
Syntax of the <element> element Description (all attributes are optional)
<element
 id=ID
 name=NCName ………………………………

 ref=QName ……………………………………

 type=QName …………………………………

 substitutionGroup=QName
 default=string …………………………………

 fixed=string
 form=qualified|unqualified
 maxOccurs=nonNegativeInteger|unbounded

Specifies a name for the element. This attribute is required if the
parent element is the schema element.
Refers to the name of another element. This attribute cannot be used
if the parent element is the schema element.
Specifies either the name of a built-in data type, or the name of a
simpleType or complexType element.

This value is automatically assigned to the element when no other
value is specified. (Can only be used if the element’s content is a
simple type or text only).

Specifies the maximum number of times this element can occur in the
parent element. The value can be any number >= 0, or if you want to

Ivan Marsic Rutgers University 344

 minOccurs=nonNegativeInteger ……………

 nillable=true|false
 abstract=true|false
 block=(#all|list of (extension|restriction))
 final=(#all|list of (extension|restriction))
 any attributes
>

annotation?,((simpleType |
complexType)?,(unique | key | keyref)))

</element>

set no limit on the maximum number, use the value "unbounded".
Default value is 1.
Specifies the minimum number of times this element can occur in the
parent element. The value can be any number >= 0. Default is 1.

Kleene operators ?, , and are defined in Figure 6-5.

The <group> element is used to define a collection of elements to be used to model compound
elements. Its parent element can be one of the following: <schema>, <choice>,
<sequence>, <complexType>, <restriction> (both <simpleContent> and
<complexContent>), <extension> (both <simpleContent> and
<complexContent>).
Syntax of the <group> element Description (all attributes are optional)
<group
 id=ID
 name=NCName ………………………………

 ref=QName ……………………………………

 maxOccurs=nonNegativeInteger | unbounded
 minOccurs=nonNegativeInteger
 any attributes
>

(annotation?, (all | choice | sequence))

</group>

Specifies a name for the group. This attribute is used only when the
schema element is the parent of this group element. Name and ref
attributes cannot both be present.
Refers to the name of another group. Name and ref attributes cannot
both be present.

The <attributeGroup> element is used to group a set of attribute declarations so that they
can be incorporated as a group into complex type definitions.
Syntax of <attributeGroup> Description (all attributes are optional)
<attributeGroup
 id=ID
 name=NCName ……………………………

 ref=QName …………………………………

 any attributes
>

(annotation?), ((attribute | attributeGroup),
anyAttribute?))

Specifies the name of the attribute group. Name and ref attributes
cannot both be present.
Refers to a named attribute group. Name and ref attributes cannot both
be present.

Chapter 6 XML and Data Representation 345

</attributeGroup>

The <annotation> element specifies schema comments that are used to document the
schema. This element can contain two elements: the <documentation> element, meant for
human consumption, and the <appinfo> element, for machine consumption.

Simple Elements

A simple element is an XML element that can contain only text. It cannot contain any other
elements or attributes. However, the “only text” restriction is ambiguous since the text can be of
many different types. It can be one of the built-in types that are included in the XML Schema
definition, such as boolean, string, date, or it can be a custom type that you can define
yourself as will be seen Section 6.2.3 below. You can also add restrictions (facets) to a data type
in order to limit its content, and you can require the data to match a defined pattern.

Examples of simple elements are <salutation> and <body> elements in Listing 6-7 above.

Groups of Elements

XML Schema enables collections of elements to be defined and named, so that the elements can
be used to build up the content models of complex types. Un-named groups of elements can also
be defined, and along with elements in named groups, they can be constrained to appear in the
same order (sequence) as they are declared. Alternatively, they can be constrained so that only
one of the elements may appear in an instance.

A model group is a constraint in the form of a grammar fragment that applies to lists of element
information items, such as plain text or other markup elements. There are three varieties of model
group:

 Sequence element <sequence> (all the named elements must appear in the order
listed);

 Conjunction element <all> (all the named elements must appear, although they can
occur in any order);

 Disjunction element <choice> (one, and only one, of the elements listed must appear).

6.2.3 Datatypes

In XML Schema specification, a datatype is defined by:

(a) Value space, which is a set of distinct values that a given datatype can assume. For
example, the value space for the integer type are integer numbers in the range
[4294967296, 4294967295], i.e., signed 32-bit numbers.

Ivan Marsic Rutgers University 346

(b) Lexical space, which is a set of allowed lexical representations or literals for the datatype.
For example, a float-type number 0.00125 has alternative representation as 1.25E3.
Valid literals for the float type also include abbreviations for positive and negative
infinity (INF) and Not a Number (NaN).

(c) Facets that characterize properties of the value space, individual values, or lexical items.
For example, a datatype is said to have a “numeric” facet if its values are conceptually
quantities (in some mathematical number system). Numeric datatypes further can have a
“bounded” facet, meaning that an upper and/or lower value is specified. For example,
postal codes in the U.S. are bounded to the range [10000, 99999].

XML Schema has a set of built-in or primitive datatypes that are not defined in terms of other
datatypes. We have already seen some of these, such as xsd:string which was used in Listing
6-7. More will be exposed below. Unlike these, derived datatypes are those that are defined in
terms of other datatypes (either primitive types or derived ones).

Simple Types: <simpleType>

These types are atomic in that they can only contain character data and cannot have attributes or
element content. Both built-in simple types and their derivations can be used in all element and
attribute declarations. Simple-type definitions are used when a new data type needs to be defined,
where this new type is a modification of some other existing simpleType-type.

Table 6-1 shows a partial list of the Schema-defined types. There are over 40 built-in simple
types and the reader should consult the XML Schema specification (see
http://www.w3.org/TR/xmlschema-0/, Section 2.3) for the complete list.

Table 6-1: A partial list of primitive datatypes that are built into the XML Schema.

Name Examples Comments
string My favorite text example
byte 128, 1, 0, 1, …, 127 A signed byte value
unsignedByte 0, …, 255 Derived from unsignedShort
boolean 0, 1, true, false May contain either true or false, 0 or 1
short 5, 328 Signed 16-bit integer
int 7, 471 Signed 32-bit integer
integer 2, 435 Same as int
long 4, 123456 Signed 64-bit integer
float 0, 0, INF, INF, 1E4,

1.401298464324817e45,
3.402823466385288e38,
NaN

Conforming to the IEEE 754 standard for 32-
bit single precision floating point number.
Note the use of abbreviations for positive and
negative infinity (INF), and Not a Number
(NaN)

double 0, 0, INF, INF, 1E4,
4.9e324, 1.797e308, NaN

Conforming to the IEEE 754 standard for 64-
bit double precision floating point numbers

duration P1Y2M3DT10H30M12.3S 1 year, 2 months, 3 days, 10 hours, 30
minutes, and 12.3 seconds

dateTime 1997-03-31T13:20:00.000- March 31st 1997 at 1.20pm Eastern Standard

Chapter 6 XML and Data Representation 347

05:00 Time which is 5 hours behind Coordinated
Universal Time

date 1997-03-31
time 13:20:00.000,

13:20:00.000-05:00

gYear 1997 The “g” prefix signals time periods in the
Gregorian calendar.

gDay ---31 the 31st day
QName lt:sender XML Namespace QName (qualified name)
language en-GB, en-US, fr valid values for xml:lang as defined in

XML 1.0
ID this-element An attribute that identifies the element; can be

any string that confirms to the rules for
assigning the <element> names.

IDREF this-element IDREF attribute type; refers to an element
which has the ID attribute with the same value

A straightforward use of built-in types is the direct declaration of elements and attributes that
conform to them. For example, in Listing 6-7 above I declared the <signature> element and
template attribute of the <letter> element, both using xsd:string built-in type:
 <xsd:element name="signature" type="xsd:string"/>
 <xsd:attribute name="template" type="xsd:string"/>

New simple types are defined by deriving them from existing simple types (built-in’s and
derived). In particular, we can derive a new simple type by restricting an existing simple type, in
other words, the legal range of values for the new type are a subset of the existing type’s range of
values. We use the <simpleType> element to define and name the new simple type. We use
the restriction element to indicate the existing (base) type, and to identify the facets that constrain
the range of values. A complete list of facets is provided below.

Facets and Regular Expressions

We use the “facets” of datatypes to constrain the range of values.

Suppose we wish to create a new type of integer called zipCodeType whose range of values is
between 10000 and 99999 (inclusive). We base our definition on the built-in simple type
integer, whose range of values also includes integers less than 10000 and greater than 99999.
To define zipCodeType, we restrict the range of the integer base type by employing two
facets called minInclusive and maxInclusive (to be introduced below):

Listing 6-9: Example of new type definition by facets of the base type.
<xsd:simpleType name="zipCodeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

Table 6-2 and Table 6-3 list the facets that are applicable for built-in types. The facets identify
various characteristics of the types, such as:

Ivan Marsic Rutgers University 348

 length, minLength, maxLength—the exact, minimum and maximum character
length of the value

 pattern—a regular expression pattern for the value (see more below)

 enumeration—a list of all possible values (an example given in Listing 6-10 below)

 whiteSpace—the rules for handling white-space in the value

 minExclusive, minInclusive, maxExclusive, maxInclusive—the range
of numeric values that are allowed (see example in Listing 6-9 above)

 totalDigits—the maximum allowed number of decimal digits in numeric values

 fractionDigits—the number of decimal digits after the decimal point

As indicated in the tables, not all facets apply to all types.

Table 6-2: XML Schema facets for built-in simple types. Indicated are the facets that apply
to the particular type.

Simple Types
Facets

length minLength maxLength pattern enumeration whitespace
string ♦ ♦ ♦ ♦ ♦ ♦
base64Binary ♦ ♦ ♦ ♦ ♦ ♦
hexBinary ♦ ♦ ♦ ♦ ♦ ♦
integer ♦ ♦ ♦
positiveInteger ♦ ♦ ♦
negativeInteger ♦ ♦ ♦
nonNegativeInteger ♦ ♦ ♦
nonPositiveInteger ♦ ♦ ♦
decimal ♦ ♦ ♦
boolean ♦ ♦ ♦
time ♦ ♦ ♦
dateTime ♦ ♦ ♦
duration ♦ ♦ ♦
date ♦ ♦ ♦
Name ♦ ♦ ♦ ♦ ♦ ♦
QName ♦ ♦ ♦ ♦ ♦ ♦
anyURI ♦ ♦ ♦ ♦ ♦ ♦
ID ♦ ♦ ♦ ♦ ♦ ♦
IDREF ♦ ♦ ♦ ♦ ♦ ♦

Table 6-3: XML Schema facets for built-in ordered simple types.

Simple Types
Facets

maxInclusive maxExclusive minInclusive minExclusive totalDigits fractionDigits
integer ♦ ♦ ♦ ♦ ♦ ♦
positiveInteger ♦ ♦ ♦ ♦ ♦ ♦
negativeInteger ♦ ♦ ♦ ♦ ♦ ♦
nonNegativeInteger ♦ ♦ ♦ ♦ ♦ ♦
nonPositiveInteger ♦ ♦ ♦ ♦ ♦ ♦
decimal ♦ ♦ ♦ ♦ ♦ ♦

Chapter 6 XML and Data Representation 349

time ♦ ♦ ♦ ♦
dateTime ♦ ♦ ♦ ♦
duration ♦ ♦ ♦ ♦
date ♦ ♦ ♦ ♦

The pattern facet shown in Table 6-2 is particularly interesting since it allows specifying a
variety of constraints using regular expressions. The following example (Listing 6-10) shows how
to define the datatype for representing IP addresses. This datatype has four quads, each restricted
to have a value between zero and 255, i.e., [0-255].[0-255].[0-255].[0-255]

Listing 6-10: Example of IP address type definition via the pattern facet.
<xsd:simpleType name="IPaddress">
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="(([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}
 ([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])"/>
 </xsd:restriction>
</xsd:simpleType>

Note that in the value attribute above, the regular expression has been split over three lines.
This is for readability purposes only; in practice the regular expression would all be on one line.
Selected regular expressions with examples are given in Table 6-4.

Table 6-4: Examples of regular expressions.

Regular Expression Example Regular Expression Example
Section \d Section 3 Chapter\s\d Chapter followed by a

blank followed by a digit
Chapter \d Chapter 7 (hi){2} there hihi there
a*b b, ab, aab, aaab,

...
(hi\s){2} there hi hi there

[xyz]b xb, yb, zb .abc any (one) char followed by
abc

a?b b, ab (a|b)+x ax, bx, aax,
bbx, abx,
bax,...

a+b ab, aab, aaab, ... a{1,3}x ax, aax, aaax
[a-c]x ax, bx, cx a{2,}x aax, aaax,

aaaax, ...
[-ac]x -x, ax, cx \w\s\w word character

(alphanumeric plus dash)
followed by a space
followed by a word
character

[ac-]x ax, cx, -x [a-zA-Z-[Ok]]* A string comprised of any
lower and upper case
letters, except "O" and "k"

[^0-9]x any non-digit char followed
by x

\. The period "." (Without the
backward slash the period
means "any character")

\Dx any non-digit char followed
by x

\n linefeed

Ivan Marsic Rutgers University 350

Compound Types: <complexType>

Compound or complex types can have any kind of combination of element content, character
data, and attributes. The element requires an attribute called name, which is used to refer to the
<complexType> definition. The element then contains the list of sub-elements. You may have
noticed that in the example schema (Listing 6-7), some attributes of the elements from Listing 6-1
were omitted for simplicity sake. For example, <salutation> could have a style attribute,
with the value space defined as {"informal", "formal", "business", "other"}. To
accommodate this, <salutation> should be defined as a complex type, as follows:

Listing 6-11: Upgraded XML Schema for the <salutation> element. This code
replaces line 9 Listing 6-7. The rest remains the same.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

 <xsd:element name="salutation">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="style" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="informal"/>
 <xsd:enumeration value="formal"/>
 <xsd:enumeration value="business"/>
 <xsd:enumeration value="other"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>

The explanation of the above listing is as follows:

Line 2: Uses the <complexType> element to start the definition of a new (anonymous)
type.

Line 3: Uses a <simpleContent> element to indicate that the content model of the new
type contains only character data and no elements.

Lines 4–5: Derive the new type by extending the simple xsd:string type. The extension
consists of adding a style attribute using attribute declaration.

Line 6: The attribute style is a simpleType derived from xsd:string by restriction.

Lines 7–12: The attribute value space is specified using the enumeration facet. The attribute
value must be one of the listed salutation styles. Note that the enumeration values specified
for a particular type must be unique.

The content of a <complexType> is defined as follows (see also Figure 6-6):

1. Optional <annotation> (schema comments, which serve as inline documentation)

2. This must be accompanied by one of the following:

Chapter 6 XML and Data Representation 351

a. <simpleContent> (which is analogous to the <simpleType> element—used
to modify some other “simple” data type, restricting or extending it in some
particular way—see example in Listing 6-11 above)

b. <complexContent> (which is analogous to the <complexType> element—
used to create a compound element)

c. In sequence, the following:

i. Zero or one from the following grouping terms:

1. <group> — Commonly used to declare a collection of elements that are
referenced from more than one place within the same schema of by other
schemas (hence, this is a global declaration). The personAddressType
type in Listing 6-7 could have been done this way

2. <sequence> — All the named elements must appear in the order listed

3. <choice> — One, and only one, of the elements listed must appear

4. <all> — All the named elements must appear, but order is not important

ii. Followed by any number of either

1. <attribute>

2. <attributeGroup>

iii. Then zero or one <anyAttribute> (enables attributes from a given
namespace to appear in the element)

type name can be given by attribute name

xsd:complexType

xsd:anyAttributexsd:anyAttribute

xsd:complexContent

xsd:simpleContent

xsd:notation
?

xsd:all

xsd:choice

xsd:sequence

xsd:groupxsd:group

xsd:attribute

xsd:attributeGroup

?

?

Figure 6-6: Structure of the <complexType> schema element. Symbols follow the notation
introduced in Figure 6-5.

Ivan Marsic Rutgers University 352

In the example, Listing 6-7, we used both inlined element declaration with anonymous type as
well as named type, which was then used to declare an element. An element declaration can have
a type attribute, or a complexType child element, but it cannot have both a type attribute
and a complexType child element. The following table shows the two alternatives:

Element A references the complexType
foo:

Element A has the complexType definition
inlined in the element declaration:

<xsd:element name="A" type="foo"/>
<xsd:complexType name="foo">
 <xsd:sequence>
 <xsd:element name="B" .../>
 <xsd:element name="C" .../>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="A">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="B" .../>
 <xsd:element name="C" .../>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

6.2.4 Reuse

We can roughly split up reuse mechanisms into two kinds: basic and advanced. The basic reuse
mechanisms address the problem of modifying the existing assets to serve the needs that are
perhaps different from what they were originally designed for. The basic reuse mechanisms in
XML Schema are:

 Element references

 Content model groups

 Attribute groups

 Schema includes

 Schema imports

6.2.5 RELAX NG Schema Language

What we reviewed above is the World Wide Web Consortium’s standard XML Schema. There
are several other alternative schema languages proposed for XML. One of them is RELAX NG.
Its home page (http://www.relaxng.org/) states that RELAX NG is a schema language for XML. The
claims are that RELAX NG:

 * is simple

 * is easy to learn

 * has both an XML syntax and a compact non-XML syntax

 * does not change the information set of an XML document

Chapter 6 XML and Data Representation 353

 * supports XML namespaces

 * treats attributes uniformly with elements so far as possible

 * has unrestricted support for unordered content

 * has unrestricted support for mixed content

 * has a solid theoretical basis

 * can partner with a separate datatyping language (such W3C XML Schema Datatypes)

You could write your schema in RELAX NG and use Trang (Multi-format schema converter
based on RELAX NG) to convert it to XML Schema. See online at:
http://www.thaiopensource.com/relaxng/trang.html

6.3 Indexing and Linking

Links in HTML documents are tagged with , where the value of
the HREF attribute refers to a target document.

6.3.1 XPointer and Xpath

XML Pointer Language (XPointer) is based on the XML Path Language (XPath), which supports
addressing into the internal structures of XML documents. XPointer allows references to
elements, attributes, character strings, and other parts of XML documents. XPointer referencing
works regardless of whether the referenced objects bear an explicit ID attribute (an attribute
named id, such as id="section4"). It allows for traversals of a document tree and choice of
its internal parts based on various properties, such as element types, attribute values, character
content, and relative position.

XPointers operate on the tree defined by the elements and other markup constructs of an XML
document. An XPointer consists of a series of location terms, each of which specifies a location,
usually relative to the location specified by the prior location term. Here are some examples of
location paths:

 child::para selects the para element children of the context node

 child::* selects all element children of the context node

 child::text() selects all text node children of the context node

 child::node() selects all the children of the context node, whatever their node type

 attribute::name selects the name attribute of the context node

 attribute::* selects all the attributes of the context node

Ivan Marsic Rutgers University 354

 para matches any para element

 * matches any element

 chapter|appendix matches any chapter element and any appendix element

 olist/item matches any item element with an olist parent

 appendix//para matches any para element with an appendix ancestor element

 / matches the root node

 text() matches any text node

 items/item[position()>1] matches any item element that has a items parent
and that is not the first item child of its parent

 item[position() mod 2 = 1] would be true for any item element that is an
odd-numbered item child of its parent

 @class matches any class attribute (not any element that has a class attribute)

 div[@class="appendix"]//p matches any p element with a div ancestor
element that has a class attribute with value appendix

The following example is a combination of a URL and an XPointer and refers to the seventh child
of the fourth section under the root element:

 http://www.foo.com/bar.html#root().child(4,SECTION).child(7)

6.3.2 XLink

A link is an explicit relationship between two or more data objects or parts of data objects. A
linking element is used to assert link existence and describe link characteristics.

XML Linking Language (XLink) allows elements to be inserted into XML documents in order to
create and describe links between resources. In HTML, a link is unidirectional from one resource
to another and has no special meaning, except it brings up the referred document when clicked in
a browser. XLink uses XML syntax to create structures that can describe the simple
unidirectional hyperlinks of today’s HTML as well as more sophisticated multidirectional and
typed links. With XLink, a document author can do the following, among others:

 Associate semantics to a link by giving a “role” to the link.

 Define a link that connects more than two resources.

 Define a bidirectional link.

A link is an explicit relationship between two or more data objects or portions of data objects. A
linking element is used to assert link existence and describe link characteristics. Linking elements
are recognized based on the use of a designated attribute named xml:link. Possible values are
“simple” and “extended” (as well as “locator”, “group”, and “document”, which
identify other related types of elements). An element that includes such an attribute should be
treated as a linking element of the indicated type. The following is an example similar to the
HTML A link:

Chapter 6 XML and Data Representation 355

<A xml:link="simple" href="http://www.w3.org/XML/XLink/0.9">
The XLink<A>

An example of an extended link is:

<xlink:extended xmlns:xlink="http://www.w3.org/XML/XLink/0.9"
 role="resources"
 title="Web Resources"
 showdefault="replace"
 actuatedefault="user">
 <xlink:locator href="http://www.xml.com"
 role="resource"
 title="XML.com"/>
 <xlink:locator href="http://www.mcp.com"
 role="resource"
 title="Macmillan"/>
 <xlink:locator href="http://www.netscape.com"
 role="resource"
 title="Netscape Communications"/>
 <xlink:locator href="http://www.abcnews.com"
 role="resource"
 title="ABC News"/>

Link Behavior

XLink provides behavior policies that allow link authors to signal certain intentions as to the
timing and effects of link traversal. These include:

 Show: The show attribute is used to express a policy as to the context in which a resource
that is traversed to should be displayed or processed. It may take one of three values:
embed, replace, new.

 Actuate: The actuate attribute is used to express a policy as to when traversal of a link
should occur. It may take one of two values: auto, user.

 Behavior: The behavior attribute is used to provide detailed behavioral instructions.

6.4 Document Transformation and XSL

“If at first you don't succeed, transform your data.”
—The law of computability applied to social sciences

As explained above, XML is not a fixed tag set (like HTML) so the tags do not carry a fixed,
application-specific meaning. A generic XML processor has no idea what is “meant” by the
XML. Because of this, a number of other standards to process the XML files are developed.
Extensible Stylesheet Language (XSL) is one such standard. XML markup usually does not
include formatting information. The information in an XML document may not be in the form in

Ivan Marsic Rutgers University 356

which it is desired to be presented. There must be something in addition to the XML document
that provides information on how to present or otherwise process the XML. XSL transforms and
translates XML data from one XML format into another. It is designed to help browsers and other
applications display XML. Stated simply, a style sheet contains instructions that tell a processor
(such as a Web browser, print composition engine, or document reader) how to translate the
logical structure of a source document into a presentational structure.

The XML/XSL relationship is reminiscent of the Model-View-Controller design pattern [Gamma
et al., 1995], which separates the core data from the way it gets visualized. Likewise, XSL
enables us to separate the view from the actual data represented in XML. This has following
advantages:

Reuse of data: When the data is separate you do not need to transform the actual data to represent
it in some other form. We can just use a different view of the data.

Multiple output formats: When view is separate from the data we can have multiple output
formats for the same data e.g. the same XML file can be viewed using XSL as VRML, HTML,
XML (of some other form)

Reader’s preferences: The view of the same XML file can be customized with the preferences of
the user.

Standardized styles: Within one application domain there can be certain standard styles which are
common throughout the developer community.

Freedom from content authors: A person not so good at presentation can just write the data and
have a good presenter to decide on how to present the data.

Different ways of displaying an XML files are shown in Figure 6-7.

XSL can act as a translator, because XSL can translate XML documents that comply with two
different XML schemas. XSL is an unfortunate name, since you may think it deals only with
stylesheets. That is not true, it is much more general and as I said, XSL can translate any XML
document to any other XML document.

Chapter 6 XML and Data Representation 357

XSL Example

The following example shows an original XML document transformed to an HTML document.

Listing 6-12: Example XSL document.

Original XML source:
 1 <?xml version='1.0'?>
 2 <para>This is a <emphasis>test</emphasis>.</para>

XSL stylesheet:
 1 <?xml version='1.0'?>
 2 <xsl:stylesheet
 3 xmlns:xsl="http://www.w3.org/1999/XSL/Format" version="1.0">
 4
 5 <xsl:template match="para">
 6 <p><xsl:apply-templates/></p>
 7 </xsl:template>
 8
 9 <xsl:template match="emphasis">
10 <i><xsl:apply-templates/></i>
11 </xsl:template>
12
13 </xsl:stylesheet>

Resultant HTML source:
 1 <?xml version="1.0" encoding="utf-8"?>
 2 <p>This is a <i>test</i>.</p>

XGMML (eXtensible Graph Markup and Modeling Language) 1.0 Draft

http://www.cs.rpi.edu/~puninj/XGMML/draft-xgmml.html

XML

XSL

HTML /
text /
XML

Transformation Engine
(XSL Processor)

General form of a template rule:

<xsl:template match="pattern">
... action ...

</xsl:template>

Figure 6-7. How XSL transformation works.

Ivan Marsic Rutgers University 358

"Mark Pilgrim returns with his latest Dive into XML column, "XML on the Web Has Failed,"
claiming that XML on the Web has failed miserably, utterly, and completely. Is Mark right or
wrong? You be the judge."

http://www.xml.com/pub/a/2004/07/21/dive.html

6.5 Summary and Bibliographical Notes

As a historical footnote, XML is derived from SGML (Standard Generalized Markup Language),
which is a federal (FIPS 152) and international (ISO 8879) standard for identifying the structure
and content of documents.

I have no intention of providing a complete coverage of XML since that would require more than
a single book and would get us lost in the mind numbing number of details. My main focus is on
the basic concepts and providing enough details to support meaningful discussion. I do not expect
that anybody would use this text as an XML reference. The reader interested in further details
should consult the following and other sources.

XML is defined by the W3C in a number of related specifications available here:
http://www.w3.org/TR/. A great source of information on XML is http://www.xml.com/.

The standard information about HTTP is available here: http://www.w3.org/Protocols/

HTML standard information is available here: http://www.w3.org/MarkUp/

XML Tutorial online at: http://www.w3schools.com/xml/default.asp

Reference [Lee & Chu, 2000] reviews several alternative XML schema languages.

A book by Eric van der Vlist, RELAX NG, O’Reilly & Associates, is available online at:
http://books.xmlschemata.org/relaxng/page1.html .

Chapter 6 XML and Data Representation 359

Problems

Problem 6.1

Problem 6.2

Write the XML Schema that defines the production rules for the instance document shown in
Listing 6-13 below. The parameters are specified as follows.

Possible values for the attribute student status are “full time” and “part time” and it is required
that this attribute appears.

The student identification number must be exactly 9 digits long and its 4th and 5th digits must
always be a zero (ַ◌ ַ◌ ַ◌ 00 ַ◌ ַ◌ ַ◌ ַ◌). (According to the US Social Security Administration, a
number with a zero in the 4th and 5th digits will never be assigned as a person’s SSN. Hence, you
can easily distinguish the difference between the student id and the SSN by scanning the 4th and
5th digits.)

The school number must be a two-digit number (including numbers with the first digit equal to
zero).

The graduation class field should allow only Gregorian calendar years.

The curriculum number must be a three-digit number between 100 and 999.

The student grade field is optional, but when present it can contain only one of the following
values: “A,” “B+,” “B,” “C+,” “C,” “D,” and “F.”

All elements are required, unless stated otherwise. As for the non-specified parameters, make
your own (reasonable) assumptions. Write down any assumptions you make.

Listing 6-13: Instance XML document containing a class roster.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

<?xml version="1.0" encoding="UTF-8"?>
<!-- ***** associate here your schema with this document ***** -->
<class-roster>
 <class-name> Introduction to Software Engineering </class-name>
 <index> 61202 </index>
 <semester> Spring 2006 </semester>
 <enrollment> 58 </enrollment>
 <student status="full-time">
 <student-id> 201000324 </student-id>
 <name>
 <first-name> Jane </first-name>
 <last-name> Doe </last-name>
 </name>
 <school-number> 14 </school-number>
 <graduation-class> 2006 </graduation-class>
 <curriculum> 332 </curriculum>
 <grade> A </grade>

Ivan Marsic Rutgers University 360

18
19
20
21
22

 </student>
 <student status="part-time">
 ...
 </student>
</class-roster>

Problem 6.3

361

Contents
7.1 Components, Ports, and Events

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6

7.2 JavaBeans: Interaction with Components
7.2.1 Property Access
7.2.2 Event Firing
7.2.3 Custom Methods
7.2.4

7.3 Computational Reflection
7.3.1 Run-Time Type Identification
7.3.2 Reification
7.3.3 Automatic Component Binding
7.3.4
7.2.3

7.4 State Persistence for Transport
7.4.1
7.4.2
7.4.3
7.4.4

7.5 A Component Framework
7.5.1 Port Interconnections
7.5.2
7.5.3
7.5.4

7.6
7.6.1
7.6.2
7.6.3

7.7 Summary and Bibliographical Notes

Problems

Chapter 7
Software Components

“The Organism Principle: When a system evolves to become
more complex, this always involves a compromise: if its parts

become too separate, then the system’s abilities will be
limited—but if there are too many interconnections, then each

change in one part will disrupt many others.”
—Marvin Minsky, The Emotion Machine

Software engineers have always envied hardware engineers
for their successful standardization of hardware design and the
power of integration and reusability achieved by the
abstraction of VLSI chips. There have been many attempts in
the past to bring such standardization to software design.
Recently, these seem to be achieving some success, most
probably because the level of knowledge in software
engineering has achieved the needed threshold.

There is currently a strong software industry trend towards
standardizing software development through software
components. Components are reusable pieces of software.
Components can be GUI widgets, non-visual functions and
services, applets or large-scale applications. Each component
can be built by different developers at separate times.
Components enable rapid development using third party
software: independent components are used without
modifications as building blocks to form composite
applications. Components can be composed into:

 Composite components

 Applets (small client-side applications)

 Applications

 Servlets (small server-side applications)

Although a single class may not be a useful unit of reuse, a component that packages a number of
services can be. Components enable medium-grained reuse.

The composition can be done in visual development tools, since the components expose their
features to a builder tool. A builder tool that lets you:

Ivan Marsic Rutgers University 362

 Graphically assemble the components into more complex components or applications

 Edit the properties of components

 Specify how information in a component is to be propagated to other components

The component developer has to follow specific naming conventions (design pattern), which help
standardize the interaction with the component. In this way the builder tool can automatically
detect the component’s inputs and outputs and present them visually. If we visualize a bean as an
integrated circuit or a chip, the interaction methods can be visualized as the pins on the chip.

Two major component architectures are JavaBeans from Sun [Sun Microsystems, JavBeans] and
ActiveX controls from Microsoft [Denning, 1997]. Here I first review the JavaBeans component
model, which is a part of the Java Development Kit version 1.1 or higher. JavaBeans component
model is a specification standard, not an implementation in a programming language. There is not
a class or interface in Java called Bean. Basically, any class can be a bean—the bean developer
just has to follow a set of design patterns, which are essentially guidelines for naming the
methods to interact with the bean.

Software components, as any other software creation, comprise state and behavior.

Two key issues in component development are

 How to interact with a component

 How to transfer a component’s state from one machine to another

Programming business logic of reusable components is the same as with any other software
objects and thus it is not of concern in a component standard.

7.1 Components, Ports, and Events

“Before software can be reusable it first has to be usable.”
—Ralph Johnson

The hardware-software component analogy is illustrated in Figure 7-1. Component communicates
with the rest of the world only via its ports using events. This simplification and uniformity of the
component model is promoted as the main reason for introducing components as opposed to
software objects. Objects succeeded in encapsulation of state and behavior (see Section 1.4), but
have not had much success on the issue of reuse. It is claimed that the main reason for this is that
object interconnections are often concealed and difficult to identify. We can easily determine the
“entry points” of objects, i.e., the points through which other objects invoke the given object,
which are its methods for well-designed objects. However, it is difficult to pinpoint the “exit
points” of objects—the points through which the object invokes the other objects—without
carefully examining the source code. Consider the following example (in Java):

class MyClass {
 ...

Chapter 7 Software Components 363

 public void doSomething(AnotherClass obj1) {
 ...
 obj1.getObj2().callMethod(args);
 ...
 }
}

Here, the method getObj2() returns an object of a different class, which we would not know
that is being involved without careful code examination. Hence the importance of enforcing
uniform style for getting into and out of components, i.e., via their ports.

7.2 JavaBeans: Interaction with Components

The simplest thing to do with a software component is to retrieve its state or alter it by explicitly
setting the new state or invoking a behavior of the component.

Reusable software components are usually shipped around in a compiled code, rather than in
source code. Given a compiled component (bytecode or binary code), the goal is to uncover its
public methods in order to be able to interact with it. The process of discovering the features of a
class is known as introspection. The bean developer can help the introspection process in two
ways:

 Implicitly, by adhering to certain conventions (design patterns) in writing the code for a
Java bean

 Explicitly, by specifying explicit additional information about the bean

Component
Port

14

1

13 12 1011 9 8

2 3 4 5 6 7

14

1

13 12 1011 9 8

2 3 4 5 6 7

(a) (b) (c)

1

8

2

7

3

6

4

5

OUT-
PUT

INV
INPUT

NON-
INV

INPUT

VCC–

VCC+
OUT-
PUT

INV
INPUT

NON-
INV

INPUT

AMPLIFIER NO. 2

AMPLIFIER NO. 1

1

8

2

7

3

6

4

5

OUT-
PUT

INV
INPUT

NON-
INV

INPUT

VCC–

VCC+
OUT-
PUT

INV
INPUT

NON-
INV

INPUT

AMPLIFIER NO. 2

AMPLIFIER NO. 1

Figure 7-1. Hardware analogy for software component abstraction. (a) Software component
corresponds to a hardware chip. (b) A component has attached ports (pins), each with a
distinctive label. (c) Events or “signals” arriving at the ports are processed within the
component and the results may be output on different ports.

Ivan Marsic Rutgers University 364

The second way should be used in case bean contains interaction methods that do not follow the
design patterns.

Related to introspection is reflection, the support Java provides for examining type information at
run time. Given an object or class name, you can use the class Class to discover:

 The fields of the class

 Constructors

 Methods

 Other properties (class name, isPrimitive, etc.)

The reader may wonder why anyone would want to write a program that does this; why not look
up the needed information when the program is written? Why wait until run time? The answer is
that this capability allows the other applications to discover the way to interact with a bean that
was developed by a third party. Reflection is used to gain information about components, but the
component developer is allowed to specify more information to help with characterizing the
component.

7.2.1 Property Access

Properties define the bean’s appearance and behavior characteristics. For properties that need to
be exposed, the developer must provide:

 Setter method void set<PropertyName>(Type newvalue) // write-
only property, e.g., password, or

 Getter method Type get<PropertyName>() // read-only property, or

 Both setter and getter // read-write property.

In addition to naming the accessor methods according to these conventions, the developer may
also provide property editors for certain properties. For example, to a property may determine the
bean’s background color. The user may enter the value for this property as a hexadecimal number
“1b8fc0,” but it is difficult or impossible for the user to visualize how this color15 looks.
Instead, the developer may supply a graphical color chooser for the property editor, which is
much more convenient for the user.

7.2.2 Event Firing

The delegation-based event model was introduced with the JavaBeans framework [Sun-
JavaBeans]. In this model, there is no central dispatcher of events; every component that
generates events dispatches its own events as they happen. The model is a derivative of the
Publisher-Subscriber pattern. Events are identified by their class instead of their ID and are either
propagated or delegated from an “event source” to an “event listener.”

15 In case you are looking at a black-and-white print, the background color around the text is magenta.

Chapter 7 Software Components 365

According to the delegation model, whenever an event for which an object declared itself as a
source gets generated, the event is multicast to all the registered event listeners. The source object
delegates of “fires” the events to the set of listeners by invoking a method on the listeners and
passing the corresponding event object. Only objects interested in a particular event need to deal
with the event and no super-event handler is required. This is also a better way of passing events
to distributed objects.

EventSource — Any object can declare itself as a source of certain types of events. An event
source has to either follow standard beans design patterns when giving names to the methods or
use the BeanInfo class to declare itself as a source of certain events. When the source wishes to
delegate a specific event type, it must first define a set of methods that enable listener(s) to
register with the source. These methods take the form of set<EventType>Listener for
unicast and/or add<EventType>Listener for multicast delegation. [The source must also
provide the methods for the listeners de-register.]

EventListener — An object can register itself as a listener of a specific type of events
originating from an event source. A listener object should implement the
<EventType>Listener interface for that event type, which inherits from the generic
java.util.EventListener interface. The “Listener” interface is typically defined only by
few methods, which makes it easy to implement the interface.

7.2.3 Custom Methods

In addition to the information a builder tool can discover from the bean’s class definition through
reflection, the bean developer can provide it with explicit additional information. A bean can be
customized for a specific application either programmatically, through Java code, or visually,
through GUI interfaces hosted by application builder tools. In the former case, the developer
specifies additional information by providing a BeanInfo object. In the latter case, the
developer can provide customized dialog boxes and editing tools with sophisticated controls.
These customization tools are called property editors and customizers, and they are packaged as
part of the bean, by providing the PropertyEditor and Customizer classes.

The BeanInfo class should be named as <BeanName>BeanInfo, for example, for the Foo
bean the BeanInfo class should be named FooBeanInfo.

class FooBeanInfo extends SimpleBeanInfo {
 :
 :

with methods:

 getBeanDescriptor() // has class and customizer
 getIcon() // for displaying the bean in the palette
 getMethodDescriptors() // for providing more information than
 getPropertyDescriptors() // can be gained through reflection alone

A property descriptor can provide a PropertyEditor, in case the developer does not want to use the
standard property editor for that property type (or there is not one available).

In addition, the developer can provide a Customizer in the bean descriptor. Customizers are used
to customize the entire bean, not just a property and they are not limited to customizing

Ivan Marsic Rutgers University 366

properties. There is no “design pattern” for Customizers. You must use the BeanInfo to use a
customizer and you need to use the BeanDescriptor constructor to specify the customizer
class. More information about bean customization is available in [Johnson, 1997].

7.3 Computational Reflection

Computational reflection is a technique that allows a system to maintain information about itself
(meta-information) and use this information to change its behavior (adapt). As shown in Figure
7-2, computational reflection refers to the capability to introspect and represent meta-level
information about data or programs, to analyze and potentially modify the meta-level
representation of the data, and finally to reify such changes in the metadata so that the original
data or programs behave differently. It should be noted that the notion of data is universal in that
it includes data structures in a program used in the source code.

This is achieved by processing in two well-defined levels: functional level (also known as base
level or application level) and management (or meta) level. Aspects of the base level are
represented as objects in the meta-level, in a process known as reification (see below). Meta-level
architectures are discussed in Section 2.2 (??) and reflective languages in Section 2.3. Finally,
Section 2.4 shows the use of computational reflection in the structuring and implementation of
system-oriented mechanisms.

http://cliki.tunes.org/Reflection

Metadata

Data

Introspection

Reification

Figure 7-2: Computational reflection consists of two phases: (i) an introspection phase,
where data is analyzed to produce suitable metadata, and (ii) a reification phase, where
changes in the metadata alter the original behavior of the data it represents.

Chapter 7 Software Components 367

7.3.1 Run-Time Type Identification

If two processes communicate externally to send and receive data, what happens when the data
being sent is not just a primitive or an object whose type is known by the receiving process? In
other words, what happens if we receive an object but do not know anything about it—what
instance variables and methods it has, etc. Another way to pose the question: What can we find
out about the type of an object at run-time?

A simple way to solve this problem is to check for all possible objects using instanceof, the
operator that lets you test at run-time, whether or not an object is of a given type. A more
advanced way is supported by the java.lang.reflect package, which lets you find out
almost anything you want to know about an object’s class at run-time.

An important class for reflection is the class Class, which at first may sound confusing. Each
instance of the class Class encapsulates the information about a particular class or interface.
There is one such object for each class or interface loaded into the JVM.

There are two ways to get an instance of class Class from within a running program:

1. Ask for it by name using the static method forName():

 Class fooClass = Class.forName("Foo");

This method will return the Class object that describes the class Foo

2. Ask an instance of any Object for its class:

 Foo f = new Foo();
 Class fooClass = f.getClass();

As a side note, this construct is legal:

 Class classClass = Class.forName("Class");

It returns back the instance of Class that describes the class Class.

Once you have a Class object, you can call methods on it to find out information about the
class. None of the methods are mutators, so you cannot change the class at run-time. However,
you can use it to create new instance of a class, and to call methods on any instance. Some of the
methods available in class Class are:

Constructor getConstructor(Class[] paramTypes);
Constructor[] getConstructors();

Field getField(String name);
Field[] getFields();

Method getMethod(String name, Class[] paramTypes);
Method[] getMethods();

boolean isInstance(Object obj);
boolean isPrimitive();

String getName();

Ivan Marsic Rutgers University 368

String toString();

The return types Constructor, Field, and Method are defined in the package
java.lang.reflect.

7.3.2 Reification

For the meta-level to be able to reflect on several objects, especially if they are instances of
different classes, it must be given information regarding the internal structure of objects. This
meta-level object must be able to find out what are the methods implemented by an object, as
well as the fields (attributes) defined by this object. Such base-level representation, that is
available for the meta-level, is called structural meta-information. The representation, in form of
objects, of abstract language concepts, such as classes and methods, is called reification.

Base-level behavior, however, cannot be completely modeled by reifying only structural aspects
of objects. Interactions between objects must also be materialized as objects, so that meta-level
objects can inspect and possibly alter them. This is achieved by intercepting base-level operations
such as method invocations, field value inquiries or assignments, creating operation objects that
represent them, and transferring control to the meta level, as shown in Figure 7-3. In addition to
receiving reified base-level operations from the reflective kernel, meta-level objects should also
be able to create operation objects, and this should be reflected in the base level as the execution
of such operations.

A reflective kernel is responsible for implementing an interception mechanism. The method
invocation is reified as an operation object and passed for the callee’s meta-object to reflect upon
(handle). Eventually, the meta-object requests the kernel to deliver the operation to the callee’s
replication object, by returning control (as in the diagram) or performing some special meta-level
action. Finally, the result of the operation is reified and presented to the meta-object.

 caller kernel op : Operation res : Result

handle(op)

: MetaObject

method(arg)

obj : Object

method(arg)

result

create(obj, method, arg)

op

result

create(op, result)

res

handle(res)

Figure 7-3. Reifying an operation. See text for explanation.

Chapter 7 Software Components 369

Show example of reflection using DISCIPLE Commands in Manifold

Reflection enables dynamic (run-time) evolution of programming systems, transforming
programs statically (at compile-time) to add and manage such features as concurrency,
distribution, persistence, or object systems, or allowing expert systems to reason about and adapt
their own behavior. In a reflective application, the base level implements the main functionality
of an application, while the meta level is usually reserved for the implementation of management
requirements, such as persistence [28,34], location transparency [26], replication [8,18], fault
tolerance [1,2,9,10] and atomic actions [35,37]. Reflection has also been shown to be useful in the
development of distributed systems [6,20,36,40,41] and for simplifying library protocols [38].

http://www.dcc.unicamp.br/~oliva/guarana/docs/design-html/node6.html#transparency

A recent small project in Squeak by Henrik Gedenryd to develop a "Universal Composition"
system for programs. It essentially involves a graph of meta-objects describing source-
composition operations which can be eagerly or lazily (statically or dynamically) driven, resulting
in partial evaluation or forms of dynamic composition such as Aspect-Oriented Programming
(AOP).

7.3.3 Automatic Component Binding

Components can be seen as pieces of a jigsaw puzzle, like molecular binding—certain molecule
can bind only a molecule of a corresponding type.

7.4 State Persistence for Transport

A class is defined by the Java bytecode and this is all that is necessary to create a fresh new
instance of the class. As the new instance (object) interacts with their objects, its state changes.
The variables assume certain values. If we want a new instance resume from this state rather than
from the fresh (initial) state, we need a mechanism to extract the object state. The mechanism is
known as object serialization or in the CORBA jargon it is called object externalization [OMG-
CORBA-Services].

Object serialization process transforms the object graph structure into a linear sequence of bytes,
essentially a byte array. The array can be stored on a physical support or sent over the network.
The object that can be serialized should implement the interface java.io.Serializable.
The object essentially implements the methods writeObject() and readObject(). These
methods define how to convert the component attributes, which represented by programmer-
defined data types, to a one-dimensional bytestream.

When restoring the object, we need to have its class (bytecode) because class definition is not
stored in the serialized state. If the receiving process does not know the object's class, it will

Ivan Marsic Rutgers University 370

throw the java.io.SerializationError exception. This may be a problem if we are
sending the object to a server which is running all the time and cannot load new classes, so its
class loader cannot know about the newly defined class. The solution is to use the method:

 byte[] getBytes();

which is available on every java.lang.Object object, i.e., on every Java object. The method
returns a byte array—a primitive data type, which can be used by the server to reconstruct the
object there.

JAR file contains:

 Manifest file

 Classes (next to the class name, there is a Boolean variable “bean” which can be true or
false

 Bean customizers

Beans provide for a form of state migration since the bean state can be “canned” (serialized) and
restored on a remote machine (unlike an applet which always starts in an initial state after landing
on a remote machine). However, this is not object migration since the execution state (program
counters for all threads) would need to be suspended and resumed. Persistency is more meant to
preserve the state that resulted from external entities interacting with the bean, rather than the
state of the execution, which would be possible to resume on another machine.

7.5 A Component Framework

“All parts should go together without forcing. You must remember that the parts you are reassembling
were disassembled by you. Therefore, if you can’t get them together again, there must be a reason. By all

means, do not use a hammer.”
—IBM maintenance manual, 1925

Here I present a component framework that I designed, which is inspired by several component
frameworks existing in research laboratories. Compared to JavaBeans, this framework is more
radical in enforcing the component encapsulation and uniformity of communication with it.

7.5.1 Port Interconnections

Options for component wiring are illustrated in Figure 7-4. The ports of different components can
be connected directly, one-on-one. In the simplest case, output port of a component directly
connects to an input port of another component. Another useful analogy is wire, which is a
broadcast medium to which multiple ports can be connected. Similar effect could be achieved by
the Publisher-Subscriber pattern (see Section 4.1 above), but the Wire abstraction appears to be
more elegant in the context of components and ports.

In the spirit of object-oriented encapsulation, components as defined here share nothing—they
have no shared state variables. The communication is entirely via messages. Of course,

Chapter 7 Software Components 371

communication via ports is limited to the inter-component communication. Components contain
one or more objects, which mutually communicate via regular method calls. Similarly,
components make calls to the runtime environment and vice versa, via method calls. The only
requirement that is enforced is that components communicate with each other via ports only.

Components can be composed into more complex, composite components, as in Figure 7-1(c),
where each operational amplifier within the chip could be a separate “component.” Composing
components is illustrated in Figure 7-4(c), where component H contains component I. Notice that
one of the output ports of component G connects to an input port of component H which is
directly connected to an input port of component I. Regular input port cannot be connected to
another input port. Similar is true for output ports. To support forming chains of ports of the same
type, we introduce a prefix port sub-type, shown in Figure 7-4(c).

Typical event communication and processing in a single-threaded system is illustrated in the
sequence diagram in Figure 7-5. In this example, component A receives Event 1 on the input port
a1, processes it and generates event 2 on the output port a2. This event is received and processed
by component B. The dashed lines at the bottom of the figure indicate how the thread returns after
this sequential processing is completed.

All components and ports are named and addressable using a Unix-type path. For example, full
path format for a port on a nested component is as:

container_component_name/inner_component_name@port_name

Component names are separated by forward slashes (/) and the port name is preceded by “at” sign
(@). Thus, the components and their ports form a tree structure.

Design Issues

It was debated whether to strictly enforce the Port model for communicating with Components.
Currently, actions that require computation go via Ports. Conversely, access to state variables
(component properties) is via setProperty()/getProperty() methods. So, if component
has a handle/reference to another component (which normally should not happen!), it can invoke
these methods. Of course, the state access could also go over the Ports, but convenience was

A B

C

A B

C

(a) (b) (c)

H
I

G

Prefix
ports

Composite
component

H
I

G

Prefix
ports

Composite
component

D E

F
Wire

D E

F
Wire

Figure 7-4. Options for wiring the ports. (a) Component ports can be directly “soldered”
one-on-one. (b) The abstraction of wire provides a broadcast medium where the event from
any output connected to the wire appears on all input ports connected to the same wire. (c)
Prefix ports are used in wiring composite components.

Ivan Marsic Rutgers University 372

preferred over compliance. Further deliberation may be warranted to evaluate the merits and
hazards of the current solution.

Another issue is, what if, in Figure 7-5, component A needs some return value from component
B? This could probably be achieved by connecting B’s output port to A’s another input port, but is
this the most elegant/efficient solution?

7.5.2 Levels of Abstraction

A key question with components is the right “size”, the level of abstraction. Low level of
specialization provides high generality and reusability, but also low functionality thus resulting in
productivity gain.

Cf. Lego blocks: Although it is possible to build anything using the simplest rectangular blocks,
Lego nevertheless provides specialized pre-made pieces for certain purposes. The point is not
whether anything can be built with universal components; the point is whether it is cost effective
to do so.

Recall Example 3.1 (??) about the simplified domain model of the virtual biology lab (described
at the book website, given in Preface). We compared the solution presented in Problem 2.12 that
uses abstract objects modeled after the physical objects against a simplified solution that uses
only abstract geometric figures (lines, circles, polygons, etc.). True, the simplified model is not
adequate because classes Cell or Nucleus have relatively strong semantic meaning, whereas class
Circle can stand for both of these and many other things. However, one may wonder whether we
need to represent every detail in the problem domain by a different class. Consider human bodies
composed of cells—there are only 255 or so specialized sorts of cell [Alberts, et al., 1989]. For
comparison, Java libraries have thousands different classes. Of course, each cell has many
complex elements. One may wonder whether it is possible to have a similar, biologically inspired,
hierarchical abstraction and composition of functions. UML packages contain classes, but they

process(Event1)

a1 : PortIn A : Component

receive(Event1)

a2 : PortOut

send(Event2)
process(Event2)

b1 : PortIn B : Component

receive(Event2)

Figure 7-5. Typical event communication and processing in a single-threaded system.

Chapter 7 Software Components 373

are not functional abstraction. Work on software architectures is in early stages and may
eventually offer the path for component abstraction.

7.6 Summary and Bibliographical Notes

Cite a book on Java Beans.

Computational reflection was introduced in [Smith, 1982]. A review is available in [Maes, 1987].

The component design presented in Section 7.5 is derived from the current literature, mostly the
references [Allan et al., 2002; Bramley et al., 2000; Chen & Szymanski, 2001; Hou et al., 2005;
Szymanski & Chen, 2002; Tyan et al., 2005]. Additional information is available from the
Common Component Architecture (CCA) Forum at http://www.cca-forum.org/.

Problems

374

Contents
8.1 Service Oriented Architecture

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7

8.2 SOAP Communication Protocol
8.2.1 The SOAP Message Format
8.2.2 The SOAP Section 5 Encoding
8.2.3 SOAP Communication Styles
8.2.4 Binding SOAP to a Transport Protocol

8.3 WSDL for Web Service Description
8.3.1 The WSDL 2.0 Building Blocks
8.3.2 Defining a Web Service’s Abstract

Interface
8.3.3 Binding a Web Service Implementation
8.3.4 Using WSDL to Generate SOAP Binding
8.3.5 Non-functional Descriptions and Beyond

WSDL

8.4 UDDI for Service Discovery and Integration
8.4.1
8.4.2
8.4.3
8.4.4

8.5 Developing Web Services with Axis
8.5.1 Server-side Development with Axis
8.5.2 Client-side Development with Axis
8.5.3
8.5.4

8.6 OMG Reusable Asset Specification
8.6.1
8.6.2
8.6.3

8.7 Summary and Bibliographical Notes

Problems

Chapter 8
Web Services

A Web service is a software function or resource offered as a
service; remotely accessed over the “web”; and, has
programmatic access using standard protocols. A Web service
is an interface that describes a collection of operations that are
network accessible through standardized XML messaging.
Web services fulfill a specific task or a set of tasks. A Web
service is described using a standard, formal XML notion,
called its service description that provides all the details
necessary to interact with the service including message
formats, transport protocols and location.

While there are several definitions available it can be broadly
agreed that a Web service is a platform and implementation
independent software component that can be,

 Described using a service description language

 Published to a registry of services

 Discovered through a standard mechanism

 Invoked through a declared API, usually over a
network

 Composed with other services

Web services are characterized as loose coupling of
applications—clients and service providers need not be known
a priori. The underlying mechanism that enables this is:
publish-find-bind, or sometimes called find-bind-execute. The
application can be developed without having to code or
compile in what services you need. Similarly, when service
provider deploys a service, it does not need to know its clients.
In summary, (1) Service publishes its description; (2) Client
finds service based on description; and, (3) Client binds itself
to the service.

Chapter 8 Web Services 375

The only common thing across Web services is the data format (ontology). There is no API’s
involved, no remote service invocation. Each “method” is a different service; invocation is
governed by the “service contract.” A web site (portal) provides a collection of Web services.

Tom Gruber, What is an Ontology? Online at: http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html

A closer look at Microsoft's new Web services platform, "Indigo," from the same source.

http://www.eweek.com/article2/0,1759,1763162,00.asp

Web services essentially mean using SOAP Remote Procedure Call. Web services function in the
information “pull” mode. The reason for this is firewalls, which allow only pulling of the
information with Web services. Although HTTP 1.1 allows keeping state on the server, it is still a
“pull” mode of communication.

The “pull” mode is not appropriate for distributing real-time information; for this we need the
“push” mode. If we want to use Web services in the “push” mode, we have two options:

1. Use tricks

2. Web services pushing unsolicited notification

In the first case, we have an independent broker to which the clients that are to receive
notifications should connect. The broker is in the trusted part of the network and it helps to push
information to the client of the Web service.

In the second case, the Web service standard needs to be modified to allow pushing information
from the server. An important issue that needs to be considered is whether this capability can lead
to denial-of-service attacks.

Peer-to-peer communication is also an issue because of firewalls.

So, What the Heck Are Web Services?

http://www.businessweek.com/technology/content/feb2005/tc2005028_8000_tc203.htm

A "Milestone" for Web Services

http://www.businessweek.com/technology/content/feb2005/tc2005028_4104_tc203.htm

GENERAL:

http://www.businessweek.com/technology/index.html

Web Services Leaders Submit Key Messaging Spec: A group of leading Web services
proponents, including Microsoft and Sun Microsystems, on Tuesday announced the joint
submission of a key Web services specification to the World Wide Web Consortium (W3C).

http://www.eweek.com/article2/0,1759,1634158,00.asp

Read how this could signal a turning point in the battle over Web services specifications
intellectual property rights.

Ivan Marsic Rutgers University 376

8.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural style whose goal is to achieve loose
coupling among interacting software agents. Typically, service oriented architecture contains
three components (see Figure 8-1): a service provider, a service customer, and a service registry.
A service is a unit of work done by a service provider to achieve desired end results for a service
customer. Both provider and customer are roles played by software agents on behalf of their
users. SOA is a simple but powerful concept which can be applied to describe a wide variety of
Web service implementations.

A service provider creates a service description, publishes that service description to one or more
service registries and receives Web service invocation requests from one or more service
consumers. It is important to note that the service provider publishes the description of how the
service behaves and not the service code. This service description informs the service customer
everything it needs to know in order to properly understand and invoke the Web service. More
information on service description is available in Section 8.3 below. A service customer finds
service descriptions published to one or more service registries and use service descriptions to
bind or to invoke Web services hosted by service providers.

3. Bind/Use

2. Find/Search
1. P

ublish/Register

Discovery Agency /
Registry

Service Provider
Service Customer

Service
Description

Figure 8-1: Service Oriented Architecture—components and relationships.

Chapter 8 Web Services 377

8.2 SOAP Communication Protocol

SOAP (Simple Object Access Protocol or Service Oriented Architecture Protocol) is the
communication protocol for Web services. It is intended for exchanging structured information
(based on XML) and is relatively simple (lightweight). Most commonly it runs over HTTP
(Appendix C), but it can run over a variety of underlying protocols. It has been designed to be
independent of any particular programming model and other implementation-specific semantics.
A key advantage of SOAP is that, because it is XML based, it is programming-language,
platform, and hardware independent.

SOAP, as any other communication protocol, governs how communication happens and how data
is represented on the wire. The SOAP framework is an implementation of the Broker design
pattern (Section 5.4) and there are many similarities between SOAP and Java RMI (or CORBA).
This section describes SOAP version 1.2, which is the current SOAP specification. The older
SOAP version 1.1 is somewhat different.

SOAP defines the following pieces of information, which we will look at in turn:

 The way the XML message is structured

 The conventions representing a remote procedure call in that XML message

get
recommendation

invoke

Delphi method facilitator
: Service Requestor

: SOAP Runtime

initialize

stock forecast expert
: Service Provider

data tracking
and machine learning

: Backend

http
: Transport

http
: Transport

forecaster description
: WSDL

discovery agency
: UDDI, WSIL

: SOAP Runtime

create

obtain
publish

find

do
forecast

Figure 8-2: Web services dynamic interactions.

Ivan Marsic Rutgers University 378

 A binding to HTTP, to ensure that the XML message is transported correctly

 The conventions for conveying an error in message processing back to the sender

8.2.1 The SOAP Message Format

A unit of communication in SOAP is a message. A SOAP message is an ordinary XML document
containing the following elements (Figure 8-3):

 A required Envelope element that identifies the XML document as a SOAP message

 An optional Header element that contains the message header information; can include
any number of header blocks (simply referred to as headers); used to pass additional
processing or control information (e.g., authentication, information related to transaction
control, quality of service, and service billing and accounting-related data)

 A required Body element that contains the remote method call or response information;
all immediate children of the Body element are body blocks (typically referred to simply
as bodies)

 An optional Fault element that provides information about errors that occurred while
processing the message

SOAP messages are encoded using XML and must not contain DTD references or XML
processing instructions. Figure 8-4 illustrates the detailed schema for SOAP messages using the
notation introduced in Figure 6-5. If a header is present in the message, it must be the first
immediate child of the Envelope element. The Body element either directly follows the
Header element or must be the first immediate child of the Envelope element if no header is
present.

Because the root element Envelope is uniquely identified by its namespace, it allows
processing tools to immediately determine whether a given XML document is a SOAP message.
The main information the sender wants to transmit to the receiver should be in the body of the
message. Any additional information needed for intermediate processing or added-value services
(e.g., authentication, security, transaction control, or tracing and auditing) goes into the header.
This is the common approach for communication protocols. The header contains information that

SOAP envelope

SOAP header

SOAP body

body blockbody block

header blockheader block

attachment blockattachment block

Actual message content
(required)

Processing instructions
Context information
(optional)

Identifies message as
a SOAP message
(required)

Arbitrary content
(optional)

<Envelope>

</Envelope>

<Body>

</Body>

<Header>

</Header>

header blocks

body blocks

attachment blocks

<Envelope>

</Envelope>

<Body>

</Body>

<Header>

</Header>

header blocks

body blocks

attachment blocks

Figure 8-3: Schematic representation of a SOAP message. Highlighted are the required
elements.

Chapter 8 Web Services 379

can be used by intermediate nodes along the SOAP message path. The payload or body is the
actual message being conveyed. This is the reason why the header is optional.

Each of the SOAP elements Envelope, Header, or Body can include arbitrary number of
<any> elements. Recall that the <any> element enables us to extend the XML document with
elements not specified by the schema. Its namespace is indicated as ##other, which implies
elements from any namespace that is not the namespace of the parent element, that is, soap-
env.

An example SOAP message containing a SOAP header block and a SOAP body is given as:

Listing 8-1: Example of a SOAP message.
 1 <soap-env:Envelope
 2 xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope"
 3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 5 <soap-env:Header>
 6 <ac:alertcontrol xmlns:ac="http://example.org/alertcontrol"
 7 soap-env:mustUnderstand="1">
 8 <ac:priority>high</ac:priority>
 9 <ac:expires>2006-22-00T14:00:00-05:00</ac:expires>
10 </ac:alertcontrol>
11 </soap-env:Header>
12 <soap-env:Body>
13 <a:notify xmlns:a="http://example.org/alert">
14 <a:note xsi:type="xsd:string">

Global attributes:

Envelope

?
soap-env:Envelope soap-env:Header

soap-env:Body

?
##other:any

Envelope

?
soap-env:Envelopesoap-env:Envelope soap-env:Header

soap-env:Body

?
##other:any

Header

soap-env:Header
?

##other:any

##other:anyAttribute
?

Header

soap-env:Header
?

##other:any

##other:anyAttribute
?

Body

soap-env:Body
?

##other:any

##other:anyAttribute
?

Body

soap-env:Body
?

##other:any

##other:anyAttribute
?

soap-env:role

soap-env:mustUnderstand

soap-env:encodingStyle

soap-env:relay

soap-env:role

soap-env:mustUnderstand

soap-env:encodingStyle

soap-env:relay

Fault

soap-env:Fault Code

Reason

Node

Role

Detail

?

?

?

Fault

soap-env:Fault Code

Reason

Node

Role

Detail

?

?

?

Figure 8-4: The XML schema for SOAP messages. The graphical notation is given in Figure
6-5. (SOAP version 1.2 schema definition available at: http://www.w3.org/2003/05/soap-envelope).

Ivan Marsic Rutgers University 380

Sender

Service Requestor

Intermediary Intermediary Receiver

Service Provider

15 Reminder: meeting today at 11AM in Rm.601
16 </a:note>
17 </a:notify>
18 </soap-env:Body>
19 </soap-env:Envelope>

The above SOAP message is a request for alert to a Web service. The request contains a text note
(in the Body) and is marked (in the Header) to indicate that the message is high priority, but
will become obsolete after the given time. The details are as follows:

Lines 1–2: Prefix soap-env, declared in Line 2, identifies SOAP-defined elements, namely
Envelope, Header, and Body, as well as the attribute mustUnderstand (appears in
Line 7).

Line 3: Prefix xsd refers to XML Schema elements, in particular the built-in type string
(appears in Line 14).

Line 4: Prefix xsi refers to XML Schema instance type attribute, asserting the type of the
note as an XML Schema string (appears in Line 14).

Line 7: The mustUnderstand attribute value "1" tells the Web service provider that it
must understand the semantics of the header block and that it must process the header. The
Web service requestor demands express service delivery.

Lines 12–18: The Body element encapsulates the service method invocation information,
namely the method name notify, the method parameter note, its associated data type and
its value.

SOAP message body blocks carry the information needed for the end recipient of a message. The
recipient must understand the semantics of all body blocks and must process them all. SOAP does
not define the schema for body blocks since they are application specific. There is only one
SOAP-defined body block—the Fault element shown in Figure 8-4—which is described below.

A SOAP message can pass through multiple nodes on its path. This includes the initial SOAP
sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver. SOAP intermediaries
are applications that can process parts
of a SOAP message as it travels from
the sender to the receiver.
Intermediaries can both accept and forward (or relay, or route) SOAP messages. Three key use-
cases define the need for SOAP intermediaries: crossing trust domains, ensuring scalability, and
providing value-added services along the SOAP message path. Crossing trust domains is a
common issue faced when implementing security in distributed systems. Corporate firewalls and
virtual private network (VPN) gateways let some requests cross the trust domain boundary and
deny access to others.

Similarly, ensuring scalability is an important requirement in distributed systems. We rarely have
a simplistic scenario where the sender and receiver are directly connected by a dedicated link. In
reality, there will be several network nodes on the communication path that will be crossed by
many other concurrent communication flows. Due to the limited computing resources, the
performance of these nodes may not scale well with the increasing traffic load. To ensure
scalability, the intermediate nodes need to provide flexible buffering of messages and routing

Chapter 8 Web Services 381

based not only on message parameters, such as origin, destination, and priority, but also on the
state of the network measured by parameters such as the availability and load of its nodes as well
as network traffic information.

Lastly, we need intermediaries to provide value-added services in a distributed system. Example
services include authentication and authorization, security encryption, transaction management,
message tracing and auditing, as well as billing and payment processing.

SOAP Message Global Attributes

SOAP defines three global attributes that are intended to be usable via qualified attribute names
on any complex type referencing them. The attributes are as follows (more details on each are
provided below):

 The mustUnderstand attribute specifies whether it is mandatory or optional that a
message receiver understands and processes the content of a SOAP header block. The
message receiver to which this attribute refers to is named by the role attribute.

 The role attribute is exclusively related to header blocks. It names the application that
should process the given header block.

 The encodingStyle attribute indicates the encoding rules used to serialize parts of a
SOAP message. Although the SOAP specification allows this attribute to appear on any
element of the message (including header blocks), it mostly applies to body blocks.

 The relay attribute is used to indicate whether a SOAP header block targeted at a SOAP
receiver must be relayed if not processed.

The mustUnderstand attribute can have values '1' or '0' (or, 'true' or 'false').
Value '1' indicates that the target role of this SOAP message must understand the semantics of
the header block and process it. If this attribute is missing, this is equivalent to having value '0'.
This value indicates that the target role may, but does not have to, process the header block.

The role attribute carries an URI value that names the recipient of a header block. This can be
the ultimate receiver or an intermediary node that should provide a value-added service to this
message. The SOAP specification defines three roles: none, next, and ultimateReceiver. An
attribute value of http://www.w3.org/2003/05/soap-envelope/role/next
identifies the next SOAP application on the message path as the role for the header block. A
header without a role attribute is intended for the ultimate recipient of this message.

The encodingStyle attribute declares the mapping from an application-specific data
representation to the wire format. An encoding generally defines a data type and data mapping
between two parties that have different data representation. The decoding converts the wire
representation of the data back to the application-specific data format. The translation step from
one data representation to another, and back to the original format, is called serialization and
deserialization. The terms marshalling and unmarshalling may be used as alternatives. The scope
of the encodingStyle attribute is that of its owner element and that element’s descendants,
excluding the scope of the encodingStyle attribute on a nested element. More about SOAP
encoding is given in Section 8.2.2 below.

Ivan Marsic Rutgers University 382

The relay attribute indicates whether a header block should be relayed in the forwarded
message if the header block is targeted at a role played by the SOAP intermediary, but not
otherwise processed by the intermediary. This attribute type is Boolean and, if omitted, it is
equivalent as if included with a value of “false.”

Error Handling in SOAP: The Fault Body Block

If a network node encounters problems while processing a SOAP message, it generates a fault
message and sends it back to the message sender, i.e., in the direction opposite to the original
message flow. The fault message contains a Fault element which identifies the source and
cause of the error and allows error-diagnostic information to be exchanged between participants
in an interaction. Fault is optional and can appear at most once within the Body element. The
fault message originator can be an end host or an intermediary network node which was supposed
to relay the original message. The content of the Fault element is slightly different in these two
cases, as will be seen below.

A Fault element consists of the following nested elements (shown in Figure 8-4):

 The Code element specifies the failure type. Fault codes are identified via namespace-
qualified names. SOAP predefines several generic fault codes and allows custom-defined
fault codes, as described below.

 The Reason element carries a human-readable explanation of the message-processing
failure. It is a plain text of type string along with the attribute specifying the language the
text is written in.

 The Node element names the SOAP node (end host or intermediary) on the SOAP message
path that caused the fault to happen. This node is the originator of the fault message.

 The Role element identifies the role the originating node was operating in at the point the
fault occurred. Similar to the role attribute (described above), but instead of identifying the
role of the recipient of a header block, it gives the role of the fault originator.

 The Detail element carries application-specific error information related to the Body
element and its sub-elements.

As mentioned, SOAP predefines several generic fault codes. They must be namespace qualified
and appear in a Code element. These are:

Fault Code Explanation

VersionMismatch The SOAP node received a message whose version is not supported,
which is determined by the Envelope namespace. For example, the
node supports SOAP version 1.2, but the namespace qualification of
the SOAP message Envelope element is not identical to
http://www.w3.org/2003/05/soap-envelope .

DataEncodingUnknown A SOAP node to which a SOAP header block or SOAP body child
element information item was targeted was targeted does not support
the data encoding indicated by the encodingStyle attribute.

MustUnderstand A SOAP node to which a header block was targeted could not

Chapter 8 Web Services 383

process the header block, and the block contained a
mustUnderstand attribute value "true".

Sender A SOAP message was not appropriately formed or did not contain all
required information. For example, the message could lack the proper
authentication or payment information. Resending this identical
message will again cause a failure.

Receiver A SOAP message could not be processed due to reasons not related
to the message format or content. For example, processing could
include communicating with an upstream SOAP node, which did not
respond. Resending this identical message might succeed at some
later point in time.

SOAP allows custom extensions of fault codes through dot separators so that the right side of a
dot separator refines the more general information given on the left side. For example, the Code
element conveying a sender authentication error would contain Sender.Authentication.

SOAP does not require any further structure within the content placed in header or body blocks.
Nonetheless, there are two aspects that influence how the header and body of a SOAP message
are constructed: communication style and encoding rules. These are described next.

8.2.2 The SOAP Section 5 Encoding Rules

Encoding rules define how a particular entity or data structure is represented in XML. Connecting
different applications typically introduces the problem of interoperability: the data representation
of one application is different from that of the other application. The reader may recall the
example in Figure 6-1 that shows two different ways of representing a postal address. The
applications may even be written in different programming languages. In order for the client and
server to interoperate, it is essential that they agree on how the contents of a SOAP message are
encoded. SOAP 1.2 defines a particular form of encoding called SOAP encoding.2 This defines
how data structures in the application’s local memory, including basic types such as integers and
strings as well as complex types such as arrays and structures, can be serialized into XML. The
serialized representation allows transfer of data represented in application-specific data types
from one application to another.

The encoding rules employed in a particular SOAP message are specified by the
encodingStyle attribute, as discussed above. There is no notion of default encoding in a
SOAP message. Encoding style must be explicitly specified if the receiving application is
expected to validate the message.

SOAP does not enforce any special form of coding—other encodings may be used as well. In
other words, applications are free to ignore SOAP encoding and choose a different one instead.
For instance, two applications can simply agree upon an XML Schema representation of a data
structure as the serialization format for that data structure. This is commonly referred to as literal
encoding (see also Section 8.2.3 below).

2 There is no “official” name for SOAP encoding, but it is often referred to as SOAP Section 5 encoding,

because the rules are presented in Section 5 of the SOAP specification.

Ivan Marsic Rutgers University 384

A typical programming language data model consists of simple types and compound types.
Compound types are based on simple types or other compound types. Dealing with simple data
types would be easy, since all these types have direct representation in XML Schema (some are
shown in Table 6-1 above). However, the story with complex types, such as arrays and arbitrary
software objects, is more complicated. XML Schema defines complex types, but these are very
general, and some degree of specialization, e.g., for arrays, could make job easier for the Web
services developer.

SOAP does not define an independent data type system. Rather, it relies on the XML Schema
type system. It adopts all XML Schema built-in primitive types and adds few extensions for
compound types. The SOAP version 1.2 types extending the XML Schema types are defined in a
separate namespace, namely http://www.w3.org/2003/05/soap-encoding.

XML elements representing encoded values may hold the XML Schema type attribute for
asserting the type of a value. For example, the sender of the SOAP encoded message in Listing
8-1 above in Line 14 explicitly asserts the type of the note element content to be a string:

14 <a:note xsi:type="xsd:string">
15 Reminder: meeting at 11AM in Rm.601
16 </a:note>

The XML elements representing encoded values may also be untyped, i.e., not contain the type
attribute:

 <a:note> Reminder: meeting at 11AM in Rm.601 </a:note>

In this case, a receiver deserializing a value must be able to determine its type just by means of
the element name <a:note>. If a sender and a receiver share the same data model, and both
know that a note labeled value in an application-specific data graph is a string type, they are
able to map the note element content to the appropriate data type without explicitly asserting the
type through the XML Schema type attribute. However, in this case we cannot rely on XML
Schema to explicitly validate the content of the message.

SOAP Compound Data Types

SOAP Section 5 encoding assumes that any application-specific data is represented as a directed
graph. Consider the class diagram for an online auction site shown in Figure 2-44, Problem 2.31
in Chapter 2, which is simplified here in Figure 8-5. Suppose that the sender sends an instance of
ItemInfo called item to the receiver in a SOAP message.

A compound data type can be either a struct or an array. A struct is an element that contains
different child elements. The SellerInfo in Figure 8-5 is an example of a struct. An array is a
compound type that contains elements of the same name. The BidList in Figure 8-5 is an example
of an array since it contains a group of individual Bid entries.

When serialized to XML, the object graph of item in Figure 8-5 will be represented as follows:

Listing 8-2: Example of SOAP encoding for the object graph in Figure 8-5.
<soap-env:Envelope
 xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Chapter 8 Web Services 385

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap-enc="http://www.w3.org/2003/05/soap-encoding"
 xmlns:ns0="http://www.auctions.org/ns"
 soap-env:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
 <soap-env:Body>
 <ns0:item>
 <ns0:name xsi:type="xsd:string"> old watch </ns0:name>
 <ns0:startPrice xsi:type="xsd:float"> 34.99 </ns0:startPrice>
 <ns0:reserved xsi:type="xsd:boolean"> false </ns0:reserved>
 <ns0:seller>
 <ns0:name xsi:type="xsd:string"> John Doe </ns0:name>
 <ns0:address xsi:type="xsd:string">
 13 Takeoff Lane, Talkeetna, AK 99676
 </ns0:address>
 <ns0:bids xsi:type="soap-enc:array" soap-enc:arraySize="*">
 <ns0:entry>
 <ns0:amount xsi:type="xsd:float"> 35.01 </ns0:amount>
 <ns0:bidder> . . . </ns0:bidder>
 </ns0:entry>
 <ns0:entry>
 <ns0:amount xsi:type="xsd:float"> 34.50 </ns0:amount>
 <ns0:bidder> . . . </ns0:bidder>
 </ns0:entry>
 . . .
 </ns0:bids>
 </ns0:seller>
 </ns0:item>
 </soap-env:Body>
</soap-env:Envelope>

ItemInfo

name : String
startPrice : float
reserved : boolean

SellerInfo

name : String
address : String

1

1

bids

seller

Bid

amount : float

BidsList

*
1

bidder

BuyerInfo

name : String
address : Stringentry

item ItemInfo

name : String
startPrice : float
reserved : boolean

ItemInfo

name : String
startPrice : float
reserved : boolean

SellerInfo

name : String
address : String

SellerInfo

name : String
address : String

1

1

bids

seller

Bid

amount : float

Bid

amount : float

BidsListBidsList

*
1

bidder

BuyerInfo

name : String
address : String

BuyerInfo

name : String
address : Stringentry

item

Sender Receiver
(Web service)

SOAP message

item

Sender Receiver
(Web service)

SOAP message

item

Figure 8-5: Example class diagram, extracted from Figure 2-44 (Chapter 2).

Ivan Marsic Rutgers University 386

Array attributes. Needed to give the type and dimensions of an array’s contents, and the offset for
partially-transmitted arrays. Used as the type of the arraySize attribute. Restricts asterisk (*)
to first list item only. Instances must contain at least an asterisk (*) or a nonNegativeInteger.
May contain other nonNegativeIntegers as subsequent list items. Valid instances include: *, 1, *
2, 2 2, * 2 0.

8.2.3 SOAP Communication Styles

Generally, SOAP applications can communicate in two styles: document style and RPC style
(Remote Procedure Call style). In document-style communication, the two applications agree
upon the structure of documents exchanged between them. SOAP messages are used to transport
these documents from one application to the other. The structure of both request and response
messages is the same, as illustrated in Figure 8-6, and there are absolutely no restrictions as to the
information that can be stored in their bodies. In short, any XML document can be included in the
SOAP message. The document style is often referred to also as message-oriented style.

In RPC-style communication, one SOAP message encapsulates the request while another
message encapsulates the response, just as in document-style communication. However, the
difference is in the way these messages are constructed. As shown in Figure 8-7, the body of the
request message contains the actual operation call. This includes the name of the operation being
invoked and its input parameters. Thus, the two communicating applications have to agree upon
the RPC operation signature as opposed to the document structure (in the case of document-style
communication). The task of translating the operation signature in SOAP is typically hidden by
the SOAP middleware.

Selecting the communication style is independent from selecting whether or not the message
should be encoded (Section 8.2.2 above). The term literal is commonly used to refer to non-
encoded messages. Therefore, four different combinations are possible:

 document/literal: A document-style message which is not encoded.

 document/encoded: A document-style message which is encoded.

 rpc/literal: An RPC-style message which is not encoded.

 rpc/encoded: An RPC-style message which is encoded.

<Envelope>

<Body>

</Envelope>

</Body>

<Header>

</Header>

header blocks

arbitrary XML document

<Envelope>

<Body>

</Envelope>

</Body>

<Header>

</Header>

header blocks

arbitrary XML document
SOAP Message

(same for Request or Response)

Figure 8-6: Structure of a document-style SOAP message.

Chapter 8 Web Services 387

The document/encoded combination is rarely encountered in practice, but the other three are
commonly in use. Document-style messages are particularly useful to support cases in which
RPCs result in interfaces that are too fine grained and, therefore, brittle.

The RPC-style SOAP Communication

In the language of the SOAP encoding, the actual RPC invocation is modeled as a struct type
(Section 8.2.2 above). The name of the struct (that is, the name of the first element inside the
SOAP body) is identical to the name of the method/operation. Every in or in-out parameter of the
RPC is modeled as an accessor with a name identical to the name of the RPC parameter and the
type identical to the type of the RPC parameter mapped to XML according to the rules of the
active encoding style. The accessors appear in the same order as do the parameters in the
operation signature.

All parameters are passed by value. SOAP has no notion of passing values by reference, which is
unlike most of the programming languages. For Web services, the notion of in-out and out
parameters does not involve passing objects by reference and letting the target application modify
their state. Instead, copies of the data are exchanged. It is the up to the service client code to
create the perception that the actual state of the object that has been passed in to the client method
has been modified.

Listing 8-3: An example of a SOAP 1.2 RPC-style request/response via HTTP:
<?xml version="1.0"?>

<Envelope>

</Envelope>

<Body>

</Body>

<Header>

</Header>

header blocks

<operationName>

</operationName>

<inputParameter_1> </inputParameter_1>value 1

<inputParameter_2> </inputParameter_2>value 2

<inputParameter_n> </inputParameter_n>value n

<Envelope>

</Envelope>

<Body>

</Body>

<Header>

</Header>

header blocks

<operationName>

</operationName>

<inputParameter_1> </inputParameter_1>value 1<inputParameter_1> </inputParameter_1>value 1

<inputParameter_2> </inputParameter_2>value 2<inputParameter_2> </inputParameter_2>value 2

<inputParameter_n> </inputParameter_n>value n<inputParameter_n> </inputParameter_n>value n

Remote Procedure Call

<Envelope>

<Body>

<Header>

</Header>

header blocks

<operationNameReturn>

<return> </return>return value

</Envelope>

</Body>

</operationNameReturn>

<outputParameter_2> </outputParameter_2>value 2

<outputParameter_n> </outputParameter_n>value n

<outputParameter_1> </outputParameter_1>value 1

<Envelope>

<Body>

<Header>

</Header>

header blocks

<operationNameReturn>

<return> </return>return value<return> </return>return value

</Envelope>

</Body>

</operationNameReturn>

<outputParameter_2> </outputParameter_2>value 2<outputParameter_2> </outputParameter_2>value 2

<outputParameter_n> </outputParameter_n>value n<outputParameter_n> </outputParameter_n>value n

<outputParameter_1> </outputParameter_1>value 1<outputParameter_1> </outputParameter_1>value 1

Remote Procedure Call Response

(Request message)

(Response message)

Figure 8-7: Structure of a SOAP RPC-style request and its associated response message.

Ivan Marsic Rutgers University 388

<description name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns="http://www.w3.org/ns/wsdl">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>
 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation
soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

Chapter 8 Web Services 389

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>
<description>

8.2.4 Binding SOAP to a Transport Protocol

The key issue in deciding how to bind SOAP to a particular transport protocol is about
determining how the requirements for a Web service (communication style, such as RPC vs.
document, synchronous vs. asynchronous, etc.) map to the capabilities of the transport protocol.
In particular, we need to determine how much of the overall contextual information needed to
successfully execute the Web service needs to go in the SOAP message versus in the message of
the transport protocol.

Figure 8-8 illustrates this issue on an HTTP example. In HTTP, context information is passed via
the target URI and the SOAPAction header. In the case of SOAP, context information is passed
in the SOAP header.

As a communication protocol, SOAP is stateless and one-way. Although it is possible to
implement statefull SOAP interactions so that the Web service maintains a session, this is not the
most common scenario.

HTTP Message

SOAP Message

SOAP body

HTTP Message

SOAP Message

SOAP body

POST / alertcontrol HTTP 1.1

Content-Type: text/xml; charset="utf-8"
Content-Length: 581
Host: www.example.org
SOAPAction: notify
......
Connection: Keep-Alive

<soap-env:Envelope

xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap-env:Header>
......

</soap-env:Header>
......

<soap-env:Body>

<a:notify xmlns:a="http://example.org/alert">
<a:note xsi:type="xsd:string">

Reminder: meeting today at 11AM in Rm.601
</a:note>

</a:notify>
</soap-env:Body>

Physical (Communication Protocol) Message

Out-of-message context (target URI)

Out-of-message context (SOAPAction)

Logical SOAP Message

In-message context (header blocks)

SOAP Body

Figure 8-8: SOAP message binding to the HTTP protocol for the SOAP message example
from Listing 8-1 above.

Ivan Marsic Rutgers University 390

When using HTTP for SOAP messages, the developer must decide which HTTP method
(Appendix C) is appropriate to use in HTTP request messages that are exchanged between the
service consumer and the Web service. Usually the choice is between GET and POST. In the
context of the Web as a whole (not specific to Web services), the W3C Technical Architecture
Group (TAG) has addressed the question of when it is appropriate to use GET, versus when to use
POST, in [Jacobs, 2004]. Their finding is that GET is more appropriate for safe operations such as
simple queries. POST is appropriate for other types of applications where a user request has the
potential to change the state of the resource (or of related resources). Figure 8-8 shows the HTTP
request using the POST method, which is most often used in the context of Web services.

I. Jacobs (Editor), “URIs, addressability, and the use of HTTP GET and POST,” World Wide
Web Consortium, 21 March 2004. Available at: http://www.w3.org/2001/tag/doc/whenToUseGet

8.3 WSDL for Web Service Description

A Web service publishes the description of the service not the actual service code. The service
customer uses the aspects of the service description to look or find a Web service. The service
customer uses this description since it can exactly detail what is required by the client to bind to
the Web service. Service description can be partitioned into:

 Parts used to describe individual Web services.

 Parts used to describe relationships between sets of Web services.

Our main focus will be on the first group, describing individual Web services. The second group
which describes relationships between sets of Web services will be briefly reviewed in Section
8.3.5 below.

The most important language for describing individual Web services currently is the Web
Services Definition Language (WSDL). WSDL has a dual purpose of specifying: (a) the Web
service interface (operation names and their signatures, used in the service invocation), and (b)
the Web service implementation (network location and access mechanism for a particular instance
of the Web service). The interface specifies what goes in and what comes out, regardless of where
the service is located or what are its performance characteristics. This is why the Web service
interface is usually referred to as the abstract part of the service specification. Conversely, the
implementation specifies the service’s network location and its non-functional characteristics,
such as performance, reliability, and security. This is why the Web service implementation is
usually referred to as the concrete part of the service specification. This section describes how
WSDL is used for describing the service interface and implementation.

WSDL grammar (schema) is defined using XML Schema. The WSDL service description is an
XML document conformant to the WSDL schema definition. WSDL provides the raw technical
description of the service’s interface including what a service does, how it is accessed and where

Chapter 8 Web Services 391

a service is located (Figure 8-9). Since the Web service can be located anywhere in the network,
the minimum information needed to invoke a service method is:

1. What is the service interface, that is, what are its methods (operations), method
signatures, and return values?

2. Where in the network (host address and port number) is the service located?

3. What communication protocol does the service understand?

8.3.1 The WSDL 2.0 Building Blocks

As seen Figure 8-9, WSDL 2.0 enables the developer to separate the description of a Web
service’s abstract functionality from the concrete details of how and where that functionality is
offered. This separation facilitates different levels of reusability and distribution of work in the
lifecycle of a Web service and the WSDL document that describes it.

Different implementations of the same Web service can be made accessible using different
communication protocols. (Recall also that SOAP supports binding to different transport
protocols, Section 8.2.4 above.)

The description of the endpoint’s functional capabilities is the abstract interface specification
represented in WSDL by the interface element. An abstract interface can support any number
of operations. An operation is defined by the set of messages that define its interface pattern.
Recall that invoking an object method involves a request message passing a set of parameters (or
arguments) as well as receiving a response message that carries the result returned by the method.
(The reader should recall the discussion of the RPC-style SOAP communication in Section 8.2.3
above.) Also, some of the method parameters may be used to pass back the output results; these
are known as in-out or out parameters. Since the operation is invoked over the network, we must

WSDL description

Service implementation definition

Service interface definition

types

interfaceAbstract part:

Concrete part:

What types of messages
(names + data types) are
communicated with the service?

How are the methods
invoked on the service?

How will the service be used on
the network for a protocol?
SOAP-specific details are here.

Where is the service located in
the network? – endpoint host(s)

service

operation1

operation2

binding

operation1

operation2

Figure 8-9: The WSDL 2.0 building blocks.

Ivan Marsic Rutgers University 392

specify how the forward message carries the input parameters, as well as how the feedback
message carries the result and the output parameters, or error message in case of failure.

For the abstract concepts of messages and operations, concrete counterparts are specified in the
binding element. A binding mechanism represented in WSDL by a binding element is used to
map the abstract definition of the Web service to a specific implementation using a particular
messaging protocol, data encoding model and underlying communication protocol. When the
binding is combined with an address where the implementation can be accessed, the abstract
endpoint becomes the concrete endpoint that service customers can invoke.

The WSDL 2.0 schema defines the following high-level or major elements in the language
(Figure 8-10, using the notation introduced in Figure 6-5):

description – Every WSDL 2.0 document has a description element as its top-most
element. This merely acts as a container for the rest of the WSDL document,
and is used to declare namespaces that will be used throughout the document.

types – Defines the collection of message types that can be sent to the Web service or
received from it. Each message type is defined by the message name and the
data types used in the message.

interface – The abstract interface of a Web service defined as a set of abstract operations.
Each child operation element defines a simple interaction between the
client and the service. The interaction is defined by specifying the messages
(defined in the types element) that can be sent or received in the course of a
service method invocation.

binding – Contains details of how the elements in an abstract interface are
converted into concrete representation in a particular combination of data
formats and transmission protocols. Must supply such details for every
operation and fault in the interface.

service – Specifies which interface the service implements, and a list of endpoint
locations where this service can be accessed.

wsdl:DescriptionType

wsdl:description

targetNamespace

wsdl:import

wsdl:include

wsdl:types

wsdl:interface

wsdl:binding

wsdl:service

!

!

!

wsdl:DescriptionType

wsdl:description

targetNamespacetargetNamespace

wsdl:importwsdl:import

wsdl:includewsdl:include

wsdl:typeswsdl:types

wsdl:interfacewsdl:interface

wsdl:bindingwsdl:binding

wsdl:servicewsdl:service

!

!

!

Figure 8-10: The XML schema for WSDL 2.0. Continued in Figure 8-12 and Figure 8-14.
(WSDL version 2.0 schema definition available at: http://www.w3.org/ns/wsdl).

Chapter 8 Web Services 393

As Figure 8-10 shows, WSDL 2.0 also offers import or interface inheritance mechanisms that are
described below. Briefly, an import statement brings in other namespaces into the current
namespace. An include statement brings in other element declarations that are part of the same
(current) namespace. In other words, the key difference is whether the imported components are
from the same or different namespace.

Although the WSDL 2.0 schema does not indicate the required ordering of elements, the WSDL
2.0 specification (WSDL 2.0 Part 1 Core Language) clearly states a set of constraints about how
the child elements of the description element should be ordered. The required ordering is just as
visualized in Figure 8-10, although multiple elements of the same type can be clustered together.

Documenting a Web Service Description

A WSDL document is inherently only a partial description of a service. Although it captures the
basic mechanics of interacting with the service—the message types, transmission protocols,
service location, etc.—in general, additional documentation will need to explain other
application-level requirements for its use. For example, such documentation should explain the
purpose and use of the service, the meanings of all messages, constraints on their use, and the
sequence in which operations should be invoked.

The documentation element (Figure 8-11) allows the WSDL author to include some human-
readable documentation inside a WSDL document. It is also a convenient place to reference any
additional external documentation that a client developer may need in order to use the service.
The documentation element is optional and can appear as a sub-element of any WSDL
element, not only at the beginning of a WSDL document, since all WSDL elements are derived
from wsdl:ExtensibleDocumentedType, which is a complex type containing zero or
more documentation elements. This fact is omitted, for simplicity, in the Schema diagrams in
this section.

Import and Include for Reuse of WSDL 2.0 Descriptions

The include element (Figure 8-10) helps to modularize the Web service descriptions so that
separation of various service definition components from the same target namespace are allowed
to exist in other WSDL documents which can be used or shared across Web service descriptions.
This allows us to assemble a WSDL namespace from several WSDL documents that define
components for that namespace. Some elements will be defined in the given document (locally)
and others will be defined in the documents that are included in it via the include element. The
effect of the include element is cumulative so that if document A includes document B which

wsdl:documentation

wsdl:DocumentationType

?
##other:any

##other:anyAttribute

wsdl:documentation

wsdl:DocumentationType

?
##other:any

##other:anyAttribute

Figure 8-11: The XML schema for WSDL 2.0 documentation element.

Ivan Marsic Rutgers University 394

in turn includes document C, then the components defined by document A comprise all those
defined in A, B, and C.

In contrast, the import element does not define any components. Instead, the import element
declares that the components defined in this document refer to components that belong to a
different namespace. No file is being imported; just a namespace is imported from one schema to
another. If a WSDL document contains definitions of components that refer to other namespaces,
then those namespaces must be declared via an import element. The import element also has
an optional location attribute that is a hint to the processor where the definitions of the
imported namespace can be found. However, the processor may find the definitions by other
means, for example, by using a catalog.

After processing any include elements and locating the components that belong to any
imported namespaces, the WSDL component model for a WSDL document will contain a set
of components that belong to this document’s namespace and any imported namespaces. These
components will refer to each other, usually via QName references. A WSDL document is invalid
if any component reference cannot be resolved, whether or not the referenced component belongs
to the same or a different namespace.

The topic of importing is a bit more complex since two types of import statements exist: XML
Schema imports and WDSL imports. Their respective behaviors are not quite identical and the
interested reader should consult WSDL 2.0 specifications for details.

8.3.2 Defining a Web Service’s Abstract Interface

Each operation specifies the types of messages that the service can send or receive as part of
that operation. Each operation also specifies a message exchange pattern that indicates the
sequence in which the associated messages are to be transmitted between the parties. For
example, the in-out pattern (described below) indicates that if the client sends a message in to the
service, the service will either send a reply message back out to the client (in the normal case) or
it will send a fault message back to the client (in the case of an error).

Figure 8-12 shows the XML syntax summary of the interface element, simplified by
omitting optional <documentation> elements. The interface element has two optional
attributes: styleDefault and extends. The styleDefault attribute can be used to
define a default value for the style attributes of all operation sub-elements under this
interface. Interfaces are referred to by QName in other components such as bindings.

The optional extends attribute allows an interface to extend or inherit from one or more other
interfaces. In such cases, the interface contains the operations of the interfaces it extends, along
with any operations it defines directly. Two things about extending interfaces deserve some
attention. First, an inheritance loop (or infinite recursion) is prohibited: the interfaces that a given
interface extends must not themselves extend that interface either directly or indirectly.

Second, we must explain what happens when operations from two different interfaces have the
same target namespace and operation name. There are two cases: either the component models of
the operations are the same, or they are different. If the component models are the same (per the
component comparison algorithm defined in WSDL 2.0 Part 1 Core Language) then they are
considered to be the same operation, i.e., they are collapsed into a single operation, and the fact

Chapter 8 Web Services 395

that they were included more than once is not considered an error. (For operations, component
equivalence basically means that the two operations have the same set of attributes and
descendants.) In the second case, if two operations have the same name in the same WSDL target
namespace but are not equivalent, then it is an error. For the above reason, it is considered good
practice to ensure that all operations within the same target namespace are named uniquely.

Finally, since faults can also be defined as children of the interface element (as described in
the following sections), the same name-collision rules apply to those constructs.

The interface operation element has a required name attribute, while pattern, safe, and
style are optional attributes.

WSDL Message Exchange Patterns

Message exchange patterns (MEPs) define the sequence and cardinality of messages within an
operation. Eight types of message patterns are defined in the WSDL 2.0 specifications, but this
list is not meant to be exhaustive and more patterns can be defined for particular application
needs. Depending on how the first message in the MEP is initiated, the eight MEPs may be
grouped into two groups: in-bound MEPs, for which the service receives the first message in the
exchange, and out-bound MEPs, for which the service sends out the first message in the
exchange. A service may use out-bound MEPs to advertise to potential clients that some new data
will be made available by the service at run time.

WSDL message exchange patterns use fault generation rules to indicate the occurrence of faults.
Message exchange may be terminated if fault generation happens, regardless of standard rule sets.
The following standard rule set outlines the behavior of fault generation:

wsdl:InterfaceOperationTypewsdl:InterfaceType

outfault

infault

output

input

pattern

name

?

?

safe

style

?

operation

wsdl:interface

fault

##other:any

extends

name

?
styleDefault

?

##other:any

!

!
wsdl:InterfaceOperationTypewsdl:InterfaceType

outfault

infault

output

input

pattern

name

?

?

safe

style

?

operation

wsdl:interfacewsdl:interface

fault

##other:any

extends

name

?
styleDefault

?

##other:any

!

!

Figure 8-12: The XML schema for WSDL 2.0 interface element.

Ivan Marsic Rutgers University 396

 Fault Replaces Message—any message after the first in the pattern may be replaced with a
fault message, which must have identical direction and be delivered to the same target node
as the message it replaces

 Message Triggers Fault—any message, including the first in the pattern, may trigger a fault
message, which must have opposite direction and be delivered to the originator of the
triggering message

 No Faults—faults must not be propagated

pattern="http://www.w3.org/ns/wsdl/in-out" This line specifies that this operation will use the
in-out pattern as described above. WSDL 2.0 uses URIs to identify message exchange patterns in
order to ensure that the identifiers are globally unambiguous, while also permitting future new
patterns to be defined by anyone. (However, just because someone defines a new pattern and
creates a URI to identify it, that does not mean that other WSDL 2.0 processors will automatically
recognize or understand this pattern. As with any other extension, it can only be used among
processors that do recognize and understand it.)

8.3.3 Binding a Web Service Implementation

Several service providers may implement the same abstract interface.

Client Service

<input>

In-Only (no faults)

Client Service

<input>

Robust In-Only (message triggers fault)

Client Service

<output>

Out-Only (no faults)

Client Service

<output>

Robust Out-Only (message triggers fault)

Client Service

<output>

<input>

Out-In (fault replaces message)

Client Service

<output>

Out-Optional-In (message triggers fault)

Client Service

<input>

<output>

In-Out (fault replaces message)

Client Service

<input>

In-Optional-Out (message triggers fault)

A one-way operation:

A request-response operation:

A notification operation:

A solicit-response operation:

<output>opt

<input>opt

Figure 8-13: WSDL Message Exchange Patterns (MEPs) with their fault propagation rules.

Chapter 8 Web Services 397

Figure 8-14

Service

Each endpoint must also reference a previously defined binding to indicate what protocols and
transmission formats are to be used at that endpoint. A service is only permitted to have one
interface.

Figure 8-15 port describes how a binding is deployed at a particular network endpoint

8.3.4 Using WSDL to Generate SOAP Binding

Developers can implement Web services logic within their applications by incorporating
available Web services without having to build new applications from scratch. The mechanism
that makes this possible is the Proxy design pattern, which is described in Section 5.2.2 above and
already employed for distributed computing in Section 5.4. Proxy classes enable developers to
reference remote Web services and use their functionality within a local application as if the data
the services return was generated in the local memory space.

Figure 8-16 illustrates how WSDL is used to generate WSDL Web service description from the
Web-service’s interface class. Given the WSDL document, both client- and server side use it to

wsdl:BindingOperationType

outfault

infault

output

input

ref

##other:any

wsdl:BindingType

operation

wsdl:bindingwsdl:binding

fault

##other:any

type

name

?
interface

Figure 8-14: The XML schema for WSDL 2.0 binding element.

wsdl:EndpointType

wsdl:ServiceType

wsdl:servicewsdl:service
+

##other:any

interface

name

?

endpoint
!

##other:any##other:any##other:any

binding

name

address

Figure 8-15: The XML schema for WSDL 2.0 service element.

Ivan Marsic Rutgers University 398

generate the stub and skeleton proxies, respectively. These proxies interact with the SOAP-based
middleware.

WSDL code generator tools (one of which is reviewed in Section 8.5 below) allow automatic
generation of Web services, automatic generation of WSDL documents, and invocation of Web
services.

8.3.5 Non-functional Descriptions and Beyond WSDL

WDSL only describes functional characteristics of a particular Web service how to invoke it. But
this is only part of the picture and will be sufficient only for standalone Web services that will be
used individually. In some cases, non-functional characteristics (such as performance, security,
reliability) may be important, as well. In a general case, the service consumer needs to know:

 How to invoke the service? (supported by WSDL, described above)

 What are the characteristics of the service? (not supported by WSDL)

- Is a service more secure than the others are?

- Does a particular provider guarantee a faster response or a more scalable and
reliable/available service?

- If there is a fee for the service, how does billing and payment processing work?

Service requestor Service provider

WSDL document
of service provider

Application object
(client)

SOAP-based
middleware

Stub

Application object
(Web service)

SOAP-based
middleware

Skeleton

1
3 2

WSDL compiler
(client side)

WSDL compiler
(server side)

WSDL
generator

Figure 8-16: From a Programming Interface to WSDL and back to the Program:
Step : generate WSDL documents from interface classes or APIs.
Step : generate server-side stub from the WSDL document.
Step : generate client-side stub from the WSDL document.

Chapter 8 Web Services 399

 In what order should related Web services and their operations be invoked? (not
supported by WSDL)

- How can services be composed to create a macro service (often referred to as service
orchestration)?

The diagram in Figure 8-17 lists the different aspects of Web service description. WSDL focuses
on describing individual Web services, and interface and implementation descriptions are the
central elements of describing individual services. Policy and presentation are two concepts that
are not in the scope of the core WSDL specification since more standardization work needs to be
done here.

When considering service relationships, or service interactions, programmatic approaches
(composition) vs. configuration-oriented agreements (orchestration) have to be distinguished.
Orchestration is a synonym for choreography. An emerging specification is the Business Process
Execution Language for Web Services (BPEL4WS).

Figure 8-17 lists also service and business level agreements, both not yet defined in detail.

Some Web services are so simple that they do not need the complete description as shown in
Figure 8-17. A service consumer invoking a standalone service is probably not interested in how
the service is orchestrated with other services. Sometimes the consumer does not care about non-
functional characteristics, such as performance or reliability. In addition, non-functional
characteristics may be irrelevant if only one provider exists for a service.

8.4 UDDI for Service Discovery and
Integration

The discovery agency level connection is a publish/find mechanism (Figure 8-1), either used at
build-time or runtime. Universal Description, Discovery, and Integration (UDDI) is an

Business level agreements

Service level agreements

Composition

Orchestration

Presentation

Policy

Implementation description

Interface description

XML Schema

Service
Description

Service Broker
UDDI Registry
Service Broker
UDDI Registry

Service
Provider
Service
Provider

Service
Customer
Service

Customer3. Bind/Use

2. Find/S
earch

1.
 P

ub
lis

h/
R

eg
is

te
r

Service
Description

In
di

vi
du

al
 s

er
vi

ce
de

sc
rip

tio
n

S
er

vi
ce

re
la

tio
ns

hi
ps

Figure 8-17: Web service description stack.

Ivan Marsic Rutgers University 400

implementation of the discovery agency. The UDDI registry offers a common repository to which
service providers publish service information, and which service requestors inquire to find service
information. UDDI defines a structure for the registry, together with a publishing and inquiry
Application Programming Interface (API) for accessing the registry. If a service repository is
used at runtime, we refer to this mode as dynamic Web services.

8.5 Developing Web Services with Axis

As the brief review above illustrates, the technology behind Web services is quite complex.
Luckily, most Web services developers will not have to deal with this infrastructure directly.
There are a number of Web services development toolkits to assist with developing and using
Web services. There are currently many tools that automate the process of generating WSDL and
mapping it to programming languages (Figure 8-16). One of the most popular such tools is Axis.

Apache Axis (Apache EXtensible Interaction System, online at: http://ws.apache.org/axis/) is
essentially a SOAP engine—a framework for constructing SOAP processors such as clients,
servers, gateways, etc. The current version of Axis is written in Java, but a C++ implementation
of the client side of Axis is being developed. Axis includes a server that plugs into servlet engines
such as Apache Tomcat, extensive support for WSDL, and tools that generate Java classes from
WSDL.

Axis provides automatic serialization/deserialization of Java Beans, including customizable
mapping of fields to XML elements/attributes, as well as automatic two-way conversions
between Java Collections and SOAP Arrays.

Axis also provides automatic WSDL generation from deployed services using Java2WSDL tool
for building WSDL from Java classes. The generated WSDL document is used by client
developers who can use WSDL2Java tool for building Java proxies and skeletons from WSDL
documents.

Axis also supports session-oriented services, via HTTP cookies or transport-independent SOAP
headers.

The basic steps for using Apache Axis follow the process described in Section 8.3.4 above
(illustrated in Figure 8-16). The reader may also wish to compare it to the procedure for using
Java RMI, described in Section 5.4.2 above. The goal is to establish the interconnections shown
in Figure 8-2.

8.5.1 Server-side Development with Axis

At the server side (or the Web service side), the steps are as follows:

Chapter 8 Web Services 401

1. Define Java interface of the Web service (and a class that implements this interface)

2. Generate the WDSL document from the service’s Java interface (Java WSDL)

3. Generate the skeleton Java class (server-side proxy) from the WSDL document
(WSDLJava)

4. Modify the skeleton proxy to interact with the Java class that implements the Java
interface (both created in Step 1 above)

Going back to the project for Web-based Stock Forecasters (Section 1.5.2), I will now show how
to establish the interconnections shown in Figure 8-2, so that a client could remotely connect to
the Web service and request a price forecast for stocks of interest. The details for each of the
above steps for this particular example are as follows.

Step 1: Define the server object interface

There are three key Java classes (from the point of view of Web services) responsible for
providing a stock price forecast and trading recommendation (Figure 8-18(b)):
ForecastServer.java, its implementation (ForecastServerImpl.java) and
ParamsBean.java, a simple container object used to transfer information to and from the
Web service. The structure of other packages in Figure 8-18(a) is not important at this point, since
all we care about is the Web service interface definition, which will be seen by entities that want
to access this Web service.

The Java interface ForecastServer.java is given as:

Listing 8-4: Java interface of the forecasting Web service.
 1 package stock_analyst.interact;
 2
 3 import java.rmi.RemoteException;
 4
 5 public interface ForecastServer {
 6
 7 public void getPriceForecast(ParamsBean args)
 8 throws RemoteException;
 9
10 public void getRecommendation(ParamsBean args)
11 throws RemoteException;
12 }

Ivan Marsic Rutgers University 402

The code description is as follows:

Line 1: Java package where the interface class is located.

Line 2: Exception RemoteException may be thrown by the Web service methods.

Lines 7–8: Method getPriceForecast() takes one input argument, which is a Java
Bean used to transport information to and from the Web service. The method return type is
void, which implies that any result values will be returned in the args parameter.

Lines 10–11: Method getRecommendation() signature, defined similarly as for the
method getPriceForecast().

Web interaction

Gathering
stock information

Pattern learning
& recognition

(e.g., neural network)

stock_analyst

interact

Internet

database

(a)

analyze

collect

Internet

(b)

Web service
proxies (stub/skeleton)

interact

ParamsBean

– parameters_ : HashMap<String, Object>

+ addParam(String, Object)
+ getParam(String) : Object
+ getParams() : <String, Object>

ws

Generated by Axis
WSDL2Java

ForecastServer

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

ForecastServerImpl

numOfTrials_ : long
maxNumOfTrials_ : long

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

Internet

(b)

Web service
proxies (stub/skeleton)

interact

ParamsBean

– parameters_ : HashMap<String, Object>

+ addParam(String, Object)
+ getParam(String) : Object
+ getParams() : <String, Object>

ParamsBean

– parameters_ : HashMap<String, Object>

+ addParam(String, Object)
+ getParam(String) : Object
+ getParams() : <String, Object>

ws

Generated by Axis
WSDL2Java

ForecastServer

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

ForecastServer

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

ForecastServerImpl

numOfTrials_ : long
maxNumOfTrials_ : long

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

ForecastServerImpl

numOfTrials_ : long
maxNumOfTrials_ : long

+ getPriceForecast(args : ParamsBean)
+ getRecommendation(args : ParamsBean)

Figure 8-18: (a) UML package diagram for the example application. (b) Web-service
related classes.

Chapter 8 Web Services 403

Step 2: Java2WSDL – Generate a WSDL document from the
given stock-forecasting Java interface

Now that we defined the Java interface for the stock-forecasting service, it is time to generate a
WSDL (Web Service Definition Language) file, which will describe our web service in a
standard XML format. For this, we will use an Apache Axis command line tool Java2WSDL. A
detailed documentation on Java2WSDL, its usage and parameters can be found at the Axis
website.
% java org.apache.axis.wsdl.Java2WSDL
 -o wsdl/interact.wsdl
 -l "http://localhost:8080/axis/services/interact"
 -n "urn:interact"
 -p "stock_analyst.interact" "urn:interact"
 stock_analyst.interact.ForecastServer

Java2WSDL tool will generate a standard WSDL file, which is an XML representation of a given
interface (ForecastServer.java in our case). We tell the program the information that it
needs to know as it builds the file, such as:

 Name and location of output WSDL file (-o wsdl/interact.wsdl)

 Location URL of the Web service
(-l http://localhost:8080/axis/services/interact)

 Target namespace for the WSDL (-n urn:interact)

 Map Java package to namespace (stock_analyst.interact urn:interact)

get
price forecast

getPriceForecast()

Delphi method facilitator
: Service Requestor

: FcastSoapBindingImpl

initialize

analyst
: ForecastServerImpl

data tracking
and machine learning

: Backend

http
: Transport

http
: Transport

wsdl/interact.wsdl
: WSDL

: FcastSoapBindingStub

create

obtain

publish

find

do
forecast

2

3

discovery agency
: UDDI, WSIL

getPriceForecast()

4

1

Figure 8-19: The steps in Apache Axis for establishing the interconnections of a Web
service, overlaid on Figure 8-2. (Note that the discovery agency/UDDI is not implemented.)

Ivan Marsic Rutgers University 404

 The fully qualified Java interface of the Web service itself
(stock_analyst.interact.ForecastServer)

Step 3: WSDL2Java – Generate server-side wrapper code

(This step generates code for both server and client side, as seen below.)

Our next step is to take the WSDL, synthesized in step 2, and generate all of the glue code for
deploying the service. The WSDL2Java Axis tool comes to our aid here. Complete
documentation on this tool can be found at the Axis website.
java org.apache.axis.wsdl.WSDL2Java
 -o src/
 -d Session
 -s
 -p stock_analyst.interact.ws
 wsdl/interact.wsdl

Once again, we need to tell our tool some information for it to proceed:

 Base output directory (-o src/)

 Scope of deployment (Application, Request, or Session)

 Turn on server-side generation (-s) — we would not do this if we were accessing an
external Web service, as we would then just need the client stub

 Package to place code (-p stock_analyst.interact.ws)

 Name of WSDL file used to generate all this code (wsdl/interact.wsdl)

For separating the automatically generated code from the original code, we store it a new Web
service package “stock_analyst.interact.ws”, shown in Figure 8-18(b). After running
the WSDL2Java code generator, we get the following files under
src/stock_analyst/interact/ws:

 FcastSoapBindingImpl.java
This is the implementation code for our web service. We will need to edit it, to connect it
to our existing ForecastServerImpl (see Step 4 below).

 ForecastServer.java
This is a remote interface to the stock forecasting system (extends Remote, and methods
from the original ForecastServer.java throw RemoteExceptions).

 ForecastServerService.java
Service interface of the Web services.

 ForecastServerServiceLocator.java
A helper factory for retrieving a handle to the service.

 FcastSoapBindingStub.java
Client-side stub code that encapsulates client access.

Chapter 8 Web Services 405

 ParamsBean.java
A copy of our bean used to transfer data.

 deploy.wsdd
Deployment descriptor that we pass to Axis system to deploy these Web services.

 undeploy.wsdd
Deployment descriptor that will un-deploy the Web services from the Axis system.

As seen above, some of these files belong to the client side and will be used in Section 8.5.2
below.

Step 4: Tune-up – Modify FcastSoapBindingImpl.java to call
server implementation code

We need to tweak one of the output source files to tie the web service to our implementation code
(ForecastServerImpl.java). Since we passed a mere interface to the Java2WSDL tool,
the generated code has left out the implementation. We need to fill out the methods to delegate
the work to our implementation object ForecastServerImpl.

FcastSoapBindingImpl.java is waiting for us to add the stuff into the methods that it
created. The lines that should be added are highlighted in boldface in Listing 8-5:

Listing 8-5: FcastSoapBindingImpl.java – Java code automatically generated by Axis,
with the manually added modifications highlighted in boldface.
 1 package stock_analyst.interact.ws;
 2
 3 import stock_analyst.interact.ForecastServerImpl;
 4
 5 public class FcastSoapBindingImpl implements
 5a stock_analyst.interact.ForecastServer {
 6
 7 ForecastServerImpl analyst;
 8
 9 public FcastSoapBindingImpl() throws java.rmi.RemoteException {
10 analyst = new ForecastServerImpl();
11 }
12
13 public void getPriceForecast(
14 stock_analyst.interact.ParamsBean inout0
15) throws java.rmi.RemoteException {
16 return analyst.getPriceForecast(inout0);
17 }
18
19 public void getRecommendation(
20 stock_analyst.interact.ParamsBean inout0
21) throws java.rmi.RemoteException {
22 return analyst.getRecommendation(inout0);
23 }
24 }

Ivan Marsic Rutgers University 406

Step 5: Compile and deploy

We first need to compile and compress our newly generated Web service, including both the
original code and the automatically generated Web service code:
 javac -d bin src/stock_analyst.interact.ws/*.java

 cd bin

 jar -cvf ../stock_analyst.jar *

 cd ..

Finally, we copy the JAR file into Tomcat library path visible by Axis and deploy it:
 cp stock_analyst.jar $TOMCAT_HOME/webapps/axis/WEB-INF/lib/
 --reply=yes

 java org.apache.axis.client.AdminClient
 -l "http://localhost:8080/axis/services/AdminService"
 src/stock_analyst/interact/ws/deploy.wsdd

Admin client is yet another command line tool provided by Apache Axis, which we can use to do
tasks such as deployment, un-deployment, and listing the current deployments. We pass the
deployment descriptor to this program so it can do its work.

Now our Stock Forecasting Web Service is up and running on the server.

8.5.2 Client-side Development with Axis

At the client side (or the service consumer side), the steps are as follows:

1. Generate the stub Java class (server-side SOAP proxy) from the WSDL document

2. Modify the client code to invoke the stub (created in Step 1 above)

Step 1: WSDL2Java – Generate client-side stub

The Step 1 is the same as Step 3 for the server side, except that this time we omit the option -s
on the command line. We have seen above that WSDL2Java generated the client-side stub code
FcastSoapBindingStub.java that encapsulates client access.

Step 2: Modify the client code to invoke the stub

Normally, a client program would not instantiate a stub directly. It would instead instantiate a
service locator and call a get method which returns a stub. Recall that
ForecastServerServiceLocator.java was generated in Step 3 of the server side. This
locator is derived from the service element in the WSDL document. WSDL2Java generates
two objects from each service element.

The service interface defines a get method for each endpoint listed in the service element
of the WSDL document. The locator is the implementation of this service interface. It implements
these get methods. It serves as a locator for obtaining Stub instances. The Service class will

Chapter 8 Web Services 407

generate, by default, a Stub that points to the endpoint URL described in the WSDL document,
but you may also specify a different URL when you ask for the endpoint.

A typical usage of the stub classes would be as follows Listing 8-6:

Listing 8-6: Example of the Delphi method facilitator client for the project Web-based
Stock Forecasters (Section 1.5.2).
 1 package facilitator.client;
 2
 3 import stock_analyst.interact.ws.ForecastServerService;
 4 import stock_analyst.interact.ws.ForecastServerServiceLocator;
 5
 6 public class Facilitator {
 7 public static void main(String [] args) throws Exception {
 8 // Make a service
 9 ForecastServerService service1 =
 9a new ForecastServerServiceLocator();
10
11 // Now use the service to get a stub which implements the SDI.
12 ForecastServer endpoint1 = service1.getForecastServer();
13
14 // Prepare the calling parameters
15 ParamsBean args = new ParamsBean();
16 args.addParam("...", "..."); // 1st parameter
17 ... etc. ... // 2nd parameter
18
19 // Make the actual call
20 try {
21 endpoint1.getRecommendation(args);
22 args.getParam("result", ...); // retrieve the recommendation
23 // ... do something with it ...
24 } catch (RemoteException ex) {
25 // handle the exception here
26 }
27 ... call endpoint2 (i.e. another forecaster web service)
28 }
29 }

The above example shows how the facilitator would invoke a single Web service. As described in
Section 1.5.2, the facilitator would try to consult several forecasters (Web services) for their
prognosis and then integrate their answers into a single recommendation for the user.

8.6 OMG Reusable Asset Specification

http://www.rational.com/ras/index.jsp http://www.sdtimes.com/news/092/story4.htm
http://www.eweek.com/article2/0,4149,1356550,00.asp

Ivan Marsic Rutgers University 408

http://www.cutter.com/research/2002/edge020212.html
http://www.computerworld.co.nz/news.nsf/0/B289F477F155A539CC256DDE00631AF8?OpenDocument

8.7 Summary and Bibliographical Notes

SOAP is an XML-based communication protocol and encoding format for inter-application
communication. SOAP provides technology for distributed object communication. Given the
signature of a remote method (Web service) and the rules for invoking the method, SOAP allows
for representing the remote method call in XML. SOAP supports loose-coupling of distributed
applications that interact by exchanging one-way asynchronous messages among each other.
SOAP is not aware of the semantics of the messages being exchanged through it. Any
communication pattern, including request-response, has to be implemented by the applications
that use SOAP for communication. The body of the SOAP message can contain any arbitrary
XML content as the message payload. SOAP is widely viewed as the backbone to a new
generation of cross-platform cross-language distributed computing applications, termed Web
services.

Service description plays a key role in a service-oriented architecture (SOA) in maintaining the
loose coupling between the service customers and the service providers. Service description is a
formal mechanism to unambiguously describe a Web service for the service customers. A Service
description is involved in each of the three operations of SOA: publish, find and bind. In this
chapter I reviewed the WSDL version 2.0 standard for describing Web services and how it is used
to provide functional description of the Web services SOA model. There are other standards such
as Web Services Flow Language (WSDL) and WSEL (Web Services Endpoint Language) which
are used to describe the non functional aspects of Web services. The reader interested in these
should consult the relevant Web sources.

WSDL 2.0 is the current standard at the time of this writing. It is somewhat different from the
previous version WSDL 1.1, and the interested reader may wish to consult [Dhesiaseelan, 2004]
for details. Although WSDL 1.1 is currently more widely supported in web service
implementations, I chose to present WSDL 2.0 because it is simpler and more recent. Briefly, a
reader familiar with WSDL 1.1 will notice that WSDL 2.0 does not have message elements.
These are specified using the XML Schema type system in the types element. Also,
portType element is renamed to interface and port is renamed to endpoint.

Web Services Inspection Language (WSIL)is a lightweight alternative to UDDI.

The W3C website and recommendation documents for SOAP are at: http://www.w3.org/TR/soap/.
The latest is SOAP version 1.2 specification. This document has been produced by the XML
Protocol Working Group, which is part of the Web Services Activity.

Chapter 8 Web Services 409

http://soapuser.com/

WSDL at: http://www.w3.org/TR/wsdl20

[Armstrong et al., 2005]

A. Dhesiaseelan, “What’s new in WSDL 2.0,” published on XML.com, May 20, 2004. Available
at: http://webservices.xml.com/lpt/a/ws/2004/05/19/wsdl2.html

Problems

Section 8.3

7.1 WSDL, although flexible, is rather complex and verbose. Suppose you will develop a set of
Web services for a particular domain, e.g., travel arrangements. Define your own service
language and then use XSLT to generate the WSDL.

7.2 Tbd

410

Contents
9.1 Aspect-Oriented Programming

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8

9.2 OMG MDA
9.2.1
9.2.2
9.2.3
9.2.4

9.3 Autonomic Computing
9.3.1
9.3.2
9.3.3
9.3.4
9.2.3

9.4 Software-as-a-Service (SaaS)
9.4.1
9.4.2
9.4.3
9.4.4

9.5 End User Software Development
9.5.1
9.5.2
9.5.3
9.5.4

9.6 The Business of Software
9.6.1
9.6.2
9.6.3

9.7 Summary and Bibliographical Notes

Chapter 9
Future Trends

“Most people are drawn into extrapolating from current trends
and are thus surprised when things change.”

—Buttonwood (The Economist, January 3rd 2009)

It is widely recognized that software engineering is not a
mature discipline, unlike other branches of engineering.
However, this does not imply that great feats cannot be
accomplished with the current methods and techniques. For
example, the art of building such elaborate structures as
cathedrals was perfected during the so called “dark ages,”
before the invention of calculus, which is a most basic tool of
civil engineering. What the discipline of civil engineering
enabled is the wide-scale, mass-market building of complex
structures, with much smaller budgets and over much shorter
time-spans.

Hence, it is to be expected that successful software products
can be developed with little or none application of software
engineering principles and techniques. What one hopes is that
the application of these principles will contribute to reduced
costs and improved quality.

Meta-programming is the term for the art of developing
methods and programs to read, manipulate, and/or write other
programs. When what is developed are programs that can deal
with themselves, we talk about reflective programming.

http://cliki.tunes.org/Metaprogramming

http://fare.tunes.org/articles/ll99/index.en.html

Chapter 9 Some Future Trends 411

9.1 Aspect-Oriented Programming

[See also Section 3.4.]

There has been recently recognition of limitations of the object-orientation idea. We are now
seeing that many requirements do not decompose neatly into behavior centered on a single locus.
Object technology has difficulty localizing concerns involving global constraints and pandemic
behaviors, appropriately segregating concerns, and applying domain-specific knowledge. Post-
object programming (POP) mechanisms, the space of programmatic mechanisms for expressing
crosscutting concerns.

Aspect-oriented programming (AOP) is a new evolution of the concept for the separation of
concerns, or aspects, of a system. This approach is meant to provide more modular, cohesive, and
well-defined interfaces or coupling in the design of a system. Central to AOP is the notion of
concerns that cross cut, which means that the methods related to the concerns intersect. Dominant
concerns for object activities, their primary function, but often we need to consider crosscutting
concerns. For example, an employee is an accountant, or programmer, but also every employee
needs to punch the timesheet daily, plus watch security of individual activities or overall building
security, etc. It is believed that in OO programming these cross-cutting concerns are spread across
the system. Aspect-oriented programming would modularize the implementation of these cross-
cutting concerns into a cohesive single unit.

The term for a means of meta-programming where a programming language is separated into a
core language and various domain-specific languages which express (ideally) orthogonal aspects
of program behavior. One of the main benefits of this means of expression is that the aspect
programs for a given system are often applicable across a wide range of elements of the system,
in a crosscutting manner. That is, the aspects pervasively effect the way that the system must be
implemented while not addressing any of the core domain concerns of the application.

One of the drawbacks to this approach, beyond those of basic meta-programming, is that the
aspect domains are often only statically choosable per language. However, the benefits are that
separate specification is possible, and that these systems combine to form valid programs in the
original (non-core) programming language after weave-time, the part of compilation where the
aspect programs are combined with the core language program.

http://cliki.tunes.org/Aspect-Oriented%20Programming

http://www.eclipse.org/aspectj/

Crosscutting concerns:

...a system that clocks employees in and out of work.

...and businesses everywhere use machines to identify employees as they check in and out of
work.

Ivan Marsic Rutgers University 412

9.2 OMG MDA

9.3 Autonomic Computing

Gilb’s laws of computer unreliability:
• Computers are unreliable, but humans are even more unreliable.

• Self-checking systems tend to have an inherent lack of reliability of the system in which they are used.
• The error-detection and correction capabilities of any system will serve the key to understanding the type

of error which they can not handle.
• Undetectable errors are infinite in variety, in contrast to detectable errors, which by definition are limited.

With the mass-market involvement of developers with a wide spectrum of skills and expertise in
software development, one can expect that the quality of software products will widely vary.
Most of the products will not be well engineered and reliable. Hence it becomes an imperative to
develop techniques that can combine imperfect components to produce reliable products. Well-
known techniques from fault-tolerance can teach us a great deal in this endeavor.

Unfortunately, our ability to build dependable systems is lagging significantly compared to our
ability to build feature-rich and high-performance systems. Examples of significant system
failures abound, ranging from the frequent failures of Internet services [cite Patterson and Gray -
Thu.] As we build ever more complex and interconnected computing systems, making them
dependable will become a critical challenge that must be addressed.

IBM: Computer heal thyself

http://www.cnn.com/2002/TECH/biztech/10/21/ibm.healing.reut/index.html

GPS, see Marvin Minsky’s comments @EDGE website

You may also find useful the overview of GPS in AI and Natural Man by M. Boden, pp 354-356.

http://www.j-paine.org/students/tutorials/gps/gps.html

The importance of abstract planning in real-world tasks. Since the real world does not stand still
(so that one can find to one’s surprise that the environment state is “unfamiliar”), it is not usually
sensible to try to formulate a detailed plan beforehand. Rather, one should sketch the broad
outlines of the plan at an abstract level and then wait and see what adjustments need to be made
in execution. The execution-monitor program can pass real-world information to the planner at
the time of carrying out the plan, and tactical details can be filled in accordingly. Some alternative
possibilities can sensibly be allowed for in the high level plan (a case of “contingency planning”),
but the notion that one should specifically foresee all possible contingencies is absurd. Use of a

Chapter 9 Some Future Trends 413

hierarchy of abstraction spaces for planning can thus usefully mask the uncertainties inherent in
real-world action.

The problem may not be so much in bugs with individual components—those are relatively
confined and can be uncovered by methodical testing of each individually. A greater problem is
when they each work independently but not as a combination, i.e., combination of rights yields
wrong [see Boden: AI].

9.4 Software-as-a-Service (SaaS)

Offline access is a concern with many SaaS (Software as a Service) models. SaaS highlights the
idea of the-network-as-a-computer, an idea a long time coming.

Software as a Service (SaaS): http://en.wikipedia.org/wiki/Software_as_a_Service

Software as a Service: A Major Challenge for the Software Engineering:
http://www.service-oriented.com/

A field guide to software as a service | InfoWorld | Analysis:
http://www.infoworld.com/article/05/04/18/16FEsasdirect_1.html

IBM Software as Services: http://www-304.ibm.com/jct09002c/isv/marketing/saas/

Myths and Realities of Software-as-a-Service (SaaS): http://www.bitpipe.com/tlist/Software-as-a-
Service.html

9.5 End User Software Development

The impetus for the current hype: Web 2.0, that second-generation wave of Net services that let
people create content and exchange information online.

For an eloquent discussion of the concept of end user computing see:
James Martin, Application Development Without Programmers, Prentice Hall, Englewood Cliffs,
NJ, 1982. [QA76.6.M3613]

Researchers seek simpler software debugging/programming

http://www.cnn.com/2004/TECH/ptech/07/27/debugging.ap/index.html

Whyline -- short for Workspace for Helping You Link Instructions to Numbers and Events //
Brad Myers, a Carnegie Mellon University computer science professor

Ivan Marsic Rutgers University 414

[Kelleher & Pausch, 2005]

Lieberman, Henry; Paternò, Fabio; Wulf, Volker (Editors), End-User Development, Springer
Series: Human-Computer Interaction Series, Vol. 9, 2005, Approx. 495 p., Hardcover, ISBN: 1-
4020-4220-5 (2006. 2nd printing edition)

Henry Lieberman, Your Wish Is My Command: Programming by Example, (Interactive
Technologies), Morgan Kaufmann; 1st edition (February 27, 2001)

Allen Cypher (Editor), Watch What I Do: Programming by Demonstration, The MIT Press (May
4, 1993)

[Maeda, 2004]

Is it possible to bring the benefits of rigorous software engineering methodologies to end-users?

Project called End Users Shaping Effective Software, or EUSES -- to make computers friendlier
for everyday users by changing everything from how they look to how they act.

Margaret Burnett, a computer science professor at Oregon State University and director of
EUSES. http://eecs.oregonstate.edu/EUSES/

See discussion of levels of abstraction in the book Wicked Problems; notice that the assembly
programming is still alive and well for low-end mobile phone developers.

Making Good Use of Wikis

Sure, it sounds like a child's toy. But a special type of wiki, from JotSpot, can actually take the
place of a database application. I spent some time with it recently, and it felt like seeing the first
version of dBase all over again. It's rough--but you can create some nifty little applications with
e-mail integration pretty quickly. Check out

http://www.pcmag.com/article2/0,1759,1743602,00.asp

our story about JotSpot, and see if maybe it'll help you overcome your systems backlog.

See also: Business Week, October 18, 2004, pages 120-121: “Hate Your Software? Write Your
Own”

http://www.businessweek.com/magazine/content/04_42/b3904104_mz063.htm

Tools to ease Web collaboration: JotSpot competing against Socialtext and a handful of others
like Five Across and iUpload in the fledgling market

http://www.cnn.com/2005/TECH/internet/02/16/web.collaboration.ap/index.html

Wikis, one of the latest fads in “making programming accessible to the masses” is a programming
equivalent of Home Depot—“fix it yourself” tools. Sure, it was about time to have a Home Depot

Chapter 9 Some Future Trends 415

of software. However, I am not aware that the arrival of Home Depot spelled the end of the civil
engineering profession, as some commentators see it for professional software developers. As
with Home Depot, it works only for little things; after all, how many of us dare to replace kitchen
cabinets, lest to mention building a skyscraper!

Web services BPEL and programming workflows on a click

4GL and the demise of programming: “What happened to CASE and 4GL? My suspicion is that
we still use them to this day, but the terms themselves have fallen into such disregard that we
rarely see them. And certainly, the hyped benefits were never achieved.”

The Future of Programming on the iSeries, Part 2

by Alex Woodie and Timothy Prickett Morgan

http://www.itjungle.com/tfh/tfh042803-story01.html

Why assembler? by A. F. Kornelis

http://www.bixoft.nl/english/why.htm

The Future of the Programmer; InformationWeek's Dec. 6 issue

http://blog.informationweek.com/001855.html

Application Development Trends Articles (5/2/2006): End-user programming in five minutes or
less ---- By John K. Waters

Rod Smith, IBM's VP of Internet emerging technologies, chuckles at the phrase "end-user
programming," a term he says has been overhyped and overpromised. And yet, IBM's new PHP-
based QEDWiki project ("quick and easily done wiki") is focused on that very concept.
QEDWiki is an IDE and framework designed to allow non-technical end users to develop so-
called situational apps in less than five minutes. http://www.adtmag.com/article.aspx?id=18460

Web 2.0: The New Guy at Work -- Do-it-yourself trend
 http://www.businessweek.com/premium/content/06_25/b3989072.htm

ONLINE EXTRA: How to Harness the Power of Web 2.0
http://www.businessweek.com/premium/content/06_25/b3989074.htm

Ivan Marsic Rutgers University 416

9.6 The Business of Software

“Those who want information to be free as a matter of principle should create some information and make
it free.”

—Nicholas Petreley

“Linux is only free if your time is worthless.”
—Jeremy F. Hummond

Traditionally, software companies mostly made profits by product sales and license fees.
Recently, there is a dramatic shift to services, such as annual maintenance payments that entitle
users to patches, minor upgrades, and often technical support. This shift has been especially
pronounced among enterprise-software vendors. There are some exceptions. Product sales
continue to account for most of game-software revenues, although online-gaming service
revenues are growing fast. Also, the revenues of platform companies such as Microsoft are still
dominated by product revenues.

A possible explanation for that the observed changes is that this is simply result of life-cycle
dynamics, which is to say that the industry is in between platform transitions such as from
desktop to the Web platform, or from office-bound to mobile platforms. It may be also that a
temporary plateau is reached and the industry is awaiting a major innovation to boost the product
revenue growth. If a major innovation occurs, the individuals and enterprises will start again
buying new products, both hardware and software, in large numbers.

Another explanation is that the shift is part of a long-term trend and it is permanent for the
foreseeable future. The argument for this option is that much software now is commoditized, just
like hardware, and prices will fall to zero or near zero for any kind of standardized product. In
this scenario, the future is really free software, inexpensive software-as-a-service (SaaS), or “free,
but not free” software, with some kind of indirect pricing model, like advertising—a Google-type
of model.

An interested reader should see [Cusumano, 2008] for a detailed study of trends in software
business.

[Watson, et al., 2008] about the business of open source software

The advantages of open source software include a free product and community support. However,
there are disadvantages as well. Communities do not usually respond as quickly to help requests,
and they do not offer inexperienced users one-on-one instruction.

9.7 Summary and Bibliographical Notes

417

Appendix A
Java Programming

This appendix offers a very brief introduction to Java programming; I hope that most of my
readers will not need this refresher. References to literature to find more details are given at the
end of this appendix.

A.1 Introduction to Java Programming

This review is designed to give the beginner the basics quickly. The reader interested in better
understanding of Java programming should consult the following sources.

A key characteristic of object-oriented approaches is encapsulation, which means hiding the
object state, so that it can be observed or affected only via object’s methods. Class state is defined
by class variables, usually declared first in a class definition. (Althouogh class variables can be
declared anywhere, it is a good practice to declare them first, all at one place, to improve code
readability.) In Java, encapsulation is achieved by prefixing a class variable declaration with a
keyword private or protected. Even some methods may be encapsulated, because they
alter the class variables in a manner that should not be available indiscriminately to all other
classes.

A.2 Bibliographical Notes

This is intended as a very brief introduction to Java and the interested reader should consult many
excellent sources on Java. For example, [Eckel, 2003] is available online at
http://www.mindview.net/Books. Another great source is [Sun Microsystems, 2005], online at
http://java.sun.com/docs/books/tutorial/index.html. More useful information on Java programming is
available at http://www.developer.com/ (Gamelan) and http://www.javaworld.com/ (JavaWorld
magazine).

Ivan Marsic Rutgers University 418

419

Appendix B
Network Programming

In network programming, we establish a connection between two programs, which may be
running on two different machines. The client/server model simplifies the development of
network software by dividing the design process into client issues and server issues. We can draw
a telephone connection analogy, where a network connection is analogous to a case of two
persons talking to each other. A caller can dial a callee only if it knows the callee’s phone
number. This should be advertised somewhere, say in a local telephone directory. Once the caller
dials the “well-known” number it can start talking if the callee is listening on this number. In the
client/server terminology, the program which listens for the incoming connections is called a
server and the program which attempts the “dialing” a well-known “phone number” is called a
client. A server is a process that is waiting to be contacted by a client process so that it can do
something for the client.

B.1 Socket APIs

Network programming is done by invoking socket APIs (Application Programming Interfaces).
These socket API syntax is common across operating systems, although there are slight but
important variations. The key abstraction of the socket interface is the socket, which can be
thought of as a point where a local application process attaches to the network. The socket
interface defines operations for creating a socket, attaching the socket to the network,
sending/receiving messages through the socket, and closing the socket. Sockets are mainly used
over the transport layer protocols, such as TCP and UDP; this overview is limited to TCP.

A socket is defined by a pair of parameters: the host machine’s IP address and the application’s
port number. A port number distinguishes the programs running on the same host. It is like an
extension number for persons sharing the same phone number. Internet addresses for the Internet
Protocol version 4 (IPv4) are four-byte (32 bits) unsigned numbers. They are usually written as
dotted quad strings, for example, 128.6.68.10, which corresponds to the binary representation
10000000 00000110 01000100 00001010. The port numbers are 16-bit unsigned
integers, which can take values in the range 0 – 65535. Port numbers 0 – 1024 are reserved and
can be assigned to a process only by a superuser process. For example, port number 21 is
reserved for the FTP server and port number 80 is reserved for the Web server. Thus, a pair

Ivan Marsic Rutgers University 420

(128.6.68.10, 80) defines the socket of a Web server application running on the host machine
with the given IP address.

Alphanumeric names are usually assigned to machines to make IP addresses human-friendly.
These names are of variable length (potentially rather long) and may not follow a strict format.
For example, the above IP address quad 128.6.68.10 corresponds to the host name
eden.rutgers.edu. The Domain Name System (DNS) is an abstract framework for
assigning names to Internet hosts. DNS is implemented via name servers, which are special
Internet hosts dedicated for performing name-to-address mappings. When a client desires to
resolve a host name, it sends a query to a name server which, if the name is valid, and returns
back the host’s IP address1. Here, I will use only the dotted decimal addresses.

In Java we can deal directly with string host names, whereas in C we must perform name
resolution by calling the function gethostbyname(). In C, even a dotted quad string must be
explicitly converted to the 32-bit binary IP address. The relevant data structures are defined in the
header file netinet/in.h as follows:

C socket address structures (defined in netinet/in.h)
struct in_addr {
 unsigned long s_addr; /* Internet address (32 bits) */
};

struct sockaddr_in {
 sa_family_t sin_family; /* Internet protocol (AF_INET) */
 in_port_t sin_port; /* Address port (16 bits) */
 struct in_addr sin_addr; /* Internet address (32 bits) */
 char sin_zero[8]; /* Not used */
};

To convert a dotted decimal string to the binary value, we use the function inet_addr():

 struct sockaddr_in host_addr;
 host_addr.sin_addr.s_addr = inet_addr("128.6.68.10");

1 The name resolution process is rather complex, because the contacted name server may not have the given

host name in its table, and the interested reader should consult a computer networking book for further
details.

Appendix B Network Programming 421

Figure B-1 summarizes the socket functions in Java for a basic client-server application.
Similarly, Figure B-2 summarizes the socket functions in C. Although this figure may appear
simpler than that for Java, this is deceptive because the Java constructs incorporate much more
than necessary for this simple example.

The first step is to create a socket, for which in C there is only one function: socket(). Java
distinguishes two types of sockets that are implemented over the TCP protocol: server sockets
from client sockets. The former are represented by the class java.net.ServerSocket and
the latter by the class java.net.Socket. In addition, there is
java.net.DatagramSocket for sockets implemented over the UDP protocol. The
following example summarizes the Java and C actions for opening a (TCP-based) server socket:

Opening a TCP SERVER socket in Java vs. C (“Passive Open”)
import java.net.ServerSocket;
import java.net.Socket;

#include <arpa/inet.h>
#include <sys/socket.h>

public static final int
 PORT_NUM = 4999;

#define PORT_NUM 4999

ServerSocket rv_sock =
 new ServerSocket(PORT_NUM);

int rv_sock, s_sock, cli_addr_len;
struct sockaddr_in serv_addr, cli_addr;
rv_sock = socket(
 PF_INET, SOCK_STREAM, IPPROTO_TCP);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr =
 htonl(INADDR_ANY);
serv_addr.sin_port = htons(PORT_NUM);
bind(rv_sock,

Time

Client

Step 2:
Run the
client

Socket c_sock =
new Socket(host_name, port);

BufferedReader in = new BufferedReader(
new InputStreamReader(

c_sock.getInputStream()
));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

c_sock.getOutputStream()
));

String rqst_msg = ... ;
out.println(rqst_msg);

String rslt_msg = in.readLine();

c_sock.close();

Step 3:
Send a
request
message

Step 7:
Receive
result

ServerSocket rv_sock =
new ServerSocket(port);

Socket s_sock =
rv_sock.accept();

BufferedReader in = new BufferedReader(
new InputStreamReader(

s_sock.getInputStream()
));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

s_sock.getOutputStream()
));

String rqst_msg = in.readLine();

String rslt_msg = ... ;
out.println(rslt_msg);

s_sock.close();

Server

Step 1:
Run the server

Step 4:
Receive request

Step 5:
Do processing

Step 6:
Send the result
message

Server
blocked

Figure B-1: Summary of network programming in the Java programming language.

Ivan Marsic Rutgers University 422

 &serv_addr, sizeof(serv_addr));
listen(rv_sock, 5);

Socket s_sock =
 rv_sock.accept();

cli_addr_len = sizeof(cli_addr);
s_sock = accept(rv_sock,
 &cli_addr, &cli_addr_len);

The above code is simplified, as will be seen in the example below, but it conveys the key points.
Notice that in both languages we deal with two different socket descriptors. One is the so-called
well-known or rendezvous socket, denoted by the variable rv_sock. This is where the server
listens, blocked and inactive in the operation accept(), waiting for clients to connect. The
other socket, s_sock, will be described later. In Java, you simply instantiate a new
ServerSocket object and call the method accept() on it. There are several different
constructors for ServerSocket, and the reader should check the reference manual for details.
In C, things are a bit more complex.

The operation socket() takes three arguments, as follows. The first, domain, specifies the
protocol family that will be used. In the above example, I use PF_INET, which is what you
would use in most scenarios2. The second argument, type, indicates the semantics of the
communication. Above, SOCK_STREAM is used to denote a byte stream. An alternative is
SOCK_DGRAM which stands for a message-oriented service, such as that provided by UDP. The
last argument, protocol, names the specific protocol that will be used. Above, I state
IPPROTO_TCP but I could have used UNSPEC, for “unspecified,” because the combination of
PF_INET and SOCK_STREAM implies TCP. The return value is a handle or descriptor for the

2 Note that PF_INET and AF_INET are often confused, but luckily both have the same numeric value (2).

Time

Client

Step 2:
Run the client int c_sock = socket(

domain, type, protocol);
connect(c_sock, addr, addr_len);

char *rqst_msg = ...;
send(c_sock, rqst_msg,

msg_len, flags);

char *buffer = malloc(buf_len);

recv(c_sock,
buffer, buf_len, flags);

close(c_sock);

Step 3:
Send a request
message

Step 7:
Receive result

Server
int rv_sock = socket(

domain, type, protocol);
bind(rv_sock, addr, addr_len);
listen(rv_sock, bcklog);
int s_sock = accept(

rv_sock, addr, addr_len);

char *buffer = malloc(buf_len);
recv(s_sock,

buffer, buf_len, flags);

char *rslt_msg = ...;
send(s_sock, rslt_msg,

msg_len, flags);

close(s_sock);

Step 1:
Run the server

Step 4:
Receive request

Step 5:
Do processing

Step 6:
Send the result
message

Server
blocked

Figure B-2: Summary of network programming in the C programming language.

Appendix B Network Programming 423

newly created socket. This is an identifier by which we can refer to the socket in the future. As
can be seen, it is given as an argument to subsequent operations on this socket.

On a server machine, the application process performs a passive open—the server says that it is
prepared to accept connections, but it does not actually establish a connection. The server’s
address and port number should be known in advance and, when the server program is run, it will
ask the operating system to associate an (address, port number) pair with it, which is
accomplished by the operation bind(). This resembles a “server person” requesting a phone
company to assign to him/her a particular phone number. The phone company would either
comply or deny if the number is already taken. The operation listen() then sets the capacity
of the queue holding new connection attempts that are waiting to establish a connection. The
server completes passive open by calling accept(), which blocks and waits for client calls.

When a client connects, accept() returns a new socket descriptor, s_sock. This is the actual
socket that is used in client/server exchanges. The well-known socket, rv_sock, is reserved as a
meeting place for associating server with clients. Notice that accept() also gives back the
clients’ address in struct sockaddr_in cli_addr. This is useful if server wants to
decide whether or not it wants to talk to this client (for security reasons). This is optional and you
can pass NULL for the last two arguments (see the server C code below).

The reader should also notice that in C data types may be represented using different byte order
(most-significant-byte-first, vs. least-significant-byte-first) on different computer architectures
(e.g., UNIX vs. Windows). Therefore the auxiliary routines htons()/ntohs() and
htonl()/ntohl() should be used to convert 16- and 32-bit quantities, respectively, between
network byte order and host byte order. Because Java is platform-independent, it performs these
functions automatically.

Client application process, which is running on the client machine, performs an active open—it
proactively establishes connection to the server by invoking the connect() operation:

Opening a TCP CLIENT socket in Java vs. C (“Active Open”)
import java.net.Socket; #include <arpa/inet.h>

#include <sys/socket.h>
#include <netdb.h>

public static final String HOST =
"eden.rutgers.edu";
public static final int PORT_NUM =
4999;

#define HOST "eden.rutgers.edu"
#define PORT_NUM 4999

Socket c_sock =
 new Socket(HOST, PORT_NUM);

int c_sock;
struct hostent *serverIP;
struct sockaddr_in serv_addr;
serverIP =
 gethostbyname(HOST);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr =
// ... copy from: serverIP->h_addr ...
serv_addr.sin_port =
 htons(port_num);
c_sock = connect(c_sock,
 (struct sockaddr *) &serv_addr,
 sizeof(serv_addr));

Ivan Marsic Rutgers University 424

Notice that, whereas a server listens for clients on a well-known port, a client typically does not
care which port it uses for itself. Recall that, when you call a friend, you should know his/her
phone number to dial it, but you need not know your number.

B.2 Example Java Client/Server Application

The following client/server application uses TCP protocol for communication. It accepts a single
line of text input at the client side and transmits it to the server, which prints it at the output. It is a
single-shot connection, so the server closes the connection after every message. To deliver a new
message, the client must be run anew. Notice that this is a sequential server, which serves clients
one-by-one. When a particular client is served, any other client attempting to connect will be
placed in a waiting queue. To implement a concurrent server, which can serve multiple clients in
parallel, you should use threads (see Section 4.3). The reader should consult Figure B-1 as a
roadmap to the following code.

Listing B-1: A basic SERVER application in Java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

public class BasicServer {
 public static void main(String[] args) {
 if (args.length != 1) { // Test for correct num. of arguments
 System.err.println("ERROR server port number not given");
 System.exit(1);
 }
 int port_num = Integer.parseInt(args[0]);
 ServerSocket rv_sock = null;
 try {
 new ServerSocket(port_num);
 } catch (IOException ex) { ex.printStackTrace(); }

 while (true) { // run forever, waiting for clients to connect
 System.out.println("\nWaiting for client to connect...");
 try {
 Socket s_sock = rv_sock.accept();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(s_sock.getInputStream())
);
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(s_sock.getOutputStream()),
 true);
 System.out.println(

Appendix B Network Programming 425

32
33
34
35
36
37
39

 "Client's message: " + in.readLine());
 out.println("I got your message");
 s_sock.close();
 } catch (IOException ex) { ex.printStackTrace(); }
 }
 }
}

The code description is as follows:

Lines 1–7: make available the relevant class files.

Lines 9–14: define the server class with only one method, main(). The program accepts a
single argument, the server’s port number (1024 – 65535, for non-reserved ports).

Line 15: convert the port number, input as a string, to an integer number.

Lines 16–19: create the well-known server socket. According to the javadoc of
ServerSocket, the default value for the backlog queue length for incoming connections is
set to 50. There is a constructor which allows you to set different backlog size.

Line 24: the server blocks and waits indefinitely until a client makes connection at which
time a Socket object is returned.

Lines 25–27: set up the input stream for reading client’s requests. The actual TCP stream,
obtained from the Socket object by calling getInputStream() generates a stream of
binary data from the socket. This can be decoded and displayed in a GUI interface. Because
our simple application deals exclusively with text data, we wrap a BufferedReader
object around the input stream, in order to obtain buffered, character-oriented output.

Lines 28–30: set up the output stream for writing server’s responses. Similar to the input
stream, we wrap a PrintWriter object around the binary stream object returned by
getOutputStream(). Supplying the PrintWriter constructor with a second
argument of true causes the output buffer to be flushed for every println() call, to
expedite the response delivery to the client.

Lines 31–32: receive the client’s message by calling readLine() on the input stream.

Line 33: sends acknowledgement to the client by calling println() on the output stream.

Line 34: closes the connection after a single exchange of messages. Notice that the well-
known server socket rv_sock remains open, waiting for new clients to connect.

The following is the client code, which sends a single message to the server and dies.

Listing B-2: A basic CLIENT application in Java
1
2
3
4
5
6
7
8

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.Socket;

public class BasicClient {

Ivan Marsic Rutgers University 426

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 public static void main(String[] args) {
 if (args.length != 2) { // Test for correct num. of arguments
 System.err.println(
 "ERROR server host name AND port number not given");
 System.exit(1);
 }
 int port_num = Integer.parseInt(args[1]);

 try {
 Socket c_sock = new Socket(args[0], port_num);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(c_sock.getInputStream())
);
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(c_sock.getOutputStream()),
 true);
 BufferedReader userEntry = new BufferedReader(
 new InputStreamReader(System.in)
);
 System.out.print("User, enter your message: ");
 out.println(userEntry.readLine());
 System.out.println("Server says: " + in.readLine());
 c_sock.close();
 } catch (IOException ex) { ex.printStackTrace(); }
 System.exit(0);
 }
}

The code description is as follows:

Lines 1–6: make available the relevant class files.

Lines 9–14: accept two arguments, the server host name and its port number.

Line 15: convert the port number, input as a string, to an integer number.

Line 18: simultaneously opens the client’s socket and connects it to the server.

Lines 19–21: create a character-oriented input socket stream to read server’s responses.
Equivalent to the server’s code lines 25–27.

Lines 22–24: create a character-oriented output socket stream to write request messages.
Equivalent to the server’s code lines 28–30.

Lines 25–27: create a character-oriented input stream to read user’s keyboard input from the
standard input stream System.in.

Line 29: sends request message to the server by calling println() on the output stream.

Line 30: receives and displays the server’s response by readLine() on the input stream.

Line 31: closes the connection after a single exchange of messages.

Line 33: client program dies.

Appendix B Network Programming 427

B.3 Example Client/Server Application in C

Here I present the above Java application, now re-written in C. Recall that the TCP protocol is
used for communication; a UDP-based application would look differently. The reader should
consult Figure B-2 as a roadmap to the following code.

Listing B-3: A basic SERVER application in C on Unix/Linux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <stdio.h> /* perror(), fprintf(), sprintf() */
#include <stdlib.h> /* for atoi() */
#include <string.h> /* for memset() */
#include <sys/socket.h> /* socket(), bind(), listen(), accept(),
 recv(), send(), htonl(), htons() */
#include <arpa/inet.h> /* for sockaddr_in */
#include <unistd.h> /* for close() */

#define MAXPENDING 5 /* Max outstanding connection requests */
#define RCVBUFSIZE 256 /* Size of receive buffer */
#define ERR_EXIT(msg) { perror(msg); exit(1); }

int main(int argc, char *argv[]) {
 int rv_sock, s_sock, port_num, msg_len;
 char buffer[RCVBUFSIZE];
 struct sockaddr_in serv_addr;

 if (argc != 2) { /* Test for correct number of arguments */
 char msg[64]; memset((char *) &msg, 0, 64);
 sprintf(msg, "Usage: %s server_port\n", argv[0]);
 ERR_EXIT(msg);
 }

 rv_sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (rv_sock < 0) ERR_EXIT("ERROR opening socket");
 memset((char *) &serv_addr, 0, sizeof(serv_addr));
 port_num = atoi(argv[1]); /* First arg: server port num. */
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(port_num);
 if (bind(rv_sock,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 ERR_EXIT("ERROR on binding");
 if (listen(rv_sock, MAXPENDING) < 0)
 ERR_EXIT("ERROR on listen");

 while (1) { /* Server runs forever */
 fprintf(stdout, "\nWaiting for client to connect...\n");
 s_sock = accept(rv_sock, NULL, NULL);
 if (s_sock < 0) ERR_EXIT("ERROR on accept new client");
 memset(buffer, 0, RCVBUFSIZE);
 msg_len = recv(s_sock, buffer, RCVBUFSIZE - 1, 0);
 if (msg_len < 0)
 ERR_EXIT("ERROR reading from socket");
 fprintf(stdout, "Client's message: %s\n", buffer);

Ivan Marsic Rutgers University 428

46
47
48
49
50
51

 msg_len = send(s_sock, "I got your message", 18, 0);
 if (msg_len < 0) ERR_EXIT("ERROR writing to socket");
 close(s_sock);
 }
 /* NOT REACHED, because the server runs forever */
}

The code description is as follows:

Lines 1–7: import the relevant header files.

Lines 9–10: define the relevant constants.

Line 11: defines an inline function to print error messages and exit the program.

Line 13: start of the program.

Line 14: declares the variables for two socket descriptors, well-known (rv_sock) and
client-specific (s_sock), as well as server’s port number (port_num) and message length,
in bytes (msg_len) that will be used below.

Line 15:

Line 39: accepts new client connections and returns the socket to be used for message
exchanges with the client. Notice that NULL is passed for the last two arguments, because this
server is not interested in the client’s address.

Line 42: receive up to the buffer size (minus 1 to leave space for a null terminator) bytes from
the sender. The input parameters are: the active socket descriptor, a char buffer to hold the
received message, the size of the receive buffer (in bytes), and any flags to use. If no data has
arrived, recv() blocks and waits until some arrives. If more data has arrived than the
receive buffer can hold, recv() removes only as much as fits into the buffer.
NOTE: This simplified implementation may not be adequate for general cases, because
recv() may return a partial message. Remember that TCP connection provides an illusion
of a virtually infinite stream of bytes, which is randomly sliced into packets and transmitted.
The TCP receiver may call the application immediately upon receiving a packet.
Suppose a sender sends M bytes using send(, , M,) and a receiver calls
recv(, , N,), where M N. Then, the actual number of bytes K returned by
recv() may be less than the number sent, i.e., K M.
A simple solution for getting complete messages is for sender to preface all messages with a
“header” indicating the message length. Then, the receiver finds the message length from the
header and may need to call recv() repeatedly, while keeping a tally of received fragments,
until the complete message is read.

Line 46: sends acknowledgement back to the client. The return value indicates the number of
bytes successfully sent. A return value of 1 indicates locally detected errors only (not
network ones).

Line 48: closes the connection after a single exchange of messages. Notice that the well-
known server socket rv_sock remains open, waiting for new clients to connect.

Notice that this is a sequential server, which serves clients one-by-one. When a particular client is
served, any other client attempting to connect will be placed in a waiting queue. The capacity of

Appendix B Network Programming 429

the queue is limited by MAXPENDING and declared by invoking listen(). To implement a
concurrent server, which can serve multiple clients in parallel, you should use threads (see
Section 4.3).

Listing B-4: A basic CLIENT application in C on Unix/Linux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
50
51

#include <stdio.h> /* for perror(), fprintf(), sprintf() */
#include <stdlib.h> /* for atoi() */
#include <string.h> /* for memset(), memcpy(), strlen() */
#include <sys/socket.h> /* for sockaddr, socket(), connect(),
 recv(), send(), htonl(), htons() */
#include <arpa/inet.h> /* for sockaddr_in */
#include <netdb.h> /* for hostent, gethostbyname() */
#include <unistd.h> /* for close() */

#define RCVBUFSIZE 256 /* Size of receive buffer */
#define ERR_EXIT(msg) { perror(msg); exit(1); }

int main(int argc, char *argv[]) {
 int c_sock, port_num, msg_len;
 struct sockaddr_in serv_addr;
 struct hostent *serverIP;
 char buffer[RCVBUFSIZE];

 if (argc != 3) { /* Test for correct number of arguments */
 char msg[64]; memset((char *) &msg, 0, 64); /* erase */
 sprintf(msg, "Usage: %s serv_name serv_port\n", argv[0]);
 ERR_EXIT(msg);
 }

 serverIP = gethostbyname(argv[1]); /* 1st arg: server name */
 if (serverIP == NULL)
 ERR_EXIT("ERROR, server host name unknown");
 port_num = atoi(argv[2]); /* Second arg: server port num. */
 c_sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (c_sock < 0) ERR_EXIT("ERROR opening socket");
 memset((char *) &serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 memcpy((char *) &serv_addr.sin_addr.s_addr,
 (char *) &(serverIP->h_addr), serverIP->h_length);
 serv_addr.sin_port = htons(port_num);
 if (connect(c_sock,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 ERR_EXIT("ERROR connecting");

 fprintf(stdout, "User, enter your message: ");
 memset(buffer, 0, RECVBUFSIZE); /* erase */
 fgets(buffer, RECVBUFSIZE, stdin); /* read input */
 msg_len = send(c_sock, buffer, strlen(buffer), 0);
 if (msg_len < 0) ERR_EXIT("ERROR writing to socket");
 memset(buffer, 0, RECVBUFSIZE);
 msg_len = recv(c_sock, buffer, RECVBUFSIZE - 1, 0);
 if (msg_len < 0) ERR_EXIT("ERROR reading from socket");
 fprintf(stdout, "Server says: %s\n", buffer);
 close(c_sock);
 exit(0);

Ivan Marsic Rutgers University 430

52 }

The code description is as follows:

Lines 1–8: import the relevant header files.

Line 43: writes the user’s message to the socket; equivalent to line 46 of server code.

Line 46: reads the server’s response from the socket; equivalent to line 42 of server code.

I tested the above programs on Linux 2.6.14-1.1637_FC4 (Fedora Core 4) with GNU C compiler
gcc version 4.0.1 (Red Hat 4.0.1-5), as follows:

Step 1: Compile the server using the following command line:
 % gcc -o server server.c

On Sun Microsystems’s Solaris, I had to use:
 % gcc -g -I/usr/include/ -lsocket -o server server.c

Step 2: Compile the client using the following command line:
 % gcc -o client client.c

On Sun Microsystems’s Solaris, I had to use:
 % gcc -g -I/usr/include/ -lsocket -lnsl -o client client.c

Step 3: Run the server on the machine called caipclassic.rutgers.edu, with server port 5100:
 % ./server 5100

Step 4: Run the client
 % ./client caipclassic.rutgers.edu 5100

The server is silently running, while the client will prompt you for a message to type in. Once you
hit the Enter key, the message will be sent to the server, the server will acknowledge the receipt,
and the client will print the acknowledgment and die. Notice that the server will continue running,
waiting for new clients to connect. Kill the server process by pressing simultaneously the keys
Ctrl and c.

B.4 Windows Socket Programming

Finally, I include also the server version for Microsoft Windows:

Listing B-5: A basic SERVER application in C on Microsoft Windows
1
2
3
4
5
6

#include <stdio.h>
#include <winsock2.h> /* for all WinSock functions */

#define MAXPENDING 5 /* Max outstanding connection requests */
#define RCVBUFSIZE 256 /* Size of receive buffer */
#define ERR_EXIT { \

Appendix B Network Programming 431

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 fprintf(stderr, "ERROR: %ld\n", WSAGetLastError()); \
 WSACleanup(); return 0; }

int main(int argc, char *argv[]) {
 WSADATA wsaData;
 SOCKET rv_sock, s_sock;
 int port_num, msg_len;
 char buffer[RCVBUFSIZE];
 struct sockaddr_in serv_addr;

 if (argc != 2) { /* Test for correct number of arguments */
 fprintf(stdout, "Usage: %s server_port\n", argv[0]);
 return 0;
 }
 WSAStartup(MAKEWORD(2,2), &wsaData);/* Initialize Winsock */

 rv_sock = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP,
 NULL, 0, WSA_FLAG_OVERLAPPED);
 if (rv_sock == INVALID_SOCKET) ERR_EXIT;
 memset((char *) &serv_addr, 0, sizeof(serv_addr));
 port_num = atoi(argv[1]); /* First arg: server port num. */
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
 serv_addr.sin_port = htons(port_num);
 if (bind(rv_sock, (SOCKADDR*) &serv_addr,
 sizeof(serv_addr)) == SOCKET_ERROR) {
 closesocket(rv_sock);
 ERR_EXIT;
 }
 if (listen(rv_sock, MAXPENDING) == SOCKET_ERROR) {
 closesocket(rv_sock);
 ERR_EXIT;
 }

 while (1) { /* Server runs forever */
 fprintf(stdout, "\nWaiting for client to connect...\n");
 if (s_sock = accept(rv_sock, NULL, NULL)
 == INVALID_SOCKET) ERR_EXIT;
 memset(buffer, 0, RCVBUFSIZE);
 msg_len = recv(s_sock, buffer, RCVBUFSIZE - 1, 0);
 if (msg_len == SOCKET_ERROR) ERR_EXIT;
 fprintf(stdout, "Client's message: %s\n", buffer);
 msg_len = send(s_sock, "I got your message", 18, 0);
 if (msg_len == SOCKET_ERROR) ERR_EXIT;
 closesocket(s_sock);
 }
 return 0;
}

The reader should seek further details on Windows sockets here:
http://msdn.microsoft.com/library/en-us/winsock/winsock/windows_sockets_start_page_2.asp.

Ivan Marsic Rutgers University 432

B.5 Bibliographical Notes

[Stevens et al., 2004] remains the most authoritative guide to network programming. A good
quick guides are [Donahoo & Calvert, 2001] for network programming in the C programming
language and [Calvert & Donahoo, 2002] for network programming in the Java programming
language.

There are available many online tutorials for socket programming. Java tutorials include

 Sun Microsystems, Inc., http://java.sun.com/docs/books/tutorial/networking/sockets/index.html

 Qusay H. Mahmoud, “Sockets programming in Java: A tutorial,”
http://www.javaworld.com/jw-12-1996/jw-12-sockets.html

and C tutorials include

 Sockets Tutorial, http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

 Peter Burden, “Sockets Programming,” http://www.scit.wlv.ac.uk/~jphb/comms/sockets.html

 Beej’s Guide to Network Programming – Using Internet Sockets, http://beej.us/guide/bgnet/
also at http://mia.ece.uic.edu/~papers/WWW/socketsProgramming/html/index.html

 Microsoft Windows Sockets “Getting Started With Winsock,”
http://msdn.microsoft.com/library/en-us/winsock/winsock/getting_started_with_winsock.asp

Davin Milun maintains a collection of UNIX programming links at
http://www.cse.buffalo.edu/~milun/unix.programming.html. UNIX sockets library manuals can be found
at many websites, for example here: http://www.opengroup.org/onlinepubs/009695399/mindex.html.
Information about Windows Sockets for Microsoft Windows can be found here:
http://msdn.microsoft.com/library/en-us/winsock/winsock/windows_sockets_start_page_2.asp.

433

Appendix C
HTTP Overview

The Hypertext Transfer Protocol (HTTP) is an application-level protocol underlying the World
Wide Web. HTTP is implemented using a very simple RPC-style interface, in which all messages
are represented as human-readable ASCII strings, although often containing encoded or even
encrypted information. It is a request/response protocol in that a client sends a request to the
server and the server replies with a response as follows (see Figure C-1):
Client Request Server Response
A request method Protocol version
URI (Uniform Resource Identifier) A success or error code
Protocol version A MIME-like message containing server

information, entity meta-information, and
possibly entity-body content

A MIME-like message containing request
modifiers, client information, and possibly
body content

To quickly get an idea of what is involved here, I suggest you perform the following experiment.
On a command line of a UNIX/Linux shell or a Windows Command Prompt, type in as follows:
 % telnet www.wired.com 80

The Telnet protocol will connect you to the Wired magazine’s web server, which reports:
 Trying 209.202.230.60...

Time

Client Server
GET /index.html HTTP 1.1
Accept: image/gif, image/x-xbitmap, image/

jpeg, image pjpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible, MSIE

5.01; Windows NT)
Host: caip.rutgers.edu
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Thu, 23 Feb 2006 21:03:56 GMT
Server: Apache/2.0.48 (Unix) DAV/2 PHP/4.3.9
Last-Modified: Thu, 18 Nov 2004 16:40:02 GMT
ETag: "1689-10a0-aab5c80"
Accept-Ranges: bytes
Content-Length: 4256
Connection: close
Content-Type: text/html; charset=ISO-8859-1

<HTML>
<HEAD>
<TITLE>CAIP Center-Rutgers University</TITLE>
</HEAD>

Client Request Message

Server Response Message

Figure C-1: Example HTTP request/response transaction.

Ivan Marsic Rutgers University 434

 Connected to www.wired.com.
 Escape character is '^]'.

Then type in the HTTP method to download their web page:
 GET / HTTP/1.0

Hit the Enter key (carriage return + line feed) twice and you will get back the HTML document
of the Wired home page. You can also try the same with the method HEAD instead of GET, as
well as with other methods introduced later, including their header fields—just remember to
terminate the request with a blank line.

Early versions of HTTP dealt with URLs, but recently the concept of URI (see RFC 2396
http://www.ietf.org/rfc/rfc2396.txt)—a combination of URL and URN (Unified Resource Name)—has
become popular to express the idea that the URL may be a locator but may also be the name of an
application providing a service, indicating the form of abstract “resource” that can be accessed
over the Web. A resource is anything that has a URI. A URI begins with a specification of the
scheme used to access the item. The scheme is usually named after the transfer protocol used in
accessing the resource, but the reader should check details in RFC 2396). The format of the
remainder of the URI depends on the scheme. For example, a URI that follows the http scheme
has the following format:

http: // hostname [: port] / path [; parameters] [? query]

where italic signifies an item to be supplied, and brackets denote an optional item. The hostname
string is a domain name of a network host, or its IPv4 address as a set of four decimal digit
groups separated by dots. The optional :port is the network port number for the server, which
needs to be specified only if server does not use the well-known port (80). The /path string
identifies single particular resource (document) on the server. The optional ;parameters string
specifies the input arguments if the resource is an application, and similar for ?query. Ordinary
URLs, which is what you will most frequently see, contain only hostname and path.

An entity is the information transferred as the payload of a request or response. It consists of
meta-information in the form of entity-header fields and optional content in the form of an entity-
body. For example, an entity-body is the content of the HTML document that the server returns
upon client’s request, as in Figure C-1.

C.1 HTTP Messages

HTTP messages are either requests from client to server or responses from server to client. Both
message types consist of

 A start line, Request-Line or Status-Line

 One or more header fields, including

- General header, request header, response header, and entity header fields

Appendix C HTTP Overview 435

Each header field consists of a name (case insensitive), followed by a colon (:) and the
field value

 An empty line indicating the end of the header fields. The end-of-header is defined as the
sequence CR-LF-CR-LF (double newline, written in C/C++/Java as "\r\n\r\n")

 An optional message body, used to carry the entity body (a document) associated with a
request or response.

Encoding mechanisms can be applied to the entity to reduce consumption of scarce resources. For
example, large files may be compressed to reduce transmission time over slow network
connections. Encoding mechanisms that are defined are gzip (or x-gzip), compress (or
x-compress), and deflate (the method found in PKWARE products).

HTTP operates over a TCP connection. Original HTTP was stateless, meaning that a separate
TCP connection had to be opened for each request performed on the server. This resulted in
various inefficiencies, and the new design can keep connection open for multiple requests. In
normal use, the client sends a series of requests over a single connection and receives a series of
responses back from the server, leaving the connection open for a while, just in case it is needed
again. HTTP also permits a server to return a sequence of responses with the intent of supporting
the equivalent of news-feed or a stock ticker.

This section reviews the request and response messages. Message headers are considered in more
detail in Section C.2.

HTTP Requests

An HTTP request consists of (see Figure C-2):

 A request line containing the HTTP method to be applied to the resource, the URI of the
resource, and the protocol version in use

 A general header

 A request header

 An entity header

 An empty line (to indicate the end of the header)

 A message body carrying the entity body (a document)

Ivan Marsic Rutgers University 436

As seen in Figure C-2 and Figure C-3, different headers can be interleaved and the order of the
header fields is not important. The following is the table of HTTP methods:
Method Description
GET Retrieves a resource on the server identified by the URI. This resource could be the

contents of a static file or invoke a program that generates data.
HEAD Retrieves only the meta-information about a document, not the document itself.

Typically used to test a hypertext link for validity or to obtain accessibility and
modification information about a document.

PUT Requests that the server store the enclosed entity, which represents a new or
replacement document.

POST Requests that the server accept the enclosed entity. Used to perform a database
query or another complex operation, see below.

DELETE Requests that the server removes the resource identified by the URI.
TRACE Asks the application-layer proxies to declare themselves in the message headers, so

the client can learn the path that the document took.
OPTIONS Used by a client to learn about other methods that can be applied to the specified

document.
CONNECT Used when a client needs to talk to a server through a proxy server.

There are several more HTTP methods, such as LINK, UNLINK, and PATCH, but they are less
clearly defined.

GET /index.html HTTP 1.1

Accept: image/gif, image/x-xbitmap, image/
jpeg, image pjpeg, */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible, MSIE

5.01; Windows NT)
Host: caip.rutgers.edu
Connection: Keep-Alive

Request method Resource URI Protocol version

R
eq

ue
st

he
ad

er
 fi

el
ds

Request line

Empty line
(indicates
end-of-header)

Entity
header field

Figure C-2: HTTP Request message format.

Appendix C HTTP Overview 437

The GET method is used to retrieve a document from a Web server. There are some special
cases in which GET behaves differently. First, a server may construct a new HTML document for
each request. These are handled by specifying a URI that identifies a program in a special area on
the Web server known as the cgi-bin area. The URI also includes arguments to the program in the
path name suffix. Many fill-form requests associated with Web pages use this approach instead of
a POST method, which is somewhat more complex. A second special case arises if a document
has moved. In this case, the GET method can send back a redirection error code that includes the
URI of the new location.

The POST method is used for annotating existing resources—the client posts a note to the
resource. Examples include posting of a conventional message to an e-mail destination, bulleting
board, mailing list, or chat session; providing a block of data obtained through a fill-form; or
extending a database or file through an append operation.

HTTP Responses

An HTTP response consists of (see Figure C-3)

 A status line containing the protocol version and a success or error code

 A general header

 A response header

 An entity header

 An empty line (to indicate the end of the header)

 A message body carrying the entity body (a document)

 Among these only the status-line is required. The reader should consult the standard for the
interpretation of the numeric status codes. The response header fields will be described later.

HTTP 1.1 200 OK

Date: Thu, 23 Feb 2006 21:03:56 GMT
Server: Apache/2.0.48 (Unix) DAV/2 PHP/4.3.9
Last-Modified: Thu, 18 Nov 2004 16:40:02 GMT
ETag: "1689-10a0-aab5c80"
Accept-Ranges: bytes
Content-Length: 4256
Connection: close
Content-Type: text/html; charset=ISO-8859-1

<HTML>
<HEAD>
<TITLE>CAIP Center-Rutgers University</TITLE>
</HEAD>

...

Status code (success or error)Protocol version

Status line

Empty line
(indicates
end-of-header)

Entity
body

Response
header fields

General
header fields

Entity
header fields

Figure C-3: HTTP Response message format.

Ivan Marsic Rutgers University 438

C.2 HTTP Message Headers

HTTP transactions do not need to use all the headers. In fact, in HTTP 1.0, only the request line is
required and it is possible to perform some requests without supplying header information at all.
For example, in the simplest case, a request of GET /index.html HTTP/1.0 without any
headers would suffice for most web servers to understand the client. In HTTP 1.1, a Host
request header field is the minimal header information required for a request message.

General Headers

General-header fields apply to both request and response messages. They indicate general
information such as the current time or the path through the network that the client and server are
using. This information applies only to the message being transmitted and not to the entity
contained in the message. General headers are as follows:
Header Description
Cache-Control Specifies desired behavior from a caching system, as used in proxy servers.

Directives such as whether or not to cache, how long, etc.
Connection Specifies whether a particular connection is persistent or automatically

closed after a transaction.
Date Contains the date and time at which the message was originated.
Pragma Specifies directives for proxy and gateway systems; used only in HTTP 1.0

and maintained in HTTP 1.1 for backwards compatibility.
Trailer Specifies the headers in the trailer after a chunked message; not used if no

trailers are present.
Transfer-
Encoding

Indicates what, if any, type of transformation has been applied to the
message, e.g., chunked. (This is not the same as content-encoding.)

Upgrade Lists what additional communication protocols a client supports, and that it
would prefer to talk to the server with an alternate protocol.

Via Updated by gateways and proxy servers to indicate the intermediate
protocols and hostname. This information is useful for debugging process.

Warning Carries additional information about the status or transformation of a
message which might not be reflected in the message, for use by caching
proxies.

Request Headers

The request-header fields allow the client to pass additional information about the request, and
about the client itself, to the server. These fields act as request modifiers, with semantics
equivalent to the parameters/arguments of a programming language method invocation. Request
headers are listed in this table:
Header Description
Accept Specifies content encodings of the response that the client prefers.
Accept-Charset Specifies the character sets that the client prefers. If this header is not

specified, the server assumes the default of US-ASCII and ISO-8859-1.
Accept-Encoding Specifies content encoding algorithms that the client understands. If this

Appendix C HTTP Overview 439

header is omitted, the server will send the requested entity-body as-is,
without any additional encoding.

Accept-Language Specifies human language(s) that the client prefers. Languages are
represented by their two-letter abbreviations, such as en for English,
fr for French, etc.

Authorization Provides the user agent’s credentials to access data at the URI. Sent in
reaction to WWW-Authenticate in a previous response message.

Expect Indicates what specific server behaviors are required by the client. If the
server is incapable of the expectation, it returns an error status code.

Transfer-
Encoding

Indicates what, if any, type of transformation has been applied to the
message.

From Contains an Internet e-mail address for the user executing the client. For
the sake of privacy, this should not be sent without the user’s consent.

Host Specifies the Internet hostname and port number of the server contacted
by the client. Allows multihomed servers to use a single IP address.

If-Match A conditional requesting the entity only if it matches the given entity
tag (see the ETag entity header).

If-Modified-
Since

Specifies that the Request-URI data is to be returned only if ith has
been modified since the supplied date and time (used by GET method).

If-None-Match Contains the condition to be used by an HTTP method.
If-Range A conditional requesting only a missing portion of the entity, if it has

not been changed, and the entire entity if it has (used by GET method).
If-Unmodified-
Since

A conditional requesting the entity only if it has been modified since a
given date and time.

Max-Forwards Limits the number of proxies or gateways that can forward the request.
Proxy-
Authorization

Allows the client to identify itself to a proxy requiring authentication.

Range Requests a partial range from the entity body, specified in bytes.
Referer Gives the URI of the resource from which the Request-URI was

obtained.
TE Indicates what extension transfer-encodings the client is willing to

accept in the response and whether or not it is willing to accept trailer
fields in a chunked transfer-coding.

User-Agent Contains info about the client application originating the request.

A user agent is a browser, editor, or other end-user/client tool.

Response Headers

The response-header fields are used only in server response messages. They describe the server’s
configuration and information about the requested URI resource. Response headers are as
follows:
Header Description
Accept-Ranges Indicates the server’s acceptance of range requests for a resource,

specifying either the range unit (e.g., bytes) or none if no range requests
are accepted.

Age Contains an estimate of the amount of time, in seconds, since the response
was generated at the origin server.

ETag Provides the current value of the entity tag for the requested variant of the
given document for the purpose of cache management (see below).

Ivan Marsic Rutgers University 440

Location Specifies the new location of a document; used to redirect the recipient to a
location other than the Request-URI for completion of the request or
identification of a new resource.

Proxy-
Authenticate

Indicates the authentication scheme and parameters applicable to the proxy
for this Request-URI and the current connection.

Retry-After Indicates how long the service is expected to be unavailable to the
requesting client. Given in seconds or as a date and time when a new
request should be placed.

Server Contains information about the software used by the origin server to
handle the request—name and version number.

Set-Cookie Contains a (name, value) pair of information to retain for this URI; for
browsers supporting cookies.

Vary Signals that the response entity has multiple sources and may therefore
vary; the response copy was selected using server-driven negotiation.

WWW-
Authenticate

Indicates the authentication scheme and parameters applicable to the URI.

Entity tags are unique identifiers of different versions of the document that can be associated with
all copies of the document. By checking the ETag header, the client can determine whether it
already has a copy of the document in its local cache. If the document is modified, its entity tag
changes, so it is more efficient to check for the entity tag than Last-Modified date.

Entity Headers

Entity-header fields define metainformation about the entity-body or, if no body is present, about
the resource identified by the request. They specify information about the entity, such as length,
type, origin, and encoding schemes. Although entity headers are most commonly used by the
server when returning a requested document, they are also used by clients when using the POST
or PUT methods. Entity headers are as follows:
Header Description
Allow Lists HTTP methods that are allowed at a specified URL, such as GET,

POST, etc.
Content-
Encoding

Indicates what additional content encodings have been applied to the
entity body, such as gzip or compress.

Content-
Language

Specifies the human language(s) of the intended audience for the entity
body. Languages are represented by their two-letter abbreviations, such as
en for English, fr for French, etc.

Content-Length Indicates the size, in bytes, of the entity-body transferred in the message.
Content-
Location

Supplies the URL for the entity, in cases where a document has multiple
entities with separately accessible locations.

Content-MD5 Contains an MD5 digest of the entity body, for checking the integrity of
the message upon receipt.

Content-Range Sent with a partial entity body to specify where the partial body should be
inserted in the full entity body.

Content-Type Indicates the media type and subtype of the entity body. It uses the same
values as the client’s Accept header. Example: text/html

Expires Specifies the date and time after which this response is considered stale.
Last-Modified Contains the date and time at which the origin server believes the resource

was last modified.

Appendix C HTTP Overview 441

C.3 HTTPS—Secure HTTP

HTTPS (Hypertext Transfer Protocol over Secure Socket Layer, or HTTP over SSL) is a Web
protocol developed by Netscape and built into its browser that encrypts and decrypts user page
requests as well as the pages that are returned by the Web server. Technically, HTTPS sends
normal HTTP messages through a SSL sublayer. SSL is a generic technology that can be used to
encrypt many different protocols; hence HTTPS is merely the application of SSL to the HTTP
protocol. HTTPS server listens by default on the TCP port 443 while HTTP uses the TCP port 80.
SSL key size is usually either 40 or 128 bits for the RC4 stream encryption algorithm, which is
considered an adequate degree of encryption for commercial exchange.

When the URI schema of the resource you pointed to starts with https:// and you click
“Send,” your browser’s HTTPS layer will encrypt the request message. The response message
you receive from the server will also travel in encrypted form, arrive with an https:// URI,
and be decrypted for you by your browser’s HTTPS sublayer.

C.4 Bibliographical Notes

Above I provide only a brief summary of HTTP, and the interested reader should seek details
online at http://www.w3.org/Protocols/. A comprehensive and highly readable coverage of HTTP is
given in [Krishnamurthy & Rexford, 2001].

The interested reader should check IETF RFC 2660: “The Secure HyperText Transfer Protocol”
at http://www.ietf.org/rfc/rfc2660.txt, and the related RFC 2246: “The TLS Protocol Version 1.0,”
which is updated in RFC 3546.

442

Appendix D
Database-Driven Web Applications

A typical web application is a web-based user interface on a relational database.

Consider the following example:

Our task is to develop a Web-based system that will support the following functions. After the
user points the browser to our website, the user is shown the entire list of persons in the database
that we created earlier. Only names should be shown, not their home addresses. The user is asked
to select any one name from the list and press the button “Show Home Address.” (The user
should not be allowed to select more than a single name at a time.) Upon receiving the request,
the system should retrieve the address of the selected person from the database and show the
person’s name and home address in the browser. After viewing this information, the user can
click the hyperlink “Start Again,” which will bring the user to the starting website, where the user
can again select one name and repeat the process.

Note: Do not develop a login and authentication functionality, i.e., this website should be publicly
available.

We start by downloading a free relational database management system, such as MySQL
(http://www.mysql.com/) or PostgreSQL (http://www.postgresql.org/). Next, we create a simple table so
that each record contains person’s name and home address. Enter several records, e.g., about 10
or so, manually into the database.

Bibliographical Notes

T. Coatta, “Fixated on statelessness,” ACM Queue, May 15, 2006. Online at:
http://www.acmqueue.com/modules.php?name=News&file=article&sid=361

P. Barry, “A database-driven Web application in 18 lines of code,” Linux Journal, no. 131, pp.
54-61, March 2005, Online at: http://www.linuxjournal.com/article/7937

443

Appendix E
Document Object Model (DOM)

The purpose of Document Object Model (DOM) is to allow programs and scripts running in a
web client (browser) to access and manipulate the structure and content of markup documents.
DOM also allows the creation of new documents programmatically, in the working memory.
DOM assumes a hierarchical, tree data-structure of documents and it provides platform-neutral
and language-neutral APIs to navigate and modify the tree data-structure.

If documents are becoming applications, we need to manage a set of user-interactions with a body
of information. The document thus becomes a user-interface to information that can change the
information and the interface itself.

When the XML processor parses an XML document, in general it produces as a result a
representation that is maintained in the processor’s working memory. This representation is
usually a tree data structure, but not necessarily so. DOM is an “abstraction,” or a conceptual
model of how documents are represented and manipulated in the products that support the DOM
interfaces. Therefore, in general, the DOM interfaces merely “make it look” as if the document
representation is a tree data structure. Remember that DOM specifies only the interfaces without
implying a particular implementation. The actual internal data structures and operations are
hidden behind the DOM interfaces and could be potentially proprietary.

The object model in the DOM is a programming object model that comes from object-oriented
design (OOD). It refers to the fact that the interfaces are defined in terms of objects. The name
“Document Object Model” was chosen because it is an “object model” in the traditional OOD
sense: documents are modeled using objects, and the model encompasses the structure as well as
the behavior of a document and the objects of which it is composed. As an object model, the
DOM identifies:

 The interfaces and objects used to represent and manipulate a document

 The semantics of these interfaces and objects, including both behavior and attributes

 The relationships and collaborations among these interfaces and objects.

E.1 Core DOM Interfaces

Ivan Marsic Rutgers University 444

Models are structures. The DOM closely resembles the structure of the documents it models. In
the DOM, documents have a logical structure which is very much like a tree.

Core object interfaces are sufficient to represent a document instance (the objects that occur
within the document itself). The “document” can be HTML or XML documents. The main types
of objects that an application program will encounter when using DOM include:

Node

The document structure model defines an object hierarchy made up of a number of nodes.

The Node object is a single node on the document structure model and the Document object is the
root node of the document structure model and provides the primary access to the document's
data. The Document object provides access to the Document Type Definition (DTD) (and hence
to the structure), if it is an XML document. It also provides access to the root level element of the
document. For an HTML document, that is the <HTML> element, and in an XML document, it is
the top-level element. It also contains the factory methods needed to create all the objects defined
in an HTML or XML document.

Each node of the document tree may have any number of child nodes. A child will always have
an ancestor and can have siblings or descendants. All nodes, except the root node, will have a
parent node. A leaf node has no children. Each node is ordered (enumerated) and can be named.

The DOM establishes two basic types of relationships:

 1. Navigation: The ability to traverse the node hierarchy, and

 2. Reference: The ability to access a collection of nodes by name.

NAVIGATION

The structure of the document determines the inheritance of element attributes. Thus, it is
important to be able to navigate among the node objects representing parent and child elements.
Given a node, you can find out where it is located in the document structure model and you can
refer to the parent, child as well as siblings of this node. A script can manipulate, for example,
heading levels of a document, by using these references to traverse up or down the document
structure model. This might be done using the NodeList object, which represents an ordered
collection of nodes.

REFERENCE

Suppose, for example, there is a showcase consisting of galleries filled with individual images.
Then, the image itself is a class, and each instance of that class can be referenced. (We can assign
a unique name to each image using the NAME attribute.) Thus, it is possible to create an index of
image titles by iterating over a list of nodes. A script can use this relationship, for example, to
reference an image by an absolute or relative position, or it might insert or remove an image. This
might be done using the NamedNodeMap object, which represents (unordered) collection of
nodes that can be accessed by name.

Appendix E Document Object Model (DOM) 445

Element

Element represents the elements in a document. (Recall that XML elements are defined in Section
6.1.1.) It contains, as child nodes, all the content between the start tag and the end tag of an
element. Additionally, it has a list of Attribute objects, which are either explicitly specified or
defined in the DTD with default values.

Document

Document represents the root node of a standalone document.

E.2 Bibliographical Notes
Document Object Model (DOM) Level 1 Specification, Version 1.0, W3C Recommendation 1
October, 1998. Online at: http://www.w3.org/TR/REC-DOM-Level-1/

DOM description can be found here: http://www.irt.org/articles/js143/index.htm

446

Appendix F
User Interface Programming

User interface design should focus on the human rather than on the system side. The designer
must understand human fallibilities and anticipate them in the design. Understanding human
psychology helps understand what it is that makes the user interface easier to understand,
navigate, and use. Because proper treatment of these subjects would require a book on their own,
I will provide only a summary of key points.

Model/View/Controller design pattern is the key software paradigm to facilitate the construction
of user interface software and is reviewed first.

F.1 Model/View/Controller Design Pattern

MVC pattern

F.2 UI Design Recommendations

Some of the common recommendations about interfaces include:
 Visibility: Every available operation/feature should be perceptible, either by being

currently displayed or was recently shown so that it has not faded from user’s short-term
memory. Visible system features are called affordances;

 Transparency: Expose the system state at every moment. For example, when using
different tools in manipulation, it is common to change the cursor shape to make the user
aware of the current manipulation mode (rotation, scaling, or such);

 Consistency: Whenever possible, comparable operations should be activated in the same
way (although, see [Error! Reference source not found.] for some cautionary remarks).
Or, stated equivalently, any interface objects that look the same are the same;

Appendix F User Interface Programming 447

 Reversibility: Include mechanisms to recover a prior state in case of user or system errors
(for example, undo/redo mechanism). Related to this, user action should be interruptible,
in case the user at any point changes their mind, and allowed to be redone;

 Intuitiveness: Design system behavior to minimize the amount of surprise experienced by
the target user (here is where metaphors and analogies in the user interface can help);

 Guidance: Provide meaningful feedback when errors occur so the user will know what
follow-up action to perform; also provide context-sensitive user help facilities.

Obviously, the software engineer should not adopt certain design just because it is convenient to
implement. The human aspect of the interface must be foremost.

Experience has shown that, although users tend at first to express preference for good looks, they
eventually come around to value experience. The interface designer should, therefore, be more
interested in how the interface feels, than in its aesthetics. What something looks like should
come after a very detailed conversation about what it will do. There are different ways that
interface developers quantify the feel of an interface, such as GOMS keystroke model, Fitt’s Law,
Hick’s Law, etc. [Raskin, 2000].

F.3 Bibliographical Notes

[Raskin, 2000], is mostly about interface design, little on software engineering, but articulates
many sound design ideas for user interfaces.

Some websites of interest (last checked August 2005):
 http://www.useit.com/ [useit.com: Jakob Nielsen on Usability and Web Design]

 http://www.jnd.org/ [Don Norman’s jnd website]

 http://www.asktog.com/ [AskTog: Interaction Design Solutions for the Real World]

 http://www.pixelcentric.net/x-shame/ [Pixelcentric Interface Hall of Shame]

 http://citeseer.ist.psu.edu/context/16132/0

 http://www.sensomatic.com/chz/gui/Alternative2.html

 http://www.derbay.org/userinterfaces.html

 http://www.pcd-innovations.com/infosite/trends99.htm [Trends in Interface Designs
(1999 and earlier)]

 http://www.devarticles.com/c/a/Java/Graphical-User-Interface/

 http://www.chemcomp.com/Journal_of_CCG/Features/guitkit.htm

Ivan Marsic Rutgers University 448

449

Appendix G
Example Project: Tic-Tac-Toe Game

This appendix illustrates a worked example of a full software engineering project. The problem is
developing a distributed game of tic-tac-toe. Our development team is three strong and counts as
members Me, Myself & Irene. We go under the nom de guerre Gang of Three - in team, or simply
GoT-it. Me Go hails from Hunan and Irene is from Ukraine. Our strengths include: Me likes
coding and prefers doing it all alone; he thinks that everything other than code is fluff. Me
believes that the most successful way to solve a problem is to tackle it as a whole because you get
the work done and finish it faster, instead of getting bogged down in minor details. Irene would
like to manage the project. As for Myself, programming is not my forte; I lean towards my
creative and critical thinking skills—I like sketching user interfaces and other impressions.

Not everyone had the same experience at the beginning of the project and not every team member
had the same aptitude for learning. We hoped that the size of scope of the assignment, however,

Ivan Marsic Rutgers University 450

would allow everyone to find a niche and work on different parts of the project. We figured out,
with our complementary skills we are well equipped to tackle any challenges of teamwork on a
large-scale project.

ME MYSELF IRENE

G.1 Customer Statement of Work

This section describes the initial “vision statement” that we received from our customer. It only
roughly describes the system-to-be and the details will need to be discovered during the
requirements engineering phase of our project (Sections G.2 and G.3).

G.1.1 Problem Statement

The GoT-it team is charged with building software that will allow players to play the game of tic-
tac-toe from different computers. Tic-tac-toe is a game in which players alternate placing pieces
(typically Xs for the player who goes first and Os for the second) on a 3×3 board. The first player
to get three pieces in a line (vertically, horizontally, or diagonally) is the winner. The game may
end in a “draw” or “tie”, so that neither of two players wins.

Appendix F User Interface Programming 451

Motivation: Tic-tac-toe is a simple game that is fun to play. A quick search of the Web reveals
that all free implementations allow the user to play against the computer. We will make it
possible to play against other users and will support different versions of the game.

Vision: In addition to the default standard version, the players will be able to play two variants of
the game:

 “revenge” tic-tac-toe

 nine-board tic-tac-toe

Our business plan is to offer the game free and support the operations from commercial
advertisement proceeds. Other versions are planned for the future, if the game proves popular and
the budget allows it.

Each player will be able to invite an opponent for a match, or may just wait to be invited by
another player.

The game will also show the leaderboard—a scoreboard displaying the names and current scores
of the leading competitors.

G.1.2 Glossary of Terms

● Leaderboard — a scoreboard displaying the names and current scores of the leading
competitors.

● Nine-board tic-tac-toe — nine tic-tac-toe boards are arranged in a 3×3 grid to form a 9×9 grid
(Figure G-1). The first player’s move may go on any board; all subsequent moves are placed in
the empty cells on the board corresponding to the square of the previous move (that is, if a move
were in the lower-right square of a board, the next move would take place on the lower-right
board). If a player cannot move because the indicated board is full, the next move may go on any
board. Again, the first player to get three pieces in a line is the winner.

First move in the lower-right square Next move here on the lower-right board

Figure G-1: Nine-board tic-tac-toe. If a move is made to the lower-right-corner cell of the
first board, then the next move must be on any empty cell of the lower-right-corner board.

Ivan Marsic Rutgers University 452

● Game board — the board with a 3×3 grid in the standard tic-tac-toe, on which the players
move their pieces.

● Game lobby — the initial screen shown to the user when he or she logs into the system or after
a match is finished and the game board is removed.

● Gameroom — the private session established between two players to play a match of tic-tac-
toe. After the match is finished, the gameroom is destroyed and the players are brought to the
initial screen. The rationale for this design is explained later in Section G.3.4.

● Player list — the list of all players that are currently logged in the system and available to play
the game of tic-tac-toe.

● “Revenge” tic-tac-toe — the first player with 3-in-a-line wins, but loses if the opponent can
make 3-in-a-line on the next move.

● Response time limit — the interval within which the remote player is expected to respond to
local player’s actions. If no response is received, it is assume that the remote player lost network
connection or became disinterested in the game. Additional description provided in Section G.2.1.

Additional information from Wikipedia: http://en.wikipedia.org/wiki/Tic-tac-toe

G.2 System Requirements Engineering

The key lesson of this section that the reader should learn is that we are not just writing down the
system specification based on the customer statement of work. Instead, we are discovering the
requirements. The customer statement of work contains only a small part of knowledge that we
will need to develop the system-to-be. Most of the knowledge remains to be discovered through
careful analysis and discussion with the customer. We will discover issues that need to be
resolved and make decisions about business policies that will be implemented by the system-to-
be.

G.2.1 Enumerated Functional Requirements

We start by deriving the functional requirements from the statement of work (Section G.1.1). In
our case, most functional requirements are distilled directly from the statement of work.
However, some requirements will emerge from the requirements analysis. In addition, all
requirements should be analyzed for their clarity, precision, and how realistic they are given the
project resources and schedule.

We also need to consider if we need any non-functional requirements, which are usually less
conspicuous in the statement of work. We realize that the players are remote, which raises the
issue of latency and generally of poor awareness about each other’s activities. We do not specify
any latency requirements, because it is not critical that the other player immediately sees each
move. The players are allowed time to contemplate their next move, so any network latency
cannot be distinguished from a thinking pause. However, to avoid awkward situations where

Appendix F User Interface Programming 453

players have to wait for the other’s response for annoyingly long intervals (e.g., a player quits in
the middle of a game), we introduce a RESPONSE TIME POLICY:

TTT-BP01: each player is required to respond within a limited interval or lose the match

This policy is not really a non-functional requirement and will not be stated as such. It may be
refined in the future, so that players can request to suspend a match for a specified interval, or
instead of automatically penalizing an unresponsive player, the system may first send alerts to
this player.

Enumerated requirements for the system-to-be are as follows:

Table G-1: Enumerated functional requirements for the distributed game of tic-tac-toe.

Identifier Requirement PW

REQ1 The system shall allow any pair of players to play from different computers 5

REQ2 The system shall allow users to challenge opponents to play the game 4

REQ3 The system shall allow users to negotiate the game version to play 3

REQ4
The system shall allow users to play the standard tic-tac-toe or any of the two
variants, as selected by the users

4

REQ5 The system should show a leaderboard of leading competitors and their ranking 2

REQ6 The system shall allow users to register with unique identifiers 1

REQ7
The system shall allow users to set their status, such as “available,” “engaged,”
or “invisible”

2

Our customer explained the priority weights (PW) as follows. Obviously, the key objective for
this system is to allow playing a distributed game of tic-tac-toe. So, REQ1 has the highest
priority. It is desirable that the players can challenge other players (REQ2), but this is not a top
priority in case it proves difficult to implement and a simple solution can be found, such as
communicating by other means (e.g., telephone) and connecting only two players at a time. Thus,
REQ2 has a lower priority. REQ3 has an even lower priority. REQ4 says that the system should
support different variants, but they may not be negotiable using our system (REQ3). Instead, the
players may use different means to negotiate the version (e.g., telephone) and the start our
system. The last three requirements (REQ5–REQ7) are desirable, but may be dropped if time and
resources become exhausted.

The requirement REQ2 does not specify if any player can invite any other player or only the
players who are not already playing. We may introduce an option that the system informs the
inviter that they must wait until the invitee completes the ongoing game first. This issue is related
to REQ7 and will be discussed below and in Section G.3.3.

The requirement REQ4 is compounded because it demands the ability to play a game variant, as
well as the ability to select among different variants. To facilitate acceptance testing of this
requirement, it is helpful to split it into two simpler requirements:

REQ4a: The system shall allow users to play a variant of tic-tac-toe (standard, revenge, and nine-
board)

REQ4b: The system shall allow users to select which variant of tic-tac-toe to play

Ivan Marsic Rutgers University 454

The last requirement (REQ7) originally was not requested by the customer, but the developer
may suggest it as useful and introduce it with customer’s approval. However, adding this
requirement is not as simple as it may appear at first. What is meant by “available” or “engaged”?
Does “available” mean that this player is generally open to invitations to play the game, or it has
a more narrow meaning representing a currently idle player? If former, what the system should do
if an “available” player receives an invitation while he or she is playing the game? Should the
system pop up (possibly annoying) dialog box and ask whether he or she accepts the invitation?
These issues are also related to REQ2. In the latter case where the status represents the status in
the current instant, will the player explicitly manage his or her status, or will the system do it
automatically. That is, when a player finishes a match, his or her status will automatically change
to “available.” If the system will support different statuses, instead only idle versus playing, then
players will need explicitly to indicate their availability to other players. Allowing players to play
multiple matches at the same time would further complicate the player status issue. The reader
must be aware that such issues must be resolved at some point. Because of this difficulty, we will
leave requirement REQ7 out of further consideration.

The NOT List—What This Project is Not About: Additional requirements may be conceived,
such as allowing users to search for opponents by name or some other query parameter, invite
their social network friends to play the game, organize tournaments, etc. In such cases, invitations
can be sent not only to currently logged-in idle players, but also to any person possibly outside of
our system. The system could save the state of the matches at each turn so that players may play
at their own pace. The system could maintain the history of all matches for all users, and each
user would be able to view his or her statistics: the history of matches, scores, and the past
opponents. Playing against a computer opponent may also be supported. The system could also
allow players to chat with each other. These extensions were not asked for in the problem
statement, so they will not be considered.

Note that we may need to provide more details for some requirements. Some things in the listed
requirements may be tacitly assumed by one person, but may not be self-evident, so it is safer to
be specific about them and avoid issues down the road. Here are some examples of additional
details for some of the requirements:

Table G-2: Extending the list of functional requirements from Table G-1.

Identifier Requirement

REQ2a (as REQ2 in Table G-1)

REQ2b The system shall allow the invited user to accept or decline the challenge

REQ2c
The system shall allow the user to challenge only one opponent at a time—no
simultaneous pending invitations are allowed

REQ3a (as REQ3 in Table G-1)

REQ3b
The system shall not allow the players to change the game version during an ongoing
match

(REQ4a, REQ4b listed above)

REQ4c The system shall allow each player to play no more than one match at a time

REQ4d The system shall allow a player to forfeit an ongoing match

REQ4e The system will end every match in either a win or a draw and adjust players’

Appendix F User Interface Programming 455

rankings accordingly

(REQ5, REQ6 remain same as in Table G-1; REQ7 is rejected)

REQ2c in Table G-2 is intended to keep the system simple, so that the program does not need to
keep track of pending invitations and resolve multiple acceptances. The reader should recognize
that this is a BUSINESS POLICY, which may have different solutions:

 Option 1: Allow no more than one pending invitation per player

 Option 2: Allow no additional invitations for players already engaged in a match

 Option 3: Allow unlimited pending invitations at any time

We select the first option for simplicity, but a real-world implementation may provide the
advanced options.

TTT-BP02: no more than one pending invitation per player are allowed

This policy does not necessarily imply that the user can play only one match at a time. However,
such a more restrictive version will be introduced in Section G.3.4, when we will introduce an
operational model for our system-to-be to keep the project manageable.

Further analysis would reveal more details, in addition to those shown in Table G-2. For example,
perhaps as part of REQ4 the system should also allow the players to agree on a “draw” before the
winner becomes obvious? Because tic-tac-toe is a simple, short and inconsequential game, we
will stop here:

REQ1 REQ2

REQ2a
REQ2b

REQ2c

REQ3

REQ3a REQ3b

REQ4 REQ5 REQ6

REQ4a
REQ4b

REQ4c
REQ4d

REQ4e

The above details should not be listed as requirements on their own in the table of requirements,
because such fragmentation of functional requirements would complicate the understanding of
the system’s purpose. Their appropriate role is as details of the main requirements.

REQ3 appears to complicate the setup process and one may look for alternate solutions. Instead
of players having to negotiate the game version, it may be more convenient to have each user
specify in the challenge which game version they want to play. Then, the player who accepts the
challenge also agrees to play the proposed game version and the match is started immediately.
Similarly, players could indicate their preferred game version as part of their availability status.
Then, each player could search the player list for players interested in playing a certain version
and challenge one of them.

This solution has its issues as well, because the challenged player may never receive an invitation
for the game version that he wishes to play. Of course, he may send his own invitations for the
desired game version, but then needs to keep sending to different players on the “available” list
until one accepts. However, there is a more important reason that we should not choose this
solution—because it makes the developer’s task easier, while at the same time making the user’s
task harder. Each user would always be required to choose the version they wish to play, when in

Ivan Marsic Rutgers University 456

reality most users might be happy to play the standard version. Solutions that make the
developer’s work easier while making the user’s work harder should be avoided, unless there is a
good reason, such as constraints on the product development time or resources. The customer
must always be involved in making such compromises. At this point, we do not know how much
more complex the user-friendly solution is than the developer-friendly solution, so for now we
proceed with the user-friendly solution as originally formulated in REQ3. However, see
Sidebar G.1 for additional issues.

SIDEBAR G.1: Playing Multiple Matches at a Time

 Requirement REQ2c in Table G-2 and business policy TTT-BP02 allow the user to have at
most one pending invitation. The user must wait for the opponent to accept a challenge. The
challenger cannot do anything until the opponent responds or response timeout expires. Later
on, in Section G.3.4 we will make an even more restrictive choice to allow the user to
participate in no more than one match at a time.

The reader who is also an avid game player will know that many existing games, such as
Scrabble, Words With Friends, Draw Something, all allow users to engage in multiple matches
at the same time. Why not make our Tic-tac-toe to do the same? A user would challenge an
opponent, automatically enter a gameroom for this match, and then return to the game lobby to
play in other matches while he or she waits for the opponent. This method would also allow
users to challenge players who are currently not logged into the system. A logged-off user
would simply receive a challenge notification when he or she logs in.

By adopting the multiple-simultaneous-opponents version, we would drop the policy
TTT-BP02. However, should we drop the response time policy TTT-BP01? On one hand, users
may find it annoying to have many unresolved matches at a time. It may be helpful if the
system provided some indication of the underlying cause, such as network outage, or logged-
out opponent. On the other hand, one may argue that such scenarios will be rare and most of
the matches will be played within a short interval, without interruptions. We may introduce a
policy that the gamerooms which have seen no activity for several days will be automatically
terminated.

Although the multiplayer version of distributed tic-tac-toe appears to remove some complexity
related to game setup, we still need to decide how the players would select the game version to
play. At this stage, we decide not to adopt this version as the target version of our system-to-be
out of concern that it may be too complex to implement. User convenience must always take
priority over developer’s convenience, unless it is impossible to achieve with the given
resources and time constraints. However, we will consider the merits of the multiplayer option
as we go and may even adopt it as the target version for the system-to-be if its merits are
deemed high and the costs acceptable.

The reader should particularly observe that instead of simply cataloguing the system requirements
by reading the customer statement of work, we started the discovery process of learning the
details of what exactly we are expected to develop. In other words, we started requirements
analysis. Based on the analysis we detected issues that could be solved in different ways and
made choices of business policies, such as the response time limit, and rejected some
requirements (REQ7). We also uncovered additional details that need to be stated explicitly in the

Appendix F User Interface Programming 457

requirements. Requirements analysis for this system will be continued in Section G.3.4, during
the detailed use case analysis.

G.2.2 Enumerated Nonfunctional Requirements

As stated in Section G.2.1, we do not specify any latency requirements, because it is not critical
that the other player immediately sees each move.

G.2.3 On-Screen Appearance Requirements

REQ8 Figure G-2 shows a customer-provided initial sketch of the user interface appearance.
The screen real estate is divided into three main areas. The area on the left will show the
list of currently available players. The central area will be empty when the user is in the
game lobby, while waiting to be invited or inviting an opponent. The central area will
show the game board once the players agree the play the game. The area one the right
will show the current leaderboard. Notice also that two parts on the bottom of left and
right areas are provisioned to show sponsor advertisements. The customer requested that
the advertisements should be subtle rather than distractive.

G.2.4 Acceptance Tests

Acceptance tests that the customer will run to check that the system meets the requirements are as
follows. Note, however, that these test cases provide only a coarse description of how a
requirement will be tested. It is insufficient to specify only input data and expected outcomes for
testing functions that involve multi-step interaction. Use case acceptance tests in Section G.3.5
will provide step-by-step description of acceptance tests.

Acceptance test cases for REQ1:

Figure G-2: On-Screen Appearance Requirements: Customer’s sketch of the user interface.

Ivan Marsic Rutgers University 458

ATC1.01 Ensure a working network connection between two computers, run the game program
on both computers (pass: each user is shown as “available” on the other user’s screen)

ATC1.02 Ensure a working network connection between more than two computers, run the
game program on computers at random times (pass: the displayed list of “available”
users is updated correctly on all computers)

Note that REQ1 states that any pair of players will be able to play from different computers;
however, the acceptance tests do not specifically test this capability. The acceptance tests check
whether the users can see each other as available, assuming that they successfully joined the
game. I leave it to the reader to formulate more comprehensive test cases for REQ1.

Acceptance test cases for REQ2:

ATC2.01 Challenge a user who is logged in and accepting invitations (pass)

ATC2.02 Challenge a user who is currently not logged in (fail)

ATC2.03 Challenge a user who is logged in but not accepting invitations (fail)

ATC2.04 Challenge another user accepting invitations after a declined invitation (pass)

ATC2.05 Challenge another user immediately after one user accepted the challenge (fail)

ATC2.06 Challenge another user during an ongoing match (fail)

ATC2.07 Challenge another user after a finished match (pass)

Note that ATC2.02 may not be possible to run directly from the user interface if the user interface
is designed to force the user to select from the set of available players. In addition, ATC2.05 and
ATC2.06 appear to test the same scenario and one of them may be redundant. Finally, we may
wish to add one more test case (ATC2.08), to challenge the local user after a finished match. This
case is reciprocal to ATC2.07, which allows the local user to challenge another (remote) user.

Acceptance test cases for REQ3:

ATC3.01 During a match in progress, select a different game variant from the one currently
played (fail)

How exactly this test case will be executed depends on how the user interface is implemented and
whether it allows the user to perform such actions in different contexts.

Acceptance test cases for REQ4a:

Test cases for this requirement are difficult to formulate in a simple, one-sentence version as for
other use cases. We may test that a player can move a piece to any empty cell, or in case of nine-
board tic-tac-toe the player moves to an empty cells on the board corresponding to the square of
the previous move, but this does not cover the whole REQ4a. We also need to test that the match
is correctly refereed and that players’ high scores are correctly updated.

This is why the acceptance test formulation for this requirement is deferred to Section G.3.5.

Acceptance test cases for REQ4b:

ATC4.01 In a resting state, select the revenge tic-tac-toe game (pass: the opponent is asked to
accept the selection or counteroffer a different selection; if accepted, the revenge

Appendix F User Interface Programming 459

version is shown on both players’ screens; else, the first player is asked to accepts the
counteroffer selection or make another counteroffer)

ATC4.02 In a resting state, select the nine-board tic-tac-toe game (pass: similar as for the
revenge case)

ATC4.03 In an ongoing match, select to change the game variant (fail)

Note that this test case formulation is inelegant and will be better represented with a test case for
the corresponding use case (see Section G.3.5).

Acceptance test cases for REQ5:

ATC5.01 A visitor user not logged in requests to see the leaderboard (pass)

Acceptance test cases for REQ6:

ATC6.01 A visitor not logged in fills out the registration form using an unused identifier (pass)

ATC6.02 A visitor not logged in fills out the registration form using a taken identifier (fail)

How We Did It & Plan of Work

After reading the customer statement of work, Me said he will start coding right away, while
Irene and Myself find out what needs to be done. It turned out real bad. Irene and Myself met
several times, discussed the statement of work and came up with a paper-based prototype of the
game. We realized we were missing Me’s technical skills but he just hunkered down in his lair
and made himself unreachable. Then finally, we all met the night before the deadline. It turns out
that Me wrote his codes in a foreign language—the program crashed even before it rendered the
welcome screen. But Me kept saying that the software is done and we just needed to get it to
work. We realized we needed to work as the Gang of Three - in team, instead of three Gangs of
One. We ordered pizza and coke, and went on burning the midnight oil all night long to derive the
system requirements, as described above. Requirement analysis helped us greatly as it allowed us
to enumerate the requirements and pool all of the ideas of all the team members together in an
orderly manner. GoT-it!

Then we faced the problem of how to split our future work. Me volunteered to do the use cases
and Myself jumped on the opportunity to do some interface design; we suggested that Irene does
the domain analysis. Me quickly drew a sketch that shows how we will organize our teamwork:

Requirements

IRENE

Domain AnalysisUse Cases

ME MYSELF

User Interface

However, Irene, being the project manager, pointed out that the problem with working with a
team on a project of this scale is that a member may or may not get their job done, which affects
the team as a whole. She suggested that we might face issues where one person’s part was

Ivan Marsic Rutgers University 460

required in order to continue the flow of work; which, resulted in roadblocks during the process.
Some parts of the program cannot be worked on without first finishing other functions. Irene
pointed out that, for example, she would not be able to do anything before receiving the
elaborated use cases and the interface design from Me and Myself. Instead, she proposed that we
do work in parallel (Figure G-3), so that each team member takes ownership of several system
requirements and derives the corresponding use cases. Although Figure G-3 shows that our team
will meet only once at the end of this development stage, clearly we will need to meet often,
reconcile any issues with our use cases, and jointly decide on next steps.

Me and Myself agreed that this is a great idea because it minimized mutual dependency of team
members on each other’s progress. From this, we learned better time management and
cooperation with others.

We also agreed that everyone will be responsible for writing the part of the project report
describing his or her component. At the end, Irene will collect all report contributions and
integrate them into a uniform whole. Everyone felt Irene was the one who paid attention to detail
most for things such as naming conventions and report format so she wore the additional hat of
editor-in-chief, making sure everyone’s work made sense before we submitted our reports. For
these reasons, when it came to deciding who would work on what, Irene was on the
business/report side.

Req-1
UC-1

UC-2

Req-6

UC-M

UC-N

Requirements Use Cases

Req-2

Req-3

Req-4

Req-5

ME

MYSELF

IRENE Meet &
Reconcile

TEAM

Figure G-3: Ownership diagram for splitting up the teamwork in parallel instead of series,
to avoid roadblocks to successful teamwork. (Continued in Figure G-7.)

Appendix F User Interface Programming 461

G.3 Functional Requirements Specification

Although this section is entitled “Requirements Specification,” we will see that we
are still discovering the functional system requirements for the system-to-be, as
well as specifying the discovered requirements.

e start by selecting an architectural style for our system, because the user
experience will depend on the choice of architectural style and because
some use case scenarios would not be possible to specify in detail without

knowing the architectural style.

ARCHITECTURAL STYLE: CENTRAL REPOSITORY – The problem statement (Section G.1.1) does
not mention that the system should be Web-based, so we will assume that programs will run on
different computers without a dedicated server application, but all users will connect to a
common database server, such as MySQL. This means that all “clients” will store their game-
related data to the database. To enable communication between “clients”, each client will
periodically check the database when it expects a message. After the sender stores its message in
the database, the receiver will pick it up in the next round of checking. More sophisticated
architectural styles may be considered in a future version of this system.

G.3.1 Stakeholders

Identify anyone and everyone who has interest in this system (users, managers, sponsors, etc.).
Stakeholders should be humans or human organizations.

G.3.2 Actors and Goals

We identify four types of actors:
1. Player – a registered user
2. Opponent – a special case of Player actor, defined relative to the Player who initiated the

given use case; this actor can do everything as Player, but we need to distinguish them to
be able to describe the sequence of interactions in use case scenarios

3. Visitor – any unregistered user
4. Database – records the Players’ performance

To implement the RESPONSE TIME POLICY defined in Section G.2.1, we will need a timeout timer
to measure the reaction time of each player. Because this timer will be part of a use case
execution, but will not initiate full use cases, there is no need to consider it an actor.

G.3.3 Use Cases Casual Description

The summary use cases are as follows:

UC-1: PlayGame — Allows the Player to play the standard tic-tac-toe game (default option).
Extension point: the Player has an option to challenge an Opponent, or just wait to be challenged

W

Ivan Marsic Rutgers University 462

by an Opponent. Extension point: the Player has an option to suggest another game variant.
Derived from requirement REQ1 – REQ4.

Note that UC-1 mentions only the Player actor so, by implication, it is available only to registered
players who are logged in into the system.

UC-2: Challenge — Allows the Player to challenge an Opponent to play a match (optional sub
use case, «extend» UC-1: PlayGame).
Derived from requirement REQ2.

UC-3: SelectGameVariant — Allows the Player and Opponent to negotiate a variant that they
will play, different from the default standard tic-tac-toe (optional sub use case, «extend» UC-1:
PlayGame).
Derived from requirements REQ3 and REQ4.

UC-4: Register — Allows a Visitor to fill out the registration form and become a member of the
game. (For simplicity, we omit the use case that allows the user to modify his or her profile.)
Derived from requirement REQ6.

UC-5: Login — Allows the Player to join the game and have the system track his or her
performance on the leaderboard (mandatory sub use case, «include» from UC-1: PlayGame).
Derived from requirement REQ6.

UC-6: ViewLeaderboard — Allows a Visitor to view the leaderboard of player rankings without
being logged in the system. Players will always be able to run this use case. Another option that
may be considered is to have the leaderboard displayed in any screen that the player visits. At this
point, we decide that the player will explicitly run UC-6 to avoid screen clutter. A more detailed
analysis in the future may sway the developer to switch to the always-shown option.
Derived from requirement REQ5.

Some alternative use cases may be considered. For example, instead of the use cases to challenge
an opponent (UC-2) and negotiate the game version (UC-3), one may propose a single use case
where the player will challenge an opponent to play a specific version of tic-tac-toe. I have not
carefully considered the merits of this alternative solution, so for now we go with two separate
use cases.

The last use case (UC-6) allows any visitor to view the leaderboard, which is not strictly implied
by REQ5. We provide it anyway to allow visitors to view the current state of the game, perhaps to
attract them to become active members.

If the player passively waits to be invited by another player, this is not a use case, because this
player does not initiate any interaction with the system to achieve his or her goal. This player will
play a participating actor role when another player initiates UC-2.

It is important to choose the right level of granularity for use cases. Introducing a Make-Move use
case to place a piece on the board is too fine granularity and does not confer any benefit.
Therefore, making a move should be considered a step in use case UC-1: PlayGame. Similar
argument applies against having Start-New-Match as a use case. Another example is Record-
Result, which is a step in successful completion of UC-1, and not a standalone use case initiated
by Database. Yet another example is View-Pending-Invitations to check for invitations and
accept or decline, which should also be considered a step in UC-1. And so forth.

Appendix F User Interface Programming 463

Note that options to play different game variants (standard, revenge, or nine-board) are not shown
as extension use cases. The reason for this choice is that it is difficult to specify different game
rules in use cases notation. On the other hand, there is no value in indicating three more use cases
for the three variants if those use cases will have identical specification. Tic-tac-toe game
involves a single type of interaction for all game variants: placing a piece on the board. In case of
games with many or more sophisticated interaction types, it may be appropriate to consider sub-
use cases for different game variants. Therefore, we leave the game variant specification for the
next stage of development lifecycle: domain analysis (Section G.5).

Use Case Diagram

The use case diagram is shown in Figure H-1. The diagram indicates the «include» and «extend»
sub-use-case relationships. Also indicated is that Opponent is a specialization of Player. Both
players must «initiate» the game before they can play. Each player has an option of waiting to be
invited, or inviting an opponent. When the players connect, they are shown the default version of
the game, and they may select a different variant.

Traceability Matrix

The traceability matrix in Figure G-5 shows how our system requirements map to our use cases.
We calculated the priority weights of the use cases, and we can order our use cases by priority:

UC1 UC3 UC2 UC6 UC4, UC5

We select the three use cases with the highest priority to be elaborated and implemented for the
first demonstration of our system.

«participate»

«initiate»

«initiate»

System: Tic-tac-toe Game

«extend»

«initiate»

«include»

«extend»

Database

Opponent

Player

Visitor

UC5: Login

UC2: Challenge UC3: Select Game Variant

UC4: Register

UC6: View Leaderboard

«extend»

UC1: Play Game

Extension points:
- challenge opponent
- select game variant
- view leaderboard

UC1: Play Game

Extension points:
- challenge opponent
- select game variant
- view leaderboard

Figure G-4: Use case diagram for the distributed game of tic-tac-toe.

Ivan Marsic Rutgers University 464

G.3.4 Use Cases Fully-Dressed Description

We start deriving the detailed (“fully-dressed”) specification of use cases by sketching usage
scenarios.

Start with UC-2: Challenge, which allows the Player to challenge an Opponent to play a match,
because this is the first logical step in the game. A possible scenario may look something like
this:

1. Player sends an invitation to an Opponent to play a match
2. Opponent accepts or declines
3. Players are brought to the main use case (UC-1) to play a match

However, we realize that we must be more specific in Step 1 about how the Player selects an
Opponent, and what if this Opponent is already playing with another player. Would an “engaged”
player be interested in accepting new invites? We already discussed this issue in Section G.2.1,
when analyzing the feasibility of the requirement REQ7. We choose the following simple
solution. Every player will be shown a list of currently available players. To avoid annoying
invitations while the player is already engaged in a game, the system will automatically remove
this player from the list of available players. The players follow a simple invitation protocol,
which is a BUSINESS POLICY, specified as a sequence of interactions between the players (i.e.,
“protocol”) shown in Figure G-6.

TTT-BP03: The invitation protocol allows a player to challenge only the “available” opponents.
(Note that the first two business rules were identified in Section G.2.1.) The opponent accepts or
declines and these two players are brought into a “game room” to play only a single match. After
the match is finished, the players are brought back to the main screen and they must again send
match invitations. (The players will remain logged in.)

There may be other ways to operationalize this game. For example, a user may start a new match
by selecting a game variant and then challenge an opponent to play this match. In other words,
the game variant would not be negotiable. In addition, given the concept of a “gameroom” we
may now simplify the problem of determining player availability. We may operationalize the

UC1 UC2 UC3 UC4 UC5 UC6

REQ1

REQ2

REQ3

REQ4

REQ5

REQ6

5

4

3

4

2

1

Req’t PW

5 4 4 1 1 2Max PW

16 4 7 1 1 2Total PW

X

X

X

X

X

X

X X

X

X

Figure G-5: Traceability matrix mapping the system requirements to use cases. Priority
weight (PW) given in Table G-1. (Traceability continued in Figure G-13.)

Appendix F User Interface Programming 465

game so that once two players enter a gameroom, they can play as many matches as desired.
When one player leaves the gameroom, both players will become available for invitations. This
operational model is left to the reader as an exercise and will not be considered here.

The requirements state that players takes turns, so that the Xs-player goes first and the Os-player
goes second, but it is not specified how Xs and Os are assigned, so we decide that before each
match the system randomly designates and informs the players. See Section G.5.3 for the
reasoning behind this choice.

Use Case UC-1: Play Game
Related Requirements: REQ1 – REQ4

Initiating Actor: Player

Actor’s Goal: To play the game of tic-tac-toe

Participating Actors: Opponent, Database

Preconditions: • Player is a registered user

Success End Condition:

Failed End Condition:
• If completed 1 matches, Player’s score is updated in Database

• Forfeited matches counted as losses in Database

Extension Points: Challenge (UC-2) in step 1; Select Game Variant (UC-3) in step 3;
View Leaderboard (UC-6) in any step

Flow of Events for Main Success Scenario:

 include::Login (UC-5)

 1. System displays the list of remote players that are available to play the game; the
display is continuously updated and any incoming invitations are shown

 2. Player accepts an incoming invitation

 3. System (a) brings both Player and Opponent into a gameroom, (b) displays the
default standard tic-tac-toe, (c) randomly assigns Xs or Os to the Player and
Opponent and displays their designations

 4. The Xs-player is prompted to make the first move anywhere on the board, then Os-

Players

Acquire Opponent

Negotiate Game Variant

Login

View available
opponents

Challenge

Accept
Suggest

game variant

Agree Play match

Login Play match

Figure G-6: Operational model for the distributed game of tic-tac-toe.

Ivan Marsic Rutgers University 466

player is prompted to make a move [for each move, a timer is started to limit the
response time]

 Players repeat Step 4 until System declares a winner or detects that the board is filled to end
in a draw

 5. System (a) signals the match end, (b) erases the screen, (c) stores the updated scores
for both players in the Database, and (d) closes the gameroom and brings players back
to the main screen (Step 1)

Flow of Events for Extensions (Alternate Scenarios):

any step: Player requests to forfeit an ongoing match

 1. System (a) shows a message to the opponent and asks for an acknowledgement,
(b) starts a timer for a fixed interval, say 10 seconds, (c) when the opponent
acknowledges or timer expires, System goes to Step 5 of the main success scenario

4a. Player tries to make an out-of-order move (e.g., the Os-player tries to go first, or any player
tries to move during their opponent’s turn)

 1. System signals an error to Player and ignores the move

4b. Player tries to place a piece over an already placed piece

 1. System signals an error to Player and ignores the move

4c. Player fails to make the next move within the timeout interval

 1. System applies TTT-BP01: RESPONSE TIME POLICY, declares a “win” for the other
Player and goes to Step 5

any step: network connection fails (System should continuously monitor the health of network
connections)

 1. System detects network failure and (a) cancels the ongoing match and closes the
gameroom, (b) signals the network failure to Player and informs about a possibly
forfeited match, (c) blocks use cases that require network connectivity and goes to
Step 1

Note that alternate scenarios 4a and 4b could be combined into a single scenario: Player tries to
make an invalid move (out-of-order or to a played cell).

Also, the alternate scenario 4c should be more precisely stated: Player fails to make a valid move
within the timeout interval. We decide that in alternate scenarios when the player makes an
invalid move (4a and 4b) no remote notifications are sent—the response timer should time out
and the system should declare our player loser regardless of whether the player is unresponsive or
just being silly.

The reader should note that handling the last alternative scenario of UC-1 involves another
BUSINESS POLICY:

TTT-BP04: When the system detects network failure, it cancels the ongoing match and closes
the gameroom, signals the network failure to Player and informs about a possibly forfeited match,
and blocks use cases that require network connectivity.

This policy may be formulated differently. One may object to forfeiting the match because of a
lost network connection and propose instead saving the current board state and resuming the
match when the connection is reestablished. Note that the other player may still be connected and

Appendix F User Interface Programming 467

waiting for this player’s response. Distinguishing a lost connection from an unresponsive user
would introduce additional complexity into our system. Given that losing a tic-tac-toe match is
inconsequential, we decide that the effort needed to support policies that are more sophisticated is
not justified.

This use case is general for all three variants of the game. As noted, specifics for the revenge and
nine-board variants will be considered in domain analysis (Section G.5).

n UC-2, we assume that the player is shown only the list of players that are currently available
and no other players can be invited. As mentioned in Section G.2.1, possible future extensions

are to allow users to search for opponents by name or some other keyword, invite their social
network friends, etc.

The player can send only one invitation at a time. Acceptance tests listed in Section G.2.4 provide
ideas about preconditions and alternative scenarios.

Use Case UC-2: Challenge
Related Requirements: REQ2

Initiating Actor: Player

Actor’s Goal: To challenge an opponent to play the game

Participating Actors: Opponent

Preconditions: • The initiating Player is logged in and “available” (not in gameroom)

• Only “available” remote players are listed

Success End Condition:

Failed End Condition:

• Opponent accepted; both players marked as “engaged” and removed
from the “available” list

• Opponent declined or failed to respond before timeout interval

Flow of Events for Main Success Scenario:

 1. Player selects an opponent from the list of available remote players and sends
invitation for a match

 2. System (a) asks the Opponent to accept the invitation and (b) starts a timer for a fixed
interval, say 1 minute

 3. Opponent indicates acceptance

 4. System goes to Step 3 of UC-1 (Play Game)

Flow of Events for Extensions (Alternate Scenarios):

2a. System receives several simultaneous invitations for the same Opponent

 1. System (a) picks one challenger randomly, (b) notifies the remaining challengers that
the Opponent became engaged, and (c) goes to Step 2 of the main success scenario

3a. Opponent declines the invitation

 1. System notifies Player about a refusal and goes to Step 1 of UC-1 (Play Game)

3b. Opponent fails to respond within a timeout time

 1. System (a) removes the pending invitation from Opponent’s screen, (b) notifies

I

Ivan Marsic Rutgers University 468

Player about a refusal and goes to Step 1 of UC-1 (Play Game)

Player receives invitation(s) while waiting for an Opponent’s answer to own invitation

 1. System intercepts such invitations and notifies their senders about the failure

After step 1, Player quits (logs out) without waiting for Opponent to answer

 1. On Opponent’s terminal, System notifies Opponent about the desertion and goes to
Step 1 of UC-1 (Play Game) for the Opponent

A precondition for UC-2 is that the initiating actor is “available.” In the future, we may need to
consider an option of allowing the initiating actor to cancel the current engagement without
playing a match. The engagement is automatically cancelled after a match is finished and the
player must challenge another opponent before the next match.

Note that the first extension deals with potential simultaneous received invitations. In Section
G.2.1, we decided that a player could not send a new invitation before a pending invitation is
answered. Here, the reader should note another BUSINESS POLICY:

TTT-BP05: in case of simultaneously received invitations, one is selected randomly

This policy may be decided differently. For example, the system may select one invitation based
on the inviter’s leaderboard ranking or friendship connections. It is important to make such
choices explicit, so that the customer can participate in the decision-making and change the
policy in the future.

The reader familiar with network security issues may detect a more serious problem with the
policy TTT-BP05. This policy makes our system susceptible to the so-called denial-of-service
attacks (http://en.wikipedia.org/wiki/Denial-of-service_attack). An adversary who is familiar with our
system may saturate our central database server with match invitations, such that it cannot
respond to legitimate traffic and rendering it effectively unavailable. The legitimate challengers
would wonder why their invitations always go unanswered and the challenged players would find
that their opponents are fake. A potential solution to this problem is to show the user all
invitations and let the user select. This solution is more complex and it is not clear that the user
will always have sufficient information to discern fake from legitimate invitations.

The decision to intercept and discard the invitations received while the player waits for an answer
to a pending invitation is another BUSINESS POLICY that may be decided differently.

TTT-BP06: intercept and discard the invitations received during an outstanding invitation

We start the analysis of UC-3 by sketching a possible scenario, like so:
1. Player suggests a version of tic-tac-toe to play
2. Opponent disagrees and counteroffers a different version
3. Player disagrees and counteroffers a different version
4. and so forth…

We realize that this cycle can go on forever, so we need to specify the negotiation protocol. This
is another BUSINESS POLICY:

TTT-BP07: the negotiation protocol is specified as a sequence of interactions between the
players (i.e., “protocol”). We adopt a simple protocol where one player suggests the variant to

Appendix F User Interface Programming 469

play. The opponent either agrees or responds with a counteroffer. If the first player does not agree
to the counteroffer, the match is cancelled before it started and the gameroom is closed. Both
players are brought back to the main screen and they enter the pool of “available” players.
Similarly, if a response is not received within a specified interval, match is cancelled before it
started, and both players go to the pool of “available” players. One may conceive a more complex
protocol, for example, the system automatically initiates a chat where the two users can discuss
how to continue, but given that the game of tic-tac-toe is quick and of no consequence, such
complex features are unnecessary.

If the players agree on a game version, the newly agreed game version is loaded. The players’
previous designations remain unchanged when the different game version is loaded: Xs-player
remains Xs and Os-player remains Os.

The detailed use case UC-3 can then be specified as follows:

Use Case UC-3: Select Game Variant
Related Requirements: REQ3

Initiating Actor: Player

Actor’s Goal: To negotiate the version of tic-tac-toe to play

Participating Actors: Opponent

Preconditions: • Player and Opponent are already in a gameroom

• The game is in the resting state (no match is in progress)

Success End Condition:

Failed End Condition:

• Player and Opponent agreed on the game version

• agreement not reached or Opponent failed to respond; match
cancelled and both players join the pool of “available” players

Flow of Events for Main Success Scenario:

 1. Player selects a choice from the list of available versions of tic-tac-toe

 2. System (a) asks the Opponent to accept the choice or provide a counteroffer, and (b)
starts a timer for a fixed interval, say 1 minute

 3. Opponent indicates agreement

 4. System goes to Step 3 the main success scenario of UC-1 (Play Game)

Flow of Events for Extensions (Alternate Scenarios):

3a. Opponent provides a counteroffer

 1. System notifies Player about counteroffer and goes to Step 1 of UC-1 (Play Game)

3b. Opponent fails to respond within a timeout time

 1. System (a) cancels the match, (b) notifies both players about a preempted match and
goes to Step 1 of UC-1 (Play Game)

Player receives version request that the Opponent sent nearly simultaneously, before receiving
this player’s version request

 1. System intercepts such requests and discard the most recent request silently

After step 1, Player quits (logs out) without waiting for Opponent to answer

Ivan Marsic Rutgers University 470

 1. On Opponent’s terminal, System (a) cancels the match, (b) notifies Opponent about
the desertion and goes to Step 1 of UC-1 (Play Game) for the Opponent

The remaining use cases are relatively simple and are left to the reader as exercise. However, I
want to use this occasion to emphasize an important principle of agile development. My main
reason for omitting the remaining use cases is that I did not have enough time. When faced with
too much work to do and not enough time, the agile developer will cut the project scope. I
decided which use cases should be ignored based on the priority weights from Table G-1 and the
traceability matrix in Figure G-5.

Notes on the remaining use cases:

 UC-6: ViewLeaderboard — one may wish to state as a precondition that at least one match has
finished; however, it is not clear why UC-6 must not be executed if no match was played, so we
do not consider it a precondition.

The decision to intercept and discard a version request received while the player awaits an answer
from the opponent is another BUSINESS POLICY that may be decided differently.

TTT-BP08: intercept and discard version requests received while awaiting an answer to a version
offer.

SIDEBAR G.2: Playing Multiple Matches at a Time

 Sidebar G.1 discussed the option of allowing the user to play multiple matches at a time.

The reader should particularly observe the continuing knowledge discovery about the system-to-
be (i.e., requirements analysis). We have not just written down the detailed use cases (i.e.,
functional requirements specification). Instead, we needed to invent strategies for tackling the
identified ambiguities and constraints and analyze their feasibility. The outcomes of this
knowledge discovery process include the operational model that specifies the system-to-be and
two business policies for invitation and negotiation protocols. It is critical properly to document
this discovery process and the choices that we made.

G.3.5 Acceptance Tests for Use Cases

The acceptance test cases for the use cases are similar to acceptance test cases in Section G.2.4.
As mentioned, testing functions that involve multi-step interaction requires more than just
specifying the input data and expected outcomes. We also need to specify the step-by-step how
the user interacts with the system and what is the system expected to do. Simple test cases listed
in Section G.2.4 need not be repeated. Here we show only the test cases that were not already
shown or needed a more structured presentation.

Acceptance test cases for UC-1: Play Game include but are not limited to:

Test-case Identifier: TC-1.01

Use Case Tested: UC-1: Play Game – main success scenario for standard tic-tac-toe

Appendix F User Interface Programming 471

Pass/Fail Criteria: If either user aligns three pieces in a line, he is declared the winner
If the board fills up with no winner, a draw is declared

Input Data: Players’ moves on the game board

Test Procedure: Expected Result:
Set Up: Two or more users log into the
program and verify that each is given the
option to challenge an opponent

System displays the list of currently available
players

Step 1. Challenge an opponent as in test case
TC-2.01 for UC-2

System displays a gameroom and informs each
player that they are randomly assigned Xs or Os

Step 2. Players alternate placing their pieces
on the game board

● Valid moves accepted & consistently displayed
for both players (a small delay for remote player)

● Invalid moves rejected with an error message

Step 3. Loop back to Step 2 until the match is
finished

● If either player aligned three pieces in a line, he
or she is declared the winner; If the board filled
up with no winner, a draw is declared

● Both players are shown the outcome and taken
out of the gameroom back to the main screen

● The leaderboard is updated accordingly

In addition to the above test procedure, the user must verify that the system correctly maintains
the scoreboard. The user would play a few matches and keep a hand-drawn tally of scores. The
user would then compare the leaderboard to verify whether his number of matches played and
their outcomes have been counted.

Test case for UC-1: Play Game – main success scenario for revenge tic-tac-toe is the same as
TC-1.01, except that:

● If either user aligns three pieces in a line, the system gives the opponent one more move. If the
opponent aligns three in a line with the next move, he or she wins; otherwise, the first player is
declared the winner.

Similarly, test case for UC-1: Play Game – main success scenario for nine-board tic-tac-toe is the
same as TC-1.01, except that:

● After the first move, every subsequent move must be on the board corresponding to the cell of
the previous move.

A player should have the opponent quit an ongoing match and verify that the remaining player is
declared as the winner.

Test-case Identifier: TC-1.02

Use Case Tested: UC-1: Play Game – alternate scenario 4.c

Pass/Fail Criteria: The test passes if either player delays his response longer than the
response time limit

Input Data: Players’ moves on the board & the time to wait before responding

Ivan Marsic Rutgers University 472

Test Procedure: Expected Result:
Set Up: Two or more users log into the
program and verify that each is given the
option to challenge an opponent

System displays the list of currently available
players

Step 1. Challenge an opponent as in test case
TC-2.01 for UC-2

System displays a gameroom and informs each
player that they are randomly assigned Xs or Os

Step 2. Players alternate placing their pieces
on the game board

● Valid moves accepted & consistently displayed
for both players (a small delay for remote player)

● Invalid moves rejected with an error message

Step 3. Before the match end, one player
delays his response longer than the response
time limit

● System applies the RESPONSE TIME POLICY and
declares the other player the winner

● Both players are shown the outcome and taken
out of the gameroom back to the main screen

● The leaderboard is updated accordingly

Test cases for UC-2: Challenge include but are not limited to:

Test-case Identifier: TC-2.01

Use Case Tested: UC-2: Challenge – main success scenario

Pass/Fail Criteria: The test passes if the opponent accepts the challenge within the response
time limit; otherwise, the test fails

Input Data: available Opponent’s identifier

Test Procedure: Expected Result:
Set Up: Player logs in and sees the list of
available opponents (as part of UC-1)

Step 1. Player invites an opponent from the
list

System conveys the invitation to the opponent

Step 2. Opponent player indicates acceptance
within the response time limit

System informs both players about the success

Test cases for UC-3: Select Game Variant include but are not limited to:

Test-case Identifier: TC-3.01

Use Case Tested: UC-3: Select Game Variant – main success scenario

Pass/Fail Criteria: The test passes if both players agree to a version of the game after no
more than one counteroffer and within the response time limit;
otherwise, it fails

Input Data: offered game version and counter-offered version

Test Procedure: Expected Result:
Set Up: Two players are in a gameroom (as
part of UC-1)

Appendix F User Interface Programming 473

Step 1. Player suggests a game version System displays the offer to the opponent

Step 2. Opponent player suggests a
counteroffer within the response time limit

System displays the counteroffer to the first
player

Step 3. Player accepts the counteroffer System informs both players about the success

Obviously, the above test cases do not provide coverage of all alternate scenarios in our use
cases. Because alternate scenarios are more complex to implement (and, hence, more likely to
have implementation mistakes), it is critical to ensure complete coverage of all identified alternate
scenarios. This task is left to the reader as an exercise.

Of course, testing all alternate scenarios does not ensure the complete test coverage. For example,
alternate scenarios may occur in many different combinations (along with the main success
scenario), and it is practically impossible to test all the combinations.

G.3.6 System Sequence Diagrams

______ TO BE COMPLETED ______

G.3.7 Risk Management

A mitigation strategy for the denial-of-service attack identified for use case UC-2: Challenge in
Section G.3.4 is to use a design (Strategy pattern) that allows easy change of the business policy
TTT-BP05 if the problem is observed.

How We Did It & Plan of Work

We found defining the use cases relatively easy and most useful. It helped to enumerate the exact
functionality of our program before we started so we knew how to tackle to construction of the
system without losing focus and getting misdirected. One problem the group faced time and time
again was finding time when everyone could meet up. We managed to meet together after
individually defining the summary use cases and jointly created the use case diagram.

Ivan Marsic Rutgers University 474

Req-1 UC-1

UC-2

Req-6

UC-5

UC-6

Requirements Summary Use Cases

Req-2

Req-3

Req-4

Req-5

ME

MYSELF

IRENE

Meet &
Reconcile

Summary
use

cases &
use case
diagram

TEAM

UC-3

UC-4

At this point, Me suggested Central Repository as the architectural style for our system. We
continued by deriving the detailed use cases. Figure G-7 shows what happened next. Me and
Irene managed to work together on the first three use cases, while Myself veered off and did not
finish his assignment. Me and Irene realized early on that they needed to coordinate their work
because UC1, UC2, and UC3 are tightly coupled.

Ideally, we would all pull even weight but as the stuff got more complex, the speed of individual
efforts became a factor. Delegating important tasks to some of the weaker members would hurt
the team’s performance and thus most of the tasks were on the shoulders of few team members.
Irene insisted that we must make everyone devote equal effort, but Me would not surrender the
ownership of the highest-priority use cases. He warned that the success of our project directly
depended on UC1: Play Game and he felt most qualified to own this use case.

Me says: A major challenge we faced individually while working as part of a team was
determining the overall direction of the project. In this case, one may think that the issue would
be conflicting opinions about the features of the program. This was not the case at all. In fact, I
felt that it was quite the opposite. The group itself was too apathetic about the approach I put
forth for the program and this lack of feedback turned out to hurt us later on. This was because
people accepted the ideas without really understanding what they were. When it came time to talk
about the project or write parts of the report I found that almost none of what people wrote or
talked about matched up with what we had agreed on, or even with each other! And that
eventually led to me writing most of the report myself since I was the one that had a good
understanding of the idea behind the project since it was my idea after all.

Appendix F User Interface Programming 475

Myself says: My biggest challenge from working in a group is how shy I am. This is especially a
problem because of the competitive nature of this project. This is because other team members
seem to be very aggressive about doing the parts that are of higher priority to the customer.
Initially, to be a good sport, I would tell others to take whatever component of the projects that
they liked and I would do the rest. This very quickly proved to be a huge mistake since I just
couldn’t motivate myself to do the residue work. Meanwhile, I did not realize how much work the
rest of the team was putting in while I wasn’t pulling my weight. It really took a read through
their detailed use cases for me to grasp how much I had let my team down. Fortunately, this
epiphany had a positive effect. I started to get into the project and did my best to contribute. I
took on the responsibility to work on the user interface
specification (next section).

Irene says: I have been an active part of different
organizations since sophomore year in various leadership
roles so I thought I was ready to be team leader. But
leading a project like this is very different from any of
the positions I had ever held. I compiled the final copy of
the project report from everyone’s contribution,
additionally formatting and editing the document. This
often involved redoing the tables and diagrams to try and
achieve continuity and solid aesthetics in the report. I
like to get my work done as soon as it is assigned so
what ended up happening is that I’d work on the first
sections of a report without any help and then weeks later
when everyone else began to look at it I’d have to
explain what I did and tell them how to do their sections.

Req-1 UC-1

UC-2

Req-6

UC-5

UC-6

Requirements Summary Use Cases

Req-2

Req-3

Req-4

Req-5

ME

MYSELF

IRENE

Meet &
Reconcile

Summary
use

cases &
use case
diagram

TEAM

UC-3

UC-4

ME & IRENE

Detailed Use Cases

Meet &
Reconcile

TEAM

UC-1

UC-2

UC-3

Figure G-7: How teamwork plan from Figure G-3 actually played out. (Continued in Figure G-8.)

Ivan Marsic Rutgers University 476

Unfortunately, having the report due in sections did not help this much, I was still working on
things late on the night before the deadline because most team members didn’t realize how much
time needed to be put into this project. Given that the report turned out being many pages long,
this was a very significant amount of work. I spent a good deal of time rewriting entire sections of
the report to reflect our customer’s suggestions, for which other team members gave me no credit.
This was just extra stressful because I would start doing my best work very early in the semester
and my grade was really hurt by people who waited till the night before to start trying to figure
out what to do. I have source documents, draft iterations of the project report, and email traffic
that would demonstrate the above statements to be true. In the future, we must ensure that the
burden of compiling the final copy of the project report is equitably shared.

t this point, we decided that the first three use cases are critical, but very complex and
cannot be done by one or two team members. We decided to leave out the supporting use

cases for user registration and leaderboard display (UC4–UC6), and focus our resources to the
highest-priority work (Figure G-8). Myself objected for being pushed around and wanted to
continue working on his original use cases. Irene and Me convinced him that our team would be
better off if he just got over it and took ownership of the new components more vigorously than
in the past. We have to adapt our plans on the go to achieve the maximum impact. He grudgingly
consented and thus we were off to the next phase.

A

Use Cases

ME

MYSELF

IRENE Meet &
Reconcile

TEAM

UC-2

Concepts/Objects

UC-3

UC-1

CO-1

CO-2

CO-S

CO-T

Figure G-8: Plan of work and ownership diagram for the next phase of the project: moving
on from use cases to domain analysis. (Continued in Figure G-7.)

Appendix F User Interface Programming 477

G.4 User Interface Specification

Figure G-2 shows an initial sketch provided by our customer, showing how the customer
envisioned the on-screen appearance of the User Interface (UI). Given that we learned about each
usage scenario from detailed use cases, here we derive a preliminary user interface design. The
designs presented in this section bear some resemblance to the customer requirement (Figure
G-2), but they also reflect the details of use cases. They are still preliminary, because the
application logic, which they are interfacing, is not implemented. Many details of the interface
may and likely will change once we start coding.

G.4.1 Preliminary UI Design

For a given use case, show step-by-step how the user enters information and how the results
appear on the screen.

Use screen mock-ups and describe exactly what fields the user enters and buttons the user
presses. Describe navigational paths that the user will follow.

In case you are developing a graphics-heavy application, such as a video game, this is one of the
most important sections of your report.

Tic-Tac-Toe: Lobby

Challenge

Log-out

14 Wins | 71 Losses
Rank: “Average”
Next rank score: 100

Jon Smith
Anthony

Jane Doe

Julie Smith

Napoleon

Josephine

LEADERBOARDLEADERBOARD

145 Wins | 0 Losses

82 Wins | 9 Losses

91 Wins | 17 Losses

64 Wins | 35 Losses

18 Wins | 12 Losses

Anthony

Jane Doe

Julie Smith

Napoleon

Josephine

LEADERBOARDLEADERBOARD

145 Wins | 0 Losses

82 Wins | 9 Losses

91 Wins | 17 Losses

64 Wins | 35 Losses

18 Wins | 12 Losses

ADVERT

Network status: Connected

0 Wins | 13 Losses

11 Wins | 59 Losses

18 Wins | 12 Losses

64 Wins | 35 Losses

91 Wins | 17 Losses

Joe Schmo

Julie Smith

Harry P.

Josephine

Napoleon

Figure G-9: Preliminary user interface design. Compare to Figure G-2.

Ivan Marsic Rutgers University 478

Based on the detailed use cases (Section G.3.4) and operational model of the game (Figure G-6),
we decide to have two main screens for the game. One screen will support user activities in
preparation for the match, which we call the “game lobby” (Figure G-9). The other screen will
support user activities during the match, which we call the “gameroom” (Figure G-10).

G.4.2 User Effort Estimation

When estimating the user effort, we assume that the user interface will be implemented as in
Figure G-9 and Figure G-10.

Match Setup, in the Lobby

Minimum effort (best-case scenario) needed to successfully set-up a match:

one click to select an opponent + one click to send invitation = 2 mouse clicks

Maximum effort (worst-case scenario) needed to successfully set-up a match:

one click to select an opponent + one click to send invitation + one click to suggest different
version + one click to accept a version counteroffer = 4 mouse clicks

This maximum effort is calculated assuming that the first selected opponent will accept the
challenge, then will reject the proposed version and submit a counteroffer, which will finally be
accepted by the initiating user. A successful match setup may be preceded by one or more
unsuccessful attempts, for which the worst-case effort is calculated as follows.

Tic-Tac-Toe: Gameroom

JulieJonLog-out

Joe Schmo

Harry P.

Josephine

Napoleon

Jane Doe

14 Wins | 71 Losses
Rank: “Average”
Next rank score: 100

AVAILABLE

Jon Smith Forfeit

0 Wins | 13 Losses

11 Wins | 59 Losses

18 Wins | 12 Losses

64 Wins | 35 Losses

82 Wins | 9 Losses

Anthony

Jane Doe

Julie Smith

Napoleon

Josephine

LEADERBOARDLEADERBOARD

145 Wins | 0 Losses

82 Wins | 9 Losses

91 Wins | 17 Losses

64 Wins | 35 Losses

18 Wins | 12 Losses

Anthony

Jane Doe

Julie Smith

Napoleon

Josephine

LEADERBOARDLEADERBOARD

145 Wins | 0 Losses

82 Wins | 9 Losses

91 Wins | 17 Losses

64 Wins | 35 Losses

18 Wins | 12 Losses

ADVERT

Turn: Julie’s turn

Board type: Standard/Classic Network status: ConnectedGraphical scheme: BasicBasic

Figure G-10: Preliminary user interface design. Compare to Figure G-2.

Appendix F User Interface Programming 479

Maximum effort for every unsuccessful set-up attempt:

one click to select an opponent + one click to send invitation + one click to suggest different
version + one click to reject a version counteroffer = 4 mouse clicks

Match Playing, in a Gameroom

Every move requires just a single click. (Our system will not support undoing of user actions, as
explained in Section @@.)

G.5 Domain Analysis

G.5.1 Domain Model

We first derive the domain model concepts, starting from responsibilities mentioned in the
detailed use cases (Section G.3.4). Table G-3 lists the responsibilities and the assigned concepts.
The reader should be able to identify the first 11 in the main scenario of UC-1. The next two
responsibilities are identified from the alternative scenarios of UC-1. We also realize from the
first alternative scenario of UC-2 that we need a queue to line up potential simultaneous
invitations, which yields responsibilities R14 and R15.

Concept definitions

The concepts and their responsibilities are discussed below (also see Figure G-11).

Table G-3: Deriving concepts from responsibilities identified in detailed use cases.

Responsibility Type Concept

R1: Coordinate activity and delegate work originated from the local player in a
way that is compliant with the game operational model (Figure G-6).

D Controller

R2: Display the game information for the player and dialog messages Interface
R3: Monitor network connection health and retrieve messages from opponent D Communicator
R4: Keep the list of players that are available to play the game K Player List
R5: Keep the status of the local player and his/her scores K Player Profile
R6: Information about the opponent invitations to play the game K Match Invitation
R7: Gameroom information and the game board K Gameroom

R8: Randomly assign Xs or Os to the players D Communicator

R9: Prompt the player to make the next move D Controller
R10: Prevent invalid moves, detect three-in-a-line and declare a winner or
detect that the board is filled to end in a draw

D Referee

R11: Store the updated score of the local player in the database D Communicator
R12: Time the player responses D Response Timer

Ivan Marsic Rutgers University 480

R13: Apply the RESPONSE TIME POLICY and declare the winner D Referee
R14: Queue multiple (nearly simultaneous) invitations from other players K Invite Queue
R15: Randomly select a challenger from the Invite Queue D Communicator
R16: Manage interactions with the database DB Connection
R17: Match-in-progress information K Gameroom
R18: Process actions in reaction to Response Timer timeouts D Communicator
R19: Conclude the failed negotiations for selecting a version of the game D Communicator
R20: A scoreboard with the current scores of the leading competitors K Leaderboard

We realize that our system will receive two types of requests: commands from the local player
and messages from the remote opponent. To keep separate these unrelated responsibilities, we
introduce two «control» type objects: Controller and Communicator.

Given the CENTRAL REPOSITORY architectural style adopted in Section G.3, we assume that each
user will run his or her application that will connect to the central database. The Communicator
keeps track of database updates by other players that are relevant for the local user. The
Communicator also stores to the database information from the local player that is relevant to the
opponent or any other remote player.

The Communicator uses DB Connection interface to ensure separation of concerns: we want to
separate database-querying responsibilities from responsibilities of dispatching remote requests
and monitoring the network connection health.

Responsibility R8 (randomly assigning Xs and Os) is performed by the Communicator. However,
every client runs a Communicator, so which one performs the random assignment or does this
need to be negotiated? A simple solution is having the Communicator of the player who sent an
invitation to do the random assignment and send it as part of the invitation. Or, the opponent’s

DatabaseDatabase

PlayerPlayer

«entity»
Leaderboard

«entity»
Leaderboard

«boundary»
Match Invitation

«boundary»
Match Invitation

«entity»
Invite Queue

«entity»
Invite Queue

«entity»
Referee
«entity»
Referee

«entity»
Player List

«entity»
Player List

«boundary»
Interface

«boundary»
DB Connection

«entity»
Gameroom

«entity»
Gameroom

«entity»
Response Timer

«control»
Controller
«control»
Controller

«control»
Communicator

«control»
Communicator

«entity»
Player Profile

«entity»
Player Profile

Figure G-11: Concepts of the domain model for the game of tic-tac-toe.

Appendix F User Interface Programming 481

Communicator could do the assignment. Alternatively, the client with the greater network address
performs the assignment. (In the last option, the database would need to store players’ network
addresses.) This is a design decision that may need to be changeable, but unlike business policies
that are decided by the customer, design decisions are made by the developer.

There are several other responsibilities assigned to the Communicator in Table G-3 and at some
point it may be necessary to introduce additional concepts to offload some responsibilities.

Player List is the list of currently available players that is periodically retrieved from the
database by the Communicator. Player Profile keeps the availability status of the local player,
which is why it is marked as an «entity» concept. However, one may argue that it is also a
«boundary» concept when representing remote players in Player List. Match Invitation is the
message sent to an opponent or the message(s) received by opponents.

The Gameroom conceptualizes the game session established between two players (after a remote
opponent accepts a challenge). We may consider introducing a new concept Match to keep
information about the current match (R17); however, we decide against it based on the following
reasoning. Given the way we operationalized the game of tic-tac-toe in Section G.3.4, the players
can play only a single match in the gameroom. Every new match must be initialized anew.
Therefore, the distinction between the Gameroom and Match is apparent. We may also consider
introducing a concept GameBoard, but for now, we decide against it because the board state can
be represented as an array data structure that, in turn, can be an attribute of the concept
Gameroom.

We decide that the Controller should not act as the game referee (R10), because the Controller
has function-dispatching responsibilities and game refereeing is a complex and unrelated
responsibility. Instead, we introduce the Referee concept.

The Referee monitors players’ moves in a match, sanctions valid moves, and determines if a
move is a winning move (three identical signs, e.g., Xs, in a line), or a finale condition (“draw”).
Of course, each Referee is refereeing only its local player, i.e., the Referee verifies only whether
the local user’s last move was valid.

The Referee may additionally check if it is impossible for either player to win (because the
current board state is such that it is impossible to have a three-pieces- in-a-line) and terminates
the match (“draw” outcome) without waiting that all cells on the game board become filled up. In
this scenario, one hopes that both Referees will produce the same result, but given the network
latencies and communication via the central database, there may be intermittent inconsistencies
that need to be considered. This is particularly true when the RESPONSE TIME POLICY needs to
invoked because the opponent has not responded within the time limit.

If the players are playing the revenge version, the Referee shall declare a match a win if the local
user has three pieces on the board and the next move cannot result in a win for the opponent.

The system shall ensure that if the 9-board version is being played, all but the first move are
placed in the empty spaces on the bard corresponding to the square of the previous move.

We will need three specialized Referee types to implement game rules for different variants. One
may wonder whether the game “rules” should be explicitly formulated as an attribute or another
concept. For example, to recognize a winning condition, the Referee needs to apply simple
pattern matching. Given the 33 board array a[i,j], a player wins if any of the following is true:

Ivan Marsic Rutgers University 482

 Horizontal three-in-a-line: a[i,j] = a[i,j+1] = a[i,j+2], for 0 i 3 and j = 0

 Vertical three-in-a-line: a[i,j] = a[i+1,j] = a[i+2,j], for i = 0 and 0 j 3

 Diagonal three-in-a-line: a[i,j] = a[i+1,j+1] = a[i+2,j+2], for i = 0 and j = 0

These rules apply for all three version of tic-tac-toe, with additional rules for revenge and nine-
board versions (with a small modification of the rules for the nine-board). At this point, we decide
that no additional concepts are needed. Note that this analysis is not for the purposes of solution
design; rather, its purpose is to decide whether we need additional concepts.

We assume that the Leaderboard is only a data container (knowing responsibility), because it
does not need to perform any computation. The database already keeps an up-to-date score of
each player as part of the player’s record. The rank-ordered list of players can be retrieved and
sorted by a database query.

Attribute definitions

ttributes of domain concepts are derived in Table G-4. The Controller needs to carry out the
policy of not allowing the user to send more than one invitation at a time, so it needs to

know if the user is awaiting an opponent’s response. Therefore, the Controller has an attribute
isAwaitingOpponentAnswer. The Controller also has an attribute isAwaitingOpponentMove to
prevent the local user from moving board pieces before the opponent responds.

The Communicator also needs an attribute isAwaitingOpponentAnswer to know if waiting
opponent’s answer discard requests from other users or requests from the opponent that were
generated nearly simultaneously—see the alternative scenarios for UC-2: Challenge and UC-3:
SelectGameVariant in Section G.3.4. The reader may find it redundant to keep duplicate
information but, at this point, we are only identifying what is needed, not optimizing the solution
design or implementation.

The Communicator also has an attribute connectionStatus, which indicates the network
connection health: connected or broken. When the Communicator detects network failure, it
informs the Controller, which in turn cancels the ongoing match and closes the gameroom,
signals the network failure to player and informs about a possibly forfeited match. The Controller
also blocks any actions that require network connectivity, which in our simple version of the
game means that the user cannot do anything (the leaderboard state will be stale) except logout.
The Communicator will continue monitoring if the network connection becomes restored.

It is not clear why the Controller’s attribute isInGameroom would be necessary, because the
system has other means to keep track if currently the user in the gameroom—for example, if the
Gameroom attribute matchStatus is “pending.” However, this attribute expresses a needed
responsibility and because, during analysis, design optimization is of low priority, we keep it.
This attribute’s significance will become apparent in Section G.8.1.

The Controller’s attribute isNetworkDown is related to connectionStatus, but the former is used
to block user’s activity if network is down, while the latter helps the Communicator to monitor
the network outage and recovery.

The Referee needs to keep track of whether the local player should make the next move (attribute
isLocalPlayerNext). For the first move, the Referee needs to know if the local player is assigned

A

Appendix F User Interface Programming 483

Xs (attribute isLocalPlayerX). The reader may conclude that these attributes make the
Controller’s attribute isAwaitingOpponentMove redundant. We keep it to indicate the existence
of a responsibility and avoid optimizing at this stage. The Referee also keeps track if the local
user’s last move was valid (attribute isLocalMoveValid). Finally, after the Referee detects a
match end, it notes the winner’s identity, so that if the local user won, it can request the
Communicator to update the user’s score in the Database.

Attribute boardMatrix of the concept Gameroom stores the contents of each of the nine cells on
the game board. The allowed values of each cell are: empty, an X, or an O. The Gameroom also
maintains the current state of an ongoing match (values: pending, ongoing, or complete).

Table G-4: Deriving the attributes of concepts in Table G-3 from responsibilities identified
in detailed use cases (Section G.3.4).

Responsibility Attribute Concept

R21: Know if local user is awaiting opponent’s answer,
to prevent actions except viewing leaderboard or logout

isAwaitingOpponentAnswer

Controller R22: Know if local user is in the gameroom isInGameroom

R23: Know if local user is awaiting opponent’s move isAwaitingOpponentMove

R24: Know if network connection broken to block actions isNetworkDown
R25: Player’s identity or name ID / name

Player Profile R26: Player’s cumulative score score

R27: Player’s status (idle, available, engaged, invisible) status
R28: Identity of the invitation sender inviter

Match
Invitation

R29: Identity of the invitation recipient invitee

R30: Invitation status (pending, accepted, declined) status
R31: Store the contents of the 9 cells on the game board boardMatrix

Gameroom
R32: Match present state: none, pending, ongoing, complete matchStatus

R33: Indicate if the local player is assigned Xs isLocalPlayerX

Referee
R34: Indicate if the local player goes next isLocalPlayerNext

R35: Indicate the validity of the local player’s last move isLocalMoveValid

R36: Identity of the match winner, none in case of a draw winnerID
R37: Time to count down to zero duration Response Timer
R38: Identity of the current opponent opponentID

Communicator

R39: Know if waiting opponent’s answer discard requests
from other users or requests from the opponent that were
generated nearly simultaneously

isAwaitingOpponentAnswer

R40: Watch network connection for health or expected
messages

connectionStatus

R41: Rank-ordered list of currently top scoring players playerRankList
Leaderboard

R42: When was the leaderboard last updated updateTime
R43: Network address of the relational database dBnetworkAddress DB Connection

Ivan Marsic Rutgers University 484

Association definitions

ssociations of domain concepts are derived in Table G-5. The Communicator creates the
Gameroom after receiving challenge acceptance from an opponent. The Communicator also

updates the gameboard with opponent’s moves. Note, however, that the Controller updates the
gameboard with local player’s moves. Because the Controller is associated with the Referee and
will be the first to hear about a finished match, the Controller will close the Gameroom when the
match is over.

We do not show that the Controller has an association with Match Invitation. Although the
Controller will receive the local user’s selection of the opponent to challenge, we assume that the
Controller will pass this request on to the Communicator that, in turn, will generate the Match
Invitation. The Communicator will inform the Controller about the network connection health.
Because this association between the Controller and the Communicator is complex and involves
different information exchanges, it is not named and shown in Table G-5.

A

Controller

isAwaitingOpponentAnswer
isInGameroom
isAwaitingOpponentMove
isNetworkDown

conveys-moves

updates

updates,
closes

Player

Interface

Player

InterfaceInterface

Referee

isLocalPlayerX
isLocalPlayerNext
isLocalMoveValid
winnerID

DatabaseDatabase

Communicator

opponentID
isAwaitingOpponentAnswer
connectionStatus

Leaderboard

playerRankList
updateTime

Leaderboard

playerRankList
updateTime

Match Invitation

inviter
invitee
status

Match Invitation

inviter
invitee
status

Player Profile

ID / name
score
status

Player Profile

ID / name
score
status

Player ListPlayer List

sends,
receives

Gameroom

boardMatrix
matchStatus

Gameroom

boardMatrix
matchStatus

Response Timer

duration

Response Timer

duration

updates

updates

contains

creates,
updates

Invite QueueInvite Queue

DB Connection

dBnetworkAddress

DB Connection

dBnetworkAddress

stores,
retrieves

updates

contains

usesconveys-outcome

Figure G-12: Domain model diagram for the distributed game of tic-tac-toe.

Appendix F User Interface Programming 485

We assume that only valid moves will be communicated across the network to the opponent’s
system. The Referee conveys the move validity back to the Controller, which, in turn, asks to the
Communicator to send it remotely. Therefore, the Referee and the Communicator are not directly
associated.

Note that the Controller is associated with Player�Profile to update the local player’s status. This
association is because the Controller learns from the Referee when the match finished, so it closes
the Gameroom, which makes the local player available for the next opponent. The Controller may
also receive requests from the player to make him “invisible.”

When considering the associations for Response Timer, we realize that we have not specified
whether the timer times the local user’s response or the opponent’s response. If former, it would
probably best be associated with the Controller. In this case, if the local user does not respond or
move a piece on the board within the response time limit, the Controller would decide that the
user lost the match and ask the Communicator to record it the database. However, we realize that
we also have a policy that the user who loses the network connection also loses the match, see
TTT-BP04 in Section G.3.4. This cannot be implemented if the local user has no connection to
the database. Therefore, we decide that the timer will time the opponent. As a result, Response
Timer is associated with the Communicator. If the Communicator does not receive the opponent’s
response before the timer expires, it will declare the local user winner and update the user’s score
in the database.

Table G-5: Deriving the associations of concepts listed in Table G-3.

Concept pair Association description Association name

Controller Referee
Controller conveys to Referee the local user’s move and
Referee conveys the evaluation outcomes to Controller

conveys-move,
conveys-outcome

Controller Gameroom Controller updates gameboard with local player’s moves updates, closes

Controller
PlayerProfile

Controller updates PlayerProfile to reflect the local
player’s current status

updates

Communicator
DB Connection

Communicator stores requests from the local user to
database (via DB Connection) and retrieves requests
from opponents

stores, retrieves

Communicator
Gameroom

Communicator creates Gameroom and updates
gameboard with opponent’s moves

creates, updates

Communicator
PlayerList

Communicator updates Player List with currently
available opponents

updates

Communicator
MatchInvitation

Communicator sends Match Invitation to a selected
opponent and receives invitations from other opponents

sends, receives

Communicator
InviteQueue

Communicator updates Invite Queue with invitations
received from other opponents

updates

Communicator
Response Timer

Communicator uses Response Timer to time opponent’s
response and implement RESPONSE TIME POLICY

uses

Referee
Communicator

Referee asks Communicator to update the local player’s
score if he won a match

update-score

The complete domain model diagram is shown in Figure G-12. The concept ornaments are
omitted for clarity, and the reader should refer to Figure G-11 for additional details.

Ivan Marsic Rutgers University 486

Traceability matrix

Figure G-13 shows how the system use cases map to the domain concepts. This matrix is derived
based on the assignment of responsibilities to concepts in Table G-3. The responsibilities, in turn,
originated from the use cases.

G.5.2 System Operation Contracts

Should be provided only for the operations of the fully-dressed use cases elaborated in Section
3.c), for their system operations identified in Section 3.d).

G.5.3 Mathematical Model

As with any strategy game, it helps to know some strategies to win the game of tic-tac-toe or at
least to force a draw. For example, the Os player must always respond to a corner opening with a
center mark, and to a center opening with a corner mark. Otherwise, the player who makes the
first move (the Xs player) will always have an advantage. Here is an example match:

1 2 3 4 5

16 16 16 16 1 4 16 16 16 4 16 2Max PW

31 31 31 20 1 4 27 23 27 4 31 2Total PW

UC1

UC2

UC3

UC4

UC5

UC6

16

4

7

1

1

2

Use
Case

PW

X

X X

X

XX

X

X

X

X

R
e

fe
re

e

R
e

sp
o

n
se

 T
im

e
r

In
v

ite
 Q

u
e

u
e

D
B

 C
o

n
n

ec
tio

n

L
e

a
de

rb
o

a
rd

C
o

n
tr

o
lle

r

P
la

ye
r

L
is

t

P
la

ye
r

P
ro

fi
le

M
a

tc
h

 I
n

vi
ta

tio
n

C
o

m
m

u
n

ic
a

to
r

In
te

rf
a

ce

G
a

m
er

oo
m

X

XX

X

X

X

X

X

X

Domain Concepts

X X

X X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure G-13: Traceability matrix mapping the use cases to domain concepts. (Continued
from Figure G-5 and continues in Figure X.)

Appendix F User Interface Programming 487

After the fifth move, the Xs player has sealed his victory. No matter where the Os player moves
next, the Xs player will win. Show that the Os player could have avoided this situation if his first
move was a corner mark.

Therefore, the player going second is always on the defensive and may never get a chance to win
when playing with a player that knows what he or she is doing. The Wikipedia page contains
more discussion on the game strategies (http://en.wikipedia.org/wiki/Tic-tac-toe).

To help make the game more fair, our system will always randomly designate the players to play
either Xs or Os and the players will not be allowed to choose their pieces (Section G.3.4). The
reader may wish to relax this constraint under certain scenarios. For example, for non-standard
versions of the game of tic-tac-toe, such as revenge or nine-board, or when both players achieve
certain expertise level (based on their standing on the leaderboard), the system would allow the
players to choose their pieces.

How We Did It & Plan of Work

The least important technique to our group, to our detriment, was effort estimation. This often
caused significant logistic problems because very little time was left to effectively collaborate.
There was always significant “bottlenecking” between stages of our project. In other words,
portions that are dependent on others cannot be completed until their dependencies are
sufficiently completed.

Irene says: My group habitually waited until the last minute to do their parts. I tried my best to
get my portions done as early as I could but when I was restricted by a “bottleneck” stage and
would attempt to go ahead and finish, the member would get very upset because they were afraid
of loosing ownership of their components.

Me says: My prior experience was only small programs. Analyzing
the system provided much better understanding of the software we
were expected to implement. It is hard to implement a program
when you don’t fully understand it. I believe that not everyone in
the team understood the operational model that I came up with for
the game and just went with it without voicing their opinions.
Then, when the time came to actually write the report on how it
worked, almost everyone in the team had a different opinion on
how it worked. Thus, several parts of the report did not really
match up at first. I had to revise a lot of parts to match what the
initial idea of the project represented, but I could not catch
everything as the report was fairly extensive and I already had
many responsibilities in the group as it was.

Irene says: This was due to miscommunication within our group
since a majority of our meetings were quick due to conflicts with
each member’s schedule. This issue led to a majority of individual
work until we have a meeting date to combine each individual
member’s work. This harshly reduced individual member’s work
quality since they were doing it based on any concepts and idea of
how the system should work during our group meeting.

Ivan Marsic Rutgers University 488

Myself says: The biggest challenge of working with a team was communication and work
distribution. It was hard to stay in touch, which was mostly due to our individual busy schedules.
This made it hard to properly distribute the work. I wasn’t always sure who was working on what,
so occasionally some of us would have each done the same part of the project. There were
definitely (and unfortunately) weak moments and bitterness that we had to face during situations
when we could not reach to a clear consensus on an idea or where one would feel short up to
one’s standards.

While much of the content of the reports was helpful, I found a lot of it tedious. It detracted from
the more important aspects like improving the application and marketing. The amount of planning
that had to go into the project felt like overkill for something of the tic-tac-toe game size,
however it did expose us to a myriad of techniques. Among the techniques we learned were
gathering and formulating a comprehensive set of requirements, deriving use cases, and
translating those into a domain model.

Me is a very bright individual, but he’s most concerned with the programming aspect of things.
He wasn’t the slightest bit interested in writing up reports. However, for the first report, after
Irene and I worked through what we had done and prepared it for submission, Me finally
appeared a few hours before submission, after not answering phone calls for days and pretty
much redid most sections of the report with what he felt was better for the project. Obviously, this
was good for the report, but it caused quite a hassle for Irene and me because we had to prepare a
final product to send you in a timely manner. Once we got our grade back, we realized that we
lost a lot of points for things that Me was assigned to do and never even did (mostly pertaining to
the Domain Analysis section). I wasn’t pleased, but I know the process isn’t perfect, so I just
sucked it up and knew I had to do better on the next reports.

G.6 Design of Interaction Diagrams

We know that software design cannot be gotten “right” first time around; we need iteratively to
refactor the design until it converges to a satisfactory quality or we run out of time. We start by
deriving an initial design (“first iteration”). Then we evaluate the initial design and introduce
some improvements.

G.6.1 First Iteration of Design Sequence Diagrams

Figure G-14 shows the main loop for the Communicator and Controller. The Controller
periodically accesses the central database to retrieve any messages for the local user. By default,
it needs to refresh the list of available players and the leaderboard. In addition, the local user
might have already challenged an opponent and is awaiting an answer. Alternatively, the local
player might have been challenged by a remote player. If the local player received a challenge but
does not respond within the response time, the Communicator will automatically bring up the
initial screen.

Appendix F User Interface Programming 489

In Figure G-14, the main loop breaks down the possible interactions well. The user can send out a
challenge, accept a challenge, or decline a challenge. The “forever” loop allows the system to
wait idle until the local or remote player decides to send an invitation.

opt

alt

alt

loop

: Controller : Communicator

startTimer()

: DB Connection

// for local player// for local player

[forever] retrieveMessagesForLocalUser()

invited := isChallengeReceived()

[isAwaitingOpponentAnswer() == true && answer == "accepted"]

display
showChallenge(opponent : Player)

[answer == "accepted"]
resetTimer()

recordMessageForOpponent("accepted")

// selects one if several received// selects one if several received

: Leaderboard: Player List

response(answer)

ref gameroom setup
(see sequence fragment in Figure 2)

Local user accepted the
challenge; system waiting
for Xs player to act

Local user accepted the
challenge; system waiting
for Xs player to act

[else] // challenge rejected or response timeout// challenge rejected or response timeout
resetDisplayToInitial()

PlayerPlayer

update()

[local player challenges an opponent]

challenge

ref player challenges an opponent
(see sequence fragment in Figure 3)

Local user challenged an
opponent; system waiting
for opponent’s response

[invited == true]

ref gameroom setup
(see sequence fragment in Figure 2)

Opponent accepted the
challenge; system waiting
for Xs player to act

recordMessageForOpponent("rejected")display

update()

Figure G-14: Sequence diagram for the main loop in the game of tic-tac-toe. See Figure G-15 and
Figure G-16 for the [ref] interaction fragments.

Ivan Marsic Rutgers University 490

Figure G-15 shows a fragment of the sequence diagram that executes when a challenged player
accepts the invitation. (It may be that either a remote opponent accepted the challenge by the
local user, or the local user accepted the challenge from a remote player, see Figure G-14.) The
Communicator first calls the method setLocalPlayerX() on the Referee. Recall from
Section G.3.4 that the player assignment to Xs and Os is performed randomly by the
Communicator that sends a match invitation. If the local user challenged a remote opponent, then
the local Communicator performed the assignment before sending the invitation. Alternatively, if
the local user accepted a remote challenge, then the local player’s designation was received in the
invitation. The Communicator creates a new Gameroom and asks the Controller to show it.

The Controller also resets the response timer for the opponent that might have been set when the
invitation was sent to an opponent (see Figure G-16).

alt

: Controller : Communicator

setAwaitingOpponentMove(true)

: Gameroom

«create»

: Referee

setLocalPlayerX(...)

showGameroom(localPlaysXs)

[isLocalPlayerX == false]

// for opponent// for opponent

startTimer()

[isLocalPlayerX == false]opt

[else]
startTimer()

// for local player// for local player

ref wait for local player’s move
(see sequence fragment in Figure 4)

ref wait for opponent’s move
(see sequence fragment in Figure 5)

Remote player
responded in time;
now it’s local player’s turn

Remote player
responded in time;
now it’s local player’s turn

Local user responded
in time with a valid move;
now it’s opponent’s turn

Local user responded
in time with a valid move;
now it’s opponent’s turn

// for opponent, because accepted challenge// for opponent, because accepted challenge

resetTimer()
display

Figure G-15: Sequence diagram for the gameroom setup in the game of tic-tac-toe. See the
[ref] interaction fragments in Figure G-17 and Figure G-18.

Appendix F User Interface Programming 491

If the local player is assigned Os, then the Controller starts the response timer for the opponent
and the local player is allowed only the following actions: view leaderboard, logout, or forfeit the
just started match. The remote player (in this case assigned Xs) can suggest a different version of
the tic-tac-toe game or move a piece on the board.

For the sake of simplicity, the initial design does not show the case when the players negotiate a
different version for tic-tac-toe. We will add this case in subsequent iterations.

In Figure G-18, in the method opponentMove(), the Referee implementation will use a
system timer to time the local player’s response. If the local player fails to respond within the
response time limit, he loses the match, the (local) gameroom is closed and the player is brought
to the initial screen.

: Controller : Communicator : DB Connection
invite :

Match Invitation

challenge

PlayerPlayer
«create»

challenge(opponent : Player)

// for opponent// for opponent

startTimer()

recordChallenge(invite)

setAwaitingOpponentAnswer(true)

Figure G-16: Sequence diagram for the local player to challenge an opponent to play a
match of the game of tic-tac-toe. This [ref] interaction fragment is part of the main loop
Figure G-14.

Ivan Marsic Rutgers University 492

: Controller : Referee

local move

: Communicator

ref wait for opponent’s move
(see sequence fragment in Figure 5)

ok := isValidMove(...)

Local user responded
in time with a valid move;
now it’s opponent’s turn

Local user responded
in time with a valid move;
now it’s opponent’s turn

Player

[isLocalMoveValid == true]opt

resetTimer()

show
result

sendMoveRemote(local-move)

: Gameroom

isOver := checkIfWins()

updateBoardMatrix(...)

opt

matchEnded(...)

[isOver == true]
updateLocalPlayersScore(...)

board := getBoardMatrix()

opt [ok == true]

// for local player// for local player

// for remote player// for remote player
startTimer()

Figure G-17: Sequence diagram for local player’s move in the game of tic-tac-toe. Compare
to Figure G-18 that shows the [ref] interaction fragment.

Appendix F User Interface Programming 493

G.6.2 Evaluating and Improving the Design

This section evaluates the above initial design and introduces some improvements. A key task in
this section will be to compile the responsibilities of classes from the initial design and look for
overloaded classes or imbalances in responsibility allocation. Further improvements will be
considered in Section G.9 by applying design patterns.

To better understand the system that we are designing, we draw this storyboard for the game.

: Controller: Referee

retrieve
opponent move

: Communicator

ref wait for local player’s move
(see sequence fragment in Figure 4)

Remote player
responded in time;
now it’s local player’s turn

Remote player
responded in time;
now it’s local player’s turn

Database

startTimer()

: Gameroom

isOver := checkIfWins()

updateBoardMatrix(...)

alt [isOver == true]
matchEnded(...)

board := getBoardMatrix()

opt if match is not over

opponentMove(...)

resetTimer()

[else]

// for local player// for local player

// for remote player// for remote player

Figure G-18: Sequence diagram for remote player’s move in the game of tic-tac-toe.
Compare to Figure G-17 that shows the [ref] interaction fragment.

Ivan Marsic Rutgers University 494

Player Remote
Player

Game Board

Wanna play
tic-tac-toe?

Yay!

Player Remote
Player

Game Board

How about I play
Xs and we play
the revenge?

OK!

Player Remote
Player

Game Board

Roger
that!

I moved “X”
to (x1, y1)

Move “X”
to (x1, y1)
Move “X”
to (x1, y1)

Player Remote
Player

Game Board

Move “O”
to (x2, y2)
Move “O”
to (x2, y2)

Got it!I moved “O”
to (x2, y2)

Player Remote
Player

Game BoardGame Board

Network

Central Database

Communicator Communicator

Controller Controller

Client 1 Client 2

Our system-to-be must implement the virtual gameboard, and support players’ interaction with
the gameboard and communication with one another. We could have had a single Controller to
orchestrate the work of other objects, but that would make the Controller too complex because of
too many responsibilities. Our initial design offloads at least some responsibilities to the
Communicator. Here is what these to key objects are doing:

Controller:

 Allowing the local player to interact with the local gameboard

 Allowing the local player to interact with the remote gameboard (via the Communicator)

 Allowing the local player to communicate with the remote player (via the Communicator), such
as challenge, negotiate version, etc.

Communicator:

 Allowing the remote player to interact with the local gameboard (via the Communicator)

Appendix F User Interface Programming 495

 Allowing the remote player to communicate with the local player (via the Controller), such as
challenge, negotiate version, etc.

 Conveying the local player’s actions (received from the Controller) remotely

This allocation still gives many responsibilities to each of these objects, but the question is how to
offload these responsibilities to other objects without making the design even more complex.
There are different ways to subdivide the communication, such as

 “lobby communication” that takes place before a match starts (represented by the top row in the
above storyboard), and

 “in-game communication” during the match (represented by the middle row in the above
storyboard).

However, it is not clear what structural improvement is gained by such division.

For example, if Communicator were to be divided, then there would be an overhead of multiple
objects communicating with each other to accomplish what is not accomplished by
Communicator alone.

On the other hand, we may consider splitting the Controller into the part that handles the local
player’s moves and the part that displays the remote player’s moves. This intervention is better
motivated as part of introducing the Model-View-Controller design pattern, as explained later.

One of the problematic aspects of the given design is it being based on the central-repository
architectural style. The Communication must periodically poll the database for updates relevant
to the local player, which may be inefficient. In addition, because of a finite interval between
polls, messages may be delivered with a delay. To minimize the response latency, each client
would need to poll the database very frequently, say twice per second. If there are many users in
the system, this frequent polling will introduce high load on the database server and will require a
powerful computer to cope. Finally, polling when noting new happens wastes network
bandwidth.

Game
Server

Client
1

Client
2

Client
N

send info

«Publisher»
Game
Server

publish info

publish info

«Subscriber»
Client 1

Client 2

«Subscriber»
Client N

Figure G-19: Client-Server architectural style for the distributed game of tic-tac-toe, where
the clients (“game consoles”) connect to the central server. When a client wishes to send
information to other clients, it first sends it to the server (left figure), which publishes this
information to appropriate clients (right figure).

Ivan Marsic Rutgers University 496

An alternative to central repository is to have the Client-Server architectural style, where the
clients (“game consoles”) connect to the server (Figure G-19). Every time a new player logs in
the system, the server would notify all players already logged in about the new player. Therefore,
server “pushes” or “publishes” the relevant information instead of having the clients to “pull” or
“poll” the database for information. Similarly, other relevant information could be published to
clients. This design can be considered a distributed Publish-Subscribe. Different player groups (in
the case of tic-tac-toe it is player pairs) will be organized as different publishers and subscribers.

This architectural style avoids polling the database. However, now we need a game server that is
always running and awaiting new clients to connect. Another architectural style that the reader
might wish to consider is Peer-to-Peer, where the player clients directly communicate with each
other, without server mediation.

Based on design sequence diagrams from the first iteration (Section G.6.1), we can compile the
lists of responsibilities for key objects in the system. As shown in Figure G-20, Communicator
has large number of methods (doing responsibilities that let other objects tell it what to do) and
even large number of calling responsibilities, to tell other objects what to do. The former
characteristic may indicate low cohesion. The latter characteristic indicates high coupling.

The following table summarizes the responsibilities of different objects in our preliminary design:

Communicator

opponentID : PlayerInfo
isAwaitingOpponentAnswer : boolean
connectionStatus : Object

+ challenge(opponent : PlayerInfo)
+ sendMoveRemote(...)
+ updateLocalPlayersScore(score : int)
+ response(answer : string)

«create» MatchInvitation
«create» Gameroom

 DB_Connection.retrieveMessagesForLocalUser()
 DB_Connection.recordMessageForOpponent()
 DB_Connection.recordChallenge(invite : MatchInvite)
 Controller.showChallenge(opponent : PlayerInfo)
 Controller.resetDisplayToInitial()
 Controller.showGameroom(localPlaysXs : boolean)
 Referee.setLocalPlayerX(...)
 Referee.opponentMove(...)
 PlayerList.update()
 Leaderboard.update()

TTT-BP01: response time policy
TTT-BP03: one match at a time
TTT-BP04: network failure equals forfeited match
TTT-BP05: if 1 invitations, select one randomly
TTT-BP06: discard invitations during match
TTT-BP08: discard version request while awaiting answer

knowing

doing

creation

calling

business
rules

Communicator list of responsibilities:

Figure G-20: List of responsibilities for the Communicator class.

Appendix F User Interface Programming 497

Responsibility
type

Controller Communicator Referee Gameroom
DB
Connection

Player
List

Invite
Queue

Match
Invitation

Leader
board

Knowing 4 3

Doing 6 4

Creation – 2

Calling 3 10

Business
policies

4 6

TOTAL 17 25

As seen, Communicator is assigned disproportionally large number of responsibilities.

Some smaller issues with the initial design include:

● The Gameroom has the attribute matchStatus, but the Referee is given a method checkIfWins()
which whether a move wins and returns a Boolean value isOver (see Figure G-17 and Figure
G-18). It appears that the responsibility of computing and memorizing the match status is spread
across two different objects (Gameroom and Referee), which indicates poor cohesion of these
objects.

● The Communicator is assigned all functions related to communicating with the remote player,
except one, which is saving the score of the local player after a match is finished. See Figure
G-17 where the Referee calls updateLocalPlayersScore() on Communicator. One may
argue that Communicator should take all responsibilities for database access. However, in this
case it is not clear that there is any advantage of passing this information through Communicator
instead of having the Referee directly call DB Connection. The advantage of the latter solution
would be that it increases Communicator’s cohesion in the sense that it would then deal only with

Controller

isAwaitingOpponentAnswer : boolean
isInGameroom : boolean
isAwaitingOpponentMove : boolean
isNetworkDown : boolean

+ challenge(opponent : PlayerInfo)
+ showChallenge(opponent : PlayerInfo)
+ showGameroom(localPlaysXs : boolean)
+ resetDisplayToInitial()
+ localMove()
+ matchEnded(...)

 Communicator.response(answer : string)
 Communicator.sendMoveRemote(...)
 Referee.isValidMove(xCoord : int, yCoord : int)

TTT-BP01:response time policy
TTT-BP02: num. pending invitations 1
TTT-BP03: one match at a time
TTT-BP07: version negotiation protocol

knowing

doing

creation – none

calling

business
rules

Controller list of responsibilities:

Figure G-21: List of responsibilities for the Controller class.

Ivan Marsic Rutgers University 498

communicating with the remote player. This is particularly important if in the future the system
will be extended with new features that would make the database interaction more complex.

● In Figure G-17, when the local player moves a piece this action is immediately processed and,
if valid, forwarded to the opponent. An alternative is to allow the player to “preview” his or her
planned move. Only when the player confirms the move, e.g., by clicking the button “Apply”
would the move be committed and sent to the opponent.

G.7 Class Diagram and Interface
Specification

______ TO BE COMPLETED ______

How We Did It & Plan of Work

We underestimated how long it would take to create the system designs. To add to the frustration,
the UML diagramming software used to generate the figures in the report. was very unwieldy.

Working with a team has been a
unique experience. We learned about
weaknesses and strength of certain
team members and how to create an
efficient distribution of work. The
benefits from working in a group
include the ability to bounce ideas
back and forth to create a larger, more
coherent idea and knowing there is
someone to help you when you don’t
know what to do or are stuck with a
part of the project along with helping
others.

Myself says: A technique that was
useless to our group was the concept of
project estimation, so we often failed
to meet certain planned milestones. We
simply accomplished more in a short
span to compensate for failing to meet

Working on a BDUF …

Should I be talking
to my customer
instead?

Working on a BDUF …

Should I be talking
to my customer
instead?

Should I be talking
to my customer
instead?

Appendix F User Interface Programming 499

a certain milestone at a date. However, I understand the use of milestones is very important in the
workplace as well as deadlines. Many products end up sacrificing quality when having to rush to
make up what they failed to accomplish within a certain time frame.

G.8 Unit Tests and Coverage

G.8.1 Deriving the Object States

To derive the object states, recall that an object state is defined as constraints on the values of
object’s attributes. From Figure G-11, we see that there are three objects with “doing”
responsibilities in our system: Controller, Communicator, and Referee. We need to determine
their states because objects with “knowing” responsibilities are essentially passive information
containers. As such, they are unlikely to contain conditional logic statements; they will most
likely contain simple accessor methods for getting or setting attribute values. A possible
exception is the Gameroom object, but we will not consider it for now. Objects DB Connection
and Interface are «boundary» objects that interact with external actors and will need to be tested
when the external actors will be available, during design and implementation.

Consider the attributes of the Controller, which are concerned with constraining the user’s actions
while awaiting the opponent’s response. When awaiting the opponent’s response, the system
should disallow all actions except viewing the leaderboard or logout. The Controller essentially
needs to implement the operational model shown in Figure G-6. We define these states of the
Controller:

Allowing Unconstrained Activity — user can perform any action allowed in the given context

Constraining Activity — user’s actions are constrained

logout /

response-received,
network-restored,
response-timeout /

challenge, suggest-version,
network-outage,
move-a-piece /

Coarse Controller state diagram:

Logging outAllowing Unconstrained Activity

Constraining Activity

logout /

view-leaderboard /

view-leaderboard /

logout /

response-received,
network-restored,
response-timeout /

challenge, suggest-version,
network-outage,
move-a-piece /

Coarse Controller state diagram:

Logging outAllowing Unconstrained Activity

Constraining Activity

logout /

view-leaderboard /

view-leaderboard /

We realize that it is difficult or impossible to define precisely the above coarse states by attribute
constraints. For example, how to know when the setup is completed and show the game board?
How to know that players do not wish to negotiate a different game version from the default one?

Ivan Marsic Rutgers University 500

Given these difficulties, we decide that we need a refined state diagram for the Controller.
Because the Controller attributes are all Boolean variable, we can represent the states using this
logical circuit (also see Figure G-22):

1: Challenge Enabled

4: Board Move Enabled

5: Board Move Disabled

6: Match Finalizing

7: Logging out

2: Activity Disabled

isAwaitingOpponentAnswer

isAwaitingOpponentMove

isInGameroom

isNetworkDown

3: Version Counteroffer

Note that we assume that if the user is not in the gameroom, he or she cannot be awaiting
opponent’s move, so we do not specify this attribute in such states. Similarly, if
isAwaitingOpponentMove is true, then we do not need to ask if isInGameroom. As hinted in
Section G.5.1, here we realize that the attribute isInGameroom is necessary and the different
stages of the game setup could not be distinguished without introducing this attribute.

The above logical circuit is somewhat insufficient for representing the Controller states in the
sense that state 7: Logging out overlaps with several other states in attribute values, such as states
1:Challenge Enabled and 6: Match Finalizing. The difference is that while 7: Logging out the
local system is blocked for user input and will shut down after a needed “housekeeping.”

The Controller state machine diagram is shown in Figure G-22. Note the diamond-shaped choice
pseudostate on the transition from state 2: Activity Disabled for the “response-received” event. To
avoid clutter, we use the same pseudostate for the transition from state 1: Challenge Enabled
upon receiving an invitation/challenge. This pseudostate is part of UML notation used to
emphasize that a Boolean condition determines which transition is followed. In our case, the
Controller transitions to state 4: Board Move Enabled if the local player is assigned Xs;
otherwise, the local player is assigned Os and the Controller transitions to state 5: Board Move
Disabled. The Controller states are defined in the following table:

Appendix F User Interface Programming 501

State of Controller Definition

1: Challenge
Enabled

NOT (isAwaitingOpponentAnswer OR isInGameroom OR
isAwaitingOpponentMove OR isNetworkDown)

Description: This is the initial state: the user is allowed only to challenge an opponent, view leaderboard, or
logout; the user may also passively wait to receive a challenge from a remote user
2: Activity Disabled isAwaitingOpponentAnswer OR isNetworkDown

Description: During the gameroom setup, the user enters this state after challenging an opponent or after
suggesting a different game version
3: Version
Counteroffer

isInGameroom AND isAwaitingOpponentAnswer AND NOT
(isAwaitingOpponentMove OR isNetworkDown)

Description: While awaiting an answer to a game version offer, the local user receives a different version
counteroffer
4: Board Move
Enabled

isInGameroom AND NOT (isAwaitingOpponentAnswer OR
isAwaitingOpponentMove OR isNetworkDown)

Description: In the gameroom, the user is allowed to move a pieces on the board or to suggest a different
game version, provided that the guard condition is met (no move has been made and the board is still
empty); once the match starts, the game version cannot be changed
5: Board Move
Disabled

isInGameroom AND isAwaitingOpponentMove AND NOT
(isAwaitingOpponentAnswer OR isNetworkDown)

Description: In the gameroom, the user has made a move and is awaiting the opponent’s move.
6: Match Finalizing NOT (isInGameroom OR isNetworkDown)

re
sp

on
se

-r
ec

ei
ve

d

response-timeout,
counteroffer-rejected /

ch
al

le
ng

e
/

logout /

network-outage /

Controller state diagram:

ne
tw

or
k-

re
st

or
ed

 /

any state except
Logging-out

suggest-version
[board-empty] /

logout /

7: Logging out

2: Activity Disabled

1: Challenge Enabled

m
ov

e-
a-

pi
ec

e
/

match-end-detected,
response-timeout,
forfeit /

op
p

on
en

t-
m

ov
ed

 /

user-acknowledged,
response-timeout /

match-end-detected,
response-timeout,
forfeit /

5: Board Move Disabled

lo
go

ut
 / 6: Match Finalizing

entry: start timer
do: countdown
exit: final housekeeping

[lo
ca

l-p
la

ys
-O

s]
 /

ch
al

le
ng

e-
ac

ce
pt

ed

[lo
ca

l-p
la

ys
-X

s]
 /

counter-offered
[isInGameroom] /

re
sp

on
se

-t
im

eo
ut

 /

3: Version Counteroffer

entry: start timer
do: countdown

3: Version Counteroffer

entry: start timer
do: countdown

co
un

te
ro

ff
er

ac

ce
pt

e
d

4: Board Move Enabled

entry: start timer
do: countdown

4: Board Move Enabled

entry: start timer
do: countdown

Figure G-22: State machine diagram for the Controller class of the game of tic-tac-toe. Note
that transition actions are omitted, but at some point will need to be specified.

Ivan Marsic Rutgers University 502

Description: The system detected a match end (either “win” or “draw”) or one of the players forfeited the
match; the system signals the match end and waits for player’s acknowledgement, erases the screen, and
closes the gameroom and brings players back to the main screen; network connection is required to store
the updated scores for both players in the database
7: Logging out NOT isInGameroom
Description: Logout is simple because any scores from played matches would have been already stored

In Figure G-22, the event “challenge-accepted” can occur in state 1: Challenge Enabled if the
local user accepts a challenge from a remote user, and in state 2: Activity Disabled if a remote
opponent accepts a challenge by the local user. Both events transition the Controller to state 4 or
state 5, depending on whether the local user is assigned Xs or Os, respectively. This decision is
indicated by the guard conditions emanating from the diamond-shaped choice pseudostate.

In state 3: Version Counteroffer and state 4: Board Move Enabled, the system is timing the local
user for response, which may appear redundant because the remote opponent’s Communicator
will also time our user’s response. The reason for doing this is to know when the remote system
will detect response timeout and declare the opponent winner, so that the local system can
automatically close the gameroom and default to state 1: Challenge Enabled. On the other hand,
the response-timeout event in state 2: Activity Disabled and state 5: Board Move Disabled will be
generated by the local Communicator, which is timing the remote opponent’s response.

Note that only the Xs player can start game-version negotiation, because the transition labeled
“suggest-version [board-empty] /” emanates from state 4: Board Move Enabled. We make this
choice to avoid further complexity in the system. For example, if we allowed the Os player to
suggest a version, the following scenario could occur. Assume that the local user is assigned Xs
and he makes a move, but at the same time, the opponent (being assigned Os and awaiting a
move) suggests a different version. A version offer will arrive while the Xs player is awaiting the
Os move and then we need to decide how to handle such a scenario. Instead, we do not allow the
Os player to make version offer, but he can still make a counteroffer after receiving a version
suggestion. For this purpose, we need slightly to modify the business rule TTT-BP07 defined in
Section G.3.4.

At this point, it becomes clear that the Controller is very complex and may need to be split into
several objects. One may suspect that it is because of being assigned too many responsibilities,
but this was not apparent in Section G.5.1, when the responsibilities were assigned. For now, we
leave this issue aside, but we keep in mind that the Controller will need special attention.

he Communicator deals with communication with other players. It starts in the Monitoring
state, where is monitoring the network health and retrieving other information of interest

from the database, such as the latest player availability list and the leaderboard.

The Communicator states are defined as follows (see Figure G-23):

Communicator State Definition

1: Monitoring NOT isAwaitingOpponentAnswer

Description: The initial and default state of monitoring the network health and relevant database updates
2: Waiting For Response isAwaitingOpponentAnswer AND NOT (connectionStatus = "disconnected")

Description: Waiting for response from the opponent; response timer counting down

T

Appendix F User Interface Programming 503

3: No Response Received isAwaitingOpponentAnswer AND NOT (connectionStatus = "disconnected")
Description: Response timer timed out before receiving the opponent’s response; do the necessary
“housekeeping” and upon completion transition to the default monitoring state
4: Connection Lost connectionStatus = "disconnected"
Description: Logout is simple because any scores from played matches would have been already stored

Although we assume that state 1: Monitoring is the initial state, the network connection may be
already down at the time when the user logged in. In this case, the system will immediately
transition to state 4: Connection Lost.

State 2: Waiting For Response and state 3: No Response Received are indistinguishable in terms
of attribute values. The difference is that in state 2: Waiting For Response there is also response
timer counting down.

Note that one might consider introducing a state of Communicator for situations when it receives
a remote request and the local user is expected to respond within a response timeout. However,
because this is already responsibility of the opponent’s Communicator, we decide against
duplicating the responsibilities. Remote requests are shown explicitly as self-transitions on all
states in Figure G-23 (except for state 4:Connection Lost), because there are actions associated
with these events that must be performed. We assume that the Communicator will not deal with
local requests in state 4:Connection Lost because the Controller will know that the network is
down and will not issue requests to the Communicator.

The Referee essentially makes three types of decisions:

 Is the local player next to move?

 Is the local player’s last move valid?

Communicator state diagram:

ne
tw

or
k-

ou
ta

ge
 /

ne
tw

or
k-

re
st

or
ed

 /

re
sp

on
se

-t
im

eo
ut

 /

local-request /

network-outage /

response-received /

network-outage /

(completion tra
nsitio

n)

request-received /

3: No Response Received

do: housekeeping

request-received /

1: Monitoring

do: periodic probes

request-received /

2: Waiting For Response

entry: start timer
do: countdown

4: Connection Lost

do: periodic probes

Figure G-23: State diagram for the Communicator class of the game of tic-tac-toe.

Ivan Marsic Rutgers University 504

 Is the match finished because three-in-a-row or some policy invocation?

The turn decision is decided for the first move based on whether the local player is assigned Xs or
Os; for subsequent moves, the players alternate by turns.

The validity decision is based on the rules of the game of tic-tac-toe. If the move is invalid, the
player is given another chance to move.

When match end is detected, no additional moves are allowed (unless it is the revenge version of
tic-tac-toe), and the system needs to do some “housekeeping” activities before closing the
gameroom. The Referee state diagram is shown in Figure G-24. The initial state is 1: Opponent’s
Turn, because the attribute isLocalPlayerX is by default initially set as FALSE. This attribute may
be set to TRUE by random assignment of Xs or Os at the start of a match and does not change the
value during a match; therefore, it is not considered for defining the Referee sates. Recall that in
Section G.5.1 we decided that responsibility R8 in Table G-3 (randomly assigning Xs and Os) is
performed by the Communicator, when an opponent is challenged.

The Referee states are defined as follows (see Figure G-24):

State of Referee Definition

1: Opponent’s Turn NOT isLocalPlayerNext

Description: The opponent is allowed to move a piece on the board; the local user is blocked
2: Local User’s Turn NOT isLocalPlayerNext
Description: The local user is allowed to move a piece on the board; the opponent is presumably blocked
3: Match Ended gameroom reference equals nil
Description: Terminal state of a match; the gameroom is closed and Referee is waiting for a new match

Note that Referee’s state 3: Match Ended (Figure G-24) is linked to Controller’s state 6: Match
Finalizing (Figure G-22), and in most cases the Referee will cause the event that will make the
Controller transition into its state 6.

re
m

ot
e-

m
ov

e
/

Referee state diagram:

local-move [three-in-a-row],
forfeit, response-timeout

network-outage / final-housekeeping
2: Local Users Turn

1: Opponents Turn

lo
ca

l-m
ov

e
/

invalid-move /

local-move /

remote-move [three-in-a-row],
forfeit, response-timeout

network-outage / final-housekeeping

se
t-

lo
ca

l-p
la

ys
-X

s
/

3: Match Ended

Figure G-24: State diagram for the Referee class of the game of tic-tac-toe.

Appendix F User Interface Programming 505

G.8.2 Events and State Transitions

The events and legal transitions between the states of several objects are shown in Figure G-22 to
Figure G-24. By reading these figures, one can see that only certain state sequences are possible.

Legal state sequences for the Referee (Figure G-24):

1, 3 (local user is by default Os player)
{1, 2}, 3
1, {2, 1}, 3
1, 2, 3 (local user is set as Xs player)
1, {2, 1}, 3
1, 2, {1, 2}, 3

where the curly braces symbolize an arbitrary number of repetitions of the enclosed states. For
example, the second line says that a sequence of Referee states such that an arbitrary number of
repeated transitions from state 1: Opponent’s Turn to state 2: Local User’s Turn, back to state 1,
etc., ending with state 3: Match Ended is legal for the Referee.

Legal state sequences for the Communicator (Figure G-23):

1, 4, 1, ...
1, 2, 1, ...
1, 2, 3, 1, ...
1, 2, 4, 1, ...
1, 2, 3, 4, 1, ...

Because the Communicator does not have a terminal state, none of the sequences is finished.

Legal state sequences for the Controller (Figure G-22) are a bit more complicated to determine.
We start by defining the following state sub-sequences:

A: {1,2} local player unsuccessfully challenges different opponents
B: A,4 an opponent accepts and local player is assigned Xs
C: A,5 an opponent accepts and local player is assigned Os
D: B,2 local player is assigned Xs and players are negotiating game version
E: D,3,4 different game version agreed, local player is Xs
F: D,3,5 different game version agreed, local player is Os
G: {4,5} sequence of board moves, starting with the local player
H: {5,4} sequence of board moves, starting with the opponent
I: 6,1 match finalizing
J: 4,I match finished after the local player moved
K: 5,I match finished after the opponent moved

We use the above sub-sequences to compose the following composite sequences:

X: A,1 | D,1 | D,3,1 | W,I | B,K | C,J | B,H,K | C,G,J
W: B | B,H | C | C,G | E | E,H | F | F,G
Y: W | W,6 | D | Z | Z,6
Z: B,5 | C,4 | B,H,5 | C,G,4

Ivan Marsic Rutgers University 506

where the vertical line | symbolizes the “or” operation. “X” represents all legal sequences that
lead to state 1, after visiting at least one other state. “W” represents all legal sequences that lead
to state 4: Board Move Enabled, where it is the local player’s turn. “Y” represents all states in
which a network failure may occur and the Controller will next transition to state 2: Activity
Disabled.

Finally, legal state sequences for the Controller are as follows:

1,7 | A,7 | X,7 | X,2,7 | Y,2,7 | Y,2,X,7 | Y,2,X,2,7

G.8.3 Unit Tests for States

Ideally, the unit tests should check that the object exhibits only the legal sequences of states and
not the illegal state sequences. This may be feasible for simple state machines, such as that of the
Referee (Figure G-24). However, the Controller has potentially infinite number of both legal and
illegal state sequences, as seen in Section G.8.2. This is why we take a practical approach of
covering all states at least once and all valid transitions at least once. We start by writing unit
tests to cover all identified states at least once (i.e., each state is reached in at least one test case).

In Section G.8.1, we decided that objects with “knowing” responsibilities have trivial states
because these objects are unlikely to contain conditional logic statements. Testing these objects is
simple by calling their accessor methods for getting or setting attribute values. Objects DB
Connection and Interface are «boundary» objects that interact with external actors and their
testing plan will be made when their actors will be available, during design and implementation.
Based on Figure G-11, we will describe the plan for unit testing of the three objects with “doing”
responsibilities: Controller, Communicator, and Referee.

We start with the Referee because it has the simplest state machine (Figure G-24) and has a
dependency (or, association) only with the Controller and Communicator (see Section G.5.1). By
examining Referee’s and Controller’s responsibilities, we conclude that the Referee will likely be
called by the Controller, not the other way around. The Referee responsibilities include: “Referee
asks Communicator to update the local player’s score if he won a match.” Therefore, we will
need only one stub for the Referee unit testing: the Communicator Stub. We examine the legal
state sequences in Section G.8.2 to determine which sequences will cover all identified states at
least once. The simplest sequence is for the case when the local user is set as Xs player: 1, 2,
3, which covers all Referee’s states.

Assuming that we will be using the Java programming language and JUnit as our test framework,
here is a pseudocode for a test case that checks if the Referee correctly transitions to state 2:
Local User’s Turn when the local user is assigned to play Xs.

Listing G-1: Example test case for the Referee class.
public class RefereeTest {
 // test case to check that state 2 is visited
 @Test public void
 setLocalPlayerX_opponentsTurn_toLocalUsersTurn() {

Appendix F User Interface Programming 507

 // 1. set up
 Referee testReferee = new Referee(/* constructor params */);

 // 2. act
 testReferee.setLocalPlayerX(true);

 // 3. verify
 assertEqual(testReferee.isLocalPlayerX(), true);
 assertEqual(testReferee.isLocalPlayerNext(), true);
 }
}

Recall the notation for the test case method in Listing G-1 (see Section 2.7.3):

methodName_startingState_expectedResult
1. Set up

2. Act

3. Verify

methodName_startingState_expectedResult
1. Set up

2. Act

3. Verify

In Listing G-1, the tested method is the Referee method setLocalPlayerX(), the object is
starting in state 1: Opponent’s Turn, and the expected result is that the Referee will transition to
state 2: Local User’s Turn. Thus the test case method name
setLocalPlayerX_opponentsTurn_toLocalUsersTurn().

State transitions occur because of events. Events are conveyed to objects by calling their methods.
This is why we need to design unit test cases to test if methods are causing proper state
transitions. We know that methods will be derived at the design stage, so at this point we will
guess what methods will need to do and given them names. The Referee will be told when the
players make moves and its key responsibilities stated in Section G.5.1 (Table Table G-3) are:
prevent invalid moves, detect match ending (“win” or “draw”), and apply the RESPONSE TIME

POLICY. Based on the design of interaction diagrams (Sections G.6 through G.???) and, based on
this design, we know that the Referee will need the following methods:

public interface Referee {

 // sets attributes isLocalPlayerX and isLocalPlayerNext

 public void setLocalPlayerX(boolean localPlaysXs);

 // arbitrates local player's move

 public boolean isValidMove(int xCoordinate, int yCoordinate);

 // notifies about opponent's move; sets timer for local user

Ivan Marsic Rutgers University 508

 public void opponentMove(int xCoordinate, int yCoordinate);

}

Here we realize that we missed one association in Figure G-12: the Referee will retrieve the board
state from the Gameroom to check for valid moves and update it accordingly. Another missed
association is between the Referee and the Player, because the Referee uses the Player object
argument to invoke the Controller’s method matchEnded(), as seen below.

In the method opponentMove(), the Referee implementation will use a system timer to time
the local player’s response. If the local player fails to respond within the response time limit, he
loses the match, the (local) gameroom is closed and the player is brought to the initial screen.

The Referee will need to call the following methods on the Controller:

public interface Controller {

 // notification that local player did not respond in time

 public void localPlayerUnresponsive();

 // notification that the match ended and who won, if any

 public void matchEnded(Player winner);

}

The Referee will need to call the following methods on the Communicator:

Tester

RefereeTestRefereeTest

Player

ID
score
status

Player

ID
score
status

winnerID

Referee

isLocalPlayerX : boolean
isLocalPlayerNext : boolean
isLocalMoveValid : boolean

+ setLocalPlayerX(localPlaysXs : boolean)
+ isLocalPlayerX(): boolean
+ isLocalPlayerNext() : boolean
+ isLocalMoveValid(int xCoord, int yCoord) : boolean
+ getWinnerID() : Player
– startTimer()
– resetTimer()
– checkIfWins()

Communicator

+ updateLocalPlayersScore(score : int)

Communicator

+ updateLocalPlayersScore(score : int)

Controller

+ localPlayerUnresponsive()
+ matchEnded(winner : Player)

Controller

+ localPlayerUnresponsive()
+ matchEnded(winner : Player)

Test driver

Class under test

Test stubs

testReferee

Gameroom

+ getBoardMatrix() : Array
+ updateBoardMatrix(x : int, y : int)
+ setMatchStatus(status : string)

Figure G-25: Test driver and stubs for testing the Referee class of the game of tic-tac-toe.

Appendix F User Interface Programming 509

public interface Communicator {

 // notification that local player did not respond

 public void updateLocalPlayersScore(int score);

}

The complete arrangement for testing the Referee class is shown in Figure G-25. Listing G-2
shows two test cases that cover all three states of the Referee. For the second test case, we prepare
the game board so that the next move of the local player (assuming she plays Xs) will result in a
three-in-a-row board configuration.

Listing G-2: Test cases for the Referee class.
public class RefereeTest {
 // test case checks that state 2 is visited (copied from Listing G-1)
 @Test public void
 setLocalPlayerX_opponentsTurn_toLocalUsersTurn() {

 // 1. set up
 Referee testReferee = new Referee(/* constructor params */);

 // 2. act
 testReferee.setLocalPlayerX(true);

 // 3. verify
 assertEqual(testReferee.isLocalPlayerX(), true);
 assertEqual(testReferee.isLocalPlayerNext(), true);
 }

 // test case to check that state 3 is visited from state 2
 @Test public void
 isLocalMoveValid_localUsersTurn_matchEnded() {

 // 1. set up
 Player localPlayer = new Player(...);
 Gameroom gameroomStub = new Gameroom(...);
 Referee testReferee = new Referee(localPlayer, gameroomStub, ...);
 testReferee.setLocalPlayerX(true);
 gameroomStub.updateBoardMatrix(0, 0, "X");
 gameroomStub.updateBoardMatrix(0, 1, "O");
 gameroomStub.updateBoardMatrix(1, 1, "X");
 gameroomStub.updateBoardMatrix(1, 0, "O");

 // 2. act
 boolean ok = testReferee.isLocalMoveValid(2, 2);

 // 3. verify
 assertEqual(ok, true);
 assertEqual(testReferee.isLocalPlayerX(), true);
 assertEqual(testReferee.isLocalPlayerNext(), false);
 assertEqual(testReferee.getWinnerID(), localPlayer);
 }
}

Ivan Marsic Rutgers University 510

I leave it to the reader to write the unit test cases for the Controller and Communicator.

G.8.4 Unit Tests for Valid Transitions

Here we need to write the unit tests to cover all valid transitions at least once. Figure G-24 in
Section G.8.1 shows that there are seven valid transitions between the Referee’s three states. We
need to design test cases that will cause the Referee to cover all seven transitions.

How We Did It & Plan of Work

We had already written about 100 pages of documentation on exactly what our program was
going to accomplish and exactly how it was going to do each task. But because the programming
languages were new to us, we didn’t always follow the plans that we wrote.

Me says: Essentially, by far the most difficult and frustrating aspect was keeping everyone on
track and working together. This heavily restricted the amount and degree of work that our group
produced. Even at this point, there is still coding that people were supposed to do that has not
been shared with me so it is hard to determine what they will decide to implement because it
never seems to be what we have agreed on. I know that situations can always be worse but I
really feel that at almost every point, I faced an undue amount of frustrating uncertainty about the
state of our work.

Myself says: The second report rolled around and we knew we had to get things done. Once
again, Irene and I started sending emails about starting the report. We started the report and once
again Me was like a ghost. He disappeared and reappeared towards the very end of the
submission process, going crazy and fixing up a number of different things as well as adding
additional diagrams and text to the report. Once again, good, but very annoying timing and not
convenient when Irene and I would like to get things ahead of time.

Me says: I didn’t feel as though any of the concepts learned were not helpful in advancing my
knowledge of software development because they were all useful in the production and logical
creation of software. Although this may be true, I found that many of these software engineering
concepts are tedious and take a lot of time. Some of them take more time than they are worth in
my opinion. For example, OCL Contracts are useful in showing all of the preconditions,
postconditions, and invariants; however, they take a lot of time to enumerate and write, simply
when code for the software can be written with these invariants in mind. In a sense, there are
other principles that are more useful that also provide this information.

We realized that our project required a strong understanding of network protocols, which at the
start of the semester none of us was familiar with and had to quickly learn. Personally, the biggest
challenge for Myself was learning to code with multiple new languages in such a short span of
time.

There wasn’t always an opportunity for every group member to contribute evenly and when it
came to spreading the work equally or giving it to the fastest coder, we often chose the latter
route.

Myself says: Me is a very advanced programmer that knows a wide variety of programming
languages and started to get even more cocky (like this much wasn’t enough!) when the time

Appendix F User Interface Programming 511

came to implement the project. He was, obviously, was very excited to get working on things
related to the demo because he could show off his programming skills.

Me says: Irene and I spent time in the computer lab working on the demo. Myself showed up at
the lab and sat there playing his Playstation portable while Irene and I were coding. Myself
eventually left after doing nothing, and later reappeared to “check in on us” and just sat there for
a couple minutes, observing what we were doing and left… effectively doing nothing.

We expected everything would work well together when put together. But, when we put all
components together nothing worked, it was also due to our lack of experience on building large
software. We didn’t write out the exact detailed specification initially for each part. So each
member would have a different way on implementing each part, then none would work at all
together. Many of the topics covered in this class about specific programming methods I had
already covered in previous classes. Nonetheless, there were a few topics on the actual design of
the project that aided us greatly with our approaches. Concepts such as low cohesion and loose
coupling gave us insight about the design of various classes within our program. This in turn
made our program operate in a very organized and easy to analyze, (and therefore debug),
manner.

G.9 Refactoring to Design Patterns

Developing a distributed game of tic-tac-toe may appear relatively simple, so the design
presented in Section G.6 may be considered adequate and the use of patterns may seem to
complicate the design unnecessarily. However, we must keep in mind that the given design is
quite incomplete and many basic functions are unfinished. In addition, it does not support
different variants of the game of tic-tac-toe. Therefore, although the given design is simple, we do
not know how complex it will be when completed. Therefore, we consider the merits of
employing different design patterns.

G.9.1 Roadmap for Applying Design Patterns

This section explains our plan for applying design patterns to improve the current system design.

G.9.2 Remote Proxy Design Pattern

One way to think about the Communicator is that it is a remote proxy for the Controller object of
the remote player. In this way, the local Controller (and other local objects, such as Referee) has
an illusion of exchanging messages directly with the remote Controller by interacting with the
remote Controller’s proxy: the local Communicator.

Ivan Marsic Rutgers University 512

Computer A Computer B

Controller A Communicator A

Network

Controller BCommunicator B

Remote Proxy for Controller B Remote Proxy for Controller A

To make the remote proxy pattern more prominent, we redesign the Communicator’s interface, so
that Controller and Communicator implement the same interface. We obtain the class diagram
shown in Figure G-26. Here, the Player interface should not be confused with PlayerInfo (Figure
G-12), which is just a passive container of player information. The local player is represented by
the Controller and the remote player is represented by its proxy, the Communicator. The rationale
for the choice of methods in player interface will become apparent later, when we introduce the
State design pattern. These methods correspond to the events that are delivered to the players.

As shown in Figure G-26, both Controller and Communicator maintain references to each other
(named remotePlayer and localPlayer, respectively). Recall from Section 5.4 that the real subject
and remote proxy (stub) need references to each other to allow method calls.

remotePlayer

localPlayer

Controller

isAwaitingOpponentAnswer
isInGameroom
isAwaitingOpponentMove
isNetworkDown

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()

Controller

isAwaitingOpponentAnswer
isInGameroom
isAwaitingOpponentMove
isNetworkDown

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()

Communicator

opponentID
isAwaitingOpponentAnswer
connectionStatus

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()

Communicator

opponentID
isAwaitingOpponentAnswer
connectionStatus

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()

remote proxy

Remote Proxy for Tic-tac-toe Players

RealSubjectRealSubject

«interface»
Player

+ challenge(opponent : PlayerInfo)
+ respondChallenge(answer : string)
+ version(newVersion : string)
+ respondVersion(answer : string)
+ move(piece : BoardPiece, player : PlyrInfo)

«interface»
Player

+ challenge(opponent : PlayerInfo)
+ respondChallenge(answer : string)
+ version(newVersion : string)
+ respondVersion(answer : string)
+ move(piece : BoardPiece, player : PlyrInfo)

Subjectclient

Figure G-26: Communicator and Controller classes implement the same interface (Player)
that abstracts the common behaviors of a player, regardless of whether he is local or
remote.

Appendix F User Interface Programming 513

The client class for the Controller is a user interface class. The client class for the Communicator
is a class that will subscribe to database events and dispatch the relevant updates directly to
Communicator, Player List, or Leaderboard.

G.9.3 Publish-Subscribe Design Pattern

Above we already considered a distributed Publish-Subscribe pattern to improve the system
responsiveness.

Referee could act as subscriber for board moves from two different publishers: Controller and
Communicator. However, the Referee arbitrates only the local move because the remote Referee
already arbitrated its player’s move and let it be sent to this client. Therefore, the Referee could
check the source of the notification.

On the other hand, the Referee is the source of events after arbitrating the local move—this
outcome is of interest to both Controller and Communicator (and possibly Leaderboard, too). It is
not a good idea to have interleaved publishers and subscribers to communicate by publishing and
subscribing to each other.

G.9.4 Command Design Pattern

A key action in this system that may be considered for the Command pattern is to update the
game board. Command helps to articulate processing requests and encapsulates any pre-
processing needed before the method request is made.

The Command pattern may be more broadly useful if we decide to use a Web-based architectural
pattern. In this case the browser-based client will initiate a servlet to call its method service()
to process the client’s request. See Section 5.2.1 for more details.

One may also wish to include the undo/redo capability, so the player can undo an accidental
move. However, we should keep in mind that undo/redo in a distributed system is much more
complex to support than in a standalone system. For example, once the local player made a move
this information is sent to the remote opponent who will be allowed to make his move. If
meanwhile the local player performs undo of the last move, then this action will cause confusion
for the opponent who might already have made his own move. A simpler solution is to use two-
stage commit with “preview,” as mentioned earlier, so that players can avoid accidental moves.

G.9.5 Decorator Design Pattern

One may think that the Referee may be a good candidate for using the Decorator pattern. The
Referee for the standard tic-tac-toe would then be decorated with additional rules for the revenge
or nine-broad versions. This can be done, however, it would require that exactly one decorator is
added for each version in a very specific order. I feel that this is exactly what class inheritance
offers, and in this case, class inheritance would be my preferred choice:

Ivan Marsic Rutgers University 514

Nine-board Referee

Revenge Referee

Standard Referee

isLocalPlayerX
isLocalPlayerNext
isLocalMoveValid

+ setLocalPlayerX()
+ isLocalPlayerX()
+ isLocalPlayerNext()
+ isLocalMoveValid()
+ getWinnerID()

Standard Referee

isLocalPlayerX
isLocalPlayerNext
isLocalMoveValid

+ setLocalPlayerX()
+ isLocalPlayerX()
+ isLocalPlayerNext()
+ isLocalMoveValid()
+ getWinnerID()

G.9.6 State Design Pattern

We know from Section G.8.1 that the three “doer” objects (Controller, Communicator, and
Referee) have relatively complex state machines. Therefore, it may be useful to consider
employing the State design pattern to externalize the state of these objects. Before we redesign
the classes, we compile the state tables for different objects. The following two tables show the
states and events for the Controller object. (Note that two events are missing to complete the
table: user-acknowledged in state 6: Match Finalizing, and network-restored.)

1: Challenge Enabled

2: Activity Disabled

3: Version Counteroffer

4: Board Move Enabled

C
u

rr
en

t
S

ta
te

Next State

Output Action

Input Event

challenge

2: Activity Disabled

display the status

5: Board Move Disabled

version

6: Match Finalizing

7: Logging out

challenge-response version-response

show initial screen

[GC5] 4: Move Enabled
[GC6] 5: Move Disabled
[GC7] 3: Version Counteroffer

[GC1,GC2] show gameroom
[GC3] show initial screen

[GC1] 4: Move Enabled
[GC2] 5: Move Disabled
[GC3] 1: Challenge Enabled

Guard Conditions:
GC1: challenge-response="accepted" & local-plays-Xs
GC2: challenge-response="accepted" & local-plays-Os
GC3: challenge-response="rejected"
GC4: board-empty

GC5: version-response="accepted" & local-plays-Xs
GC6: version-response="accepted" & local-plays-Os
GC7: version-response="accepted"
GC8: version-response="rejected"

Guard Conditions:
GC1: challenge-response="accepted" & local-plays-Xs
GC2: challenge-response="accepted" & local-plays-Os
GC3: challenge-response="rejected"
GC4: board-empty

GC5: version-response="accepted" & local-plays-Xs
GC6: version-response="accepted" & local-plays-Os
GC7: version-response="accepted"
GC8: version-response="rejected"

[GC4] 2: Activity Disabled

5: Board Move Disabled

[GC5, GC6] back-to-gameroom

[GC5] 4: Move Enabled
[GC6] 5: Move Disabled
[GC8] 1: Challenge Enabled

[GC8] show initial screen
[GC5, GC6] back-to-gameroom

Appendix F User Interface Programming 515

move-piece response-timeout

1: Challenge Enabled

2: Activity Disabled

3: Version Counteroffer

4: Board Move Enabled

Next State

Output Action

Input Event

5: Board Move Disabled

forfeit

process game lost

6: Match Finalizing

[GC9] update board
[GC10] process game won

[GC9] 5: Board Move Disabled
[GC10] 6: Match Finalizing

network-outage

1: Challenge Enabled

show initial screen

6: Match Finalizing

process game won

1: Challenge Enabled

show initial screen

1: Challenge Enabled

show initial screen

C
u

rr
en

t
S

ta
te

6: Match Finalizing

7: Logging out

2: Activity Disabled

display warning

2: Activity Disabled

display warning

2: Activity Disabled

display warning

2: Activity Disabled

display warning

2: Activity Disabled

display warning

2: Activity Disabled

display warning

process game lost

6: Match Finalizing

Guard Conditions:
GC9: local-player-move & valid-move
GC10: local-player-move & ending-move

GC11: opponent-move
GC12: opponent-move & ending-move

6: Match Finalizing

process game won[GC11] update board
[GC12] process game lost

[GC11] 4: Board Move Enabled
[GC12] 6: Match Finalizing

The state tables for the Communicator and Referee are left to the reader as exercise.

Based on the above state table, we derive the class interface for the LocalPlayerState and
RemotePlayerState (Figure G-27). Both of these states implement the Player interface derived
earlier for the Remote Proxy pattern (Figure G-26). The LocalPlayerState and RemotePlayerState
are abstract classes, which is why their names are italicized in Figure G-27. The methods of
LocalPlayerState correspond to the events that can occur on the Controller object that are listed in
the above state table for Controller. As seen, most of the Controller and Communicator attributes
from Figure G-26 are dropped because their value is replaced by a state object, as explained next.

Ivan Marsic Rutgers University 516

The abstract base State classes from Figure G-27 are extended by concrete states in Figure G-28.
These classes externalize the states for Controller and Communicator.

Listing G-3: The Player interface, and LocalPlayerState and RemotePlayerState base
classes (see Figure G-27 for the class diagram).

public interface Player {
 public void challenge(PlayerInfo opponent);
 public void respondChallenge(String answer);
 public void version(String newVersion);
 public void respondVersion(String answer);
 public void move(BoardPiece piece, PlayerInfo player);
}

public abstract class LocalPlayerState implements Player {
 protected Controller context;

 // constructor

«interface»
Player

+ challenge(opponent : PlayerInfo)
+ respondChallenge(answer : string)
+ version(newVersion : string)
+ respondVersion(answer : string)
+ move(piece : BoardPiece, player : PlyrInfo)

«interface»
Player

+ challenge(opponent : PlayerInfo)
+ respondChallenge(answer : string)
+ version(newVersion : string)
+ respondVersion(answer : string)
+ move(piece : BoardPiece, player : PlyrInfo)

LocalPlayerState

isLocalPlayerX : boolean

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()
+ responseTimeout()
+ forfeit()
+ networkOutage()
+ networkRestored()
+ userAcknowledged()

RemotePlayerState

opponentID

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()
+ responseTimeout()
+ forfeit()
+ networkOutage()
+ networkRestored()
+ requestReceived()
+ responseReceived()

RemotePlayerState

opponentID

+ challenge()
+ respondChallenge()
+ version()
+ respondVersion()
+ move()
+ responseTimeout()
+ forfeit()
+ networkOutage()
+ networkRestored()
+ requestReceived()
+ responseReceived()

Common
player
interface

Specific
to local
player

Common
player interface
from Remote
Proxy pattern

Common
player
interface

Specific
to remote
player

State Design Pattern for Tic-tac-toe Players built on Remote Proxy

Figure G-27: Class diagram for State classes of Controller and Communicator obtained by
extending the Remote Proxy pattern from Figure G-26. This class diagram is completed in
Figure G-28.

Appendix F User Interface Programming 517

 public LocalPlayerState(Controller context) {
 this.context = context;
 }
 // event handlers:
 public void challenge(PlayerInfo opponent) { }
 public void respondChallenge(String answer) { }
 public void version(String newVersion) { }
 public void respondVersion(String answer) { }
 public void move(BoardPiece piece, PlayerInfo player) { }
 public void responseTimeout(Player unresponsivePlayer) { }
 public void forfeit(Player loser) { }
 public void networkOutage() { }
 public void networkRestored() { }
 public void userAcknowledged() { }
}

public abstract class RemotePlayerState implements Player {

 protected Communicator context;
 protected PlayerInfo opponentID;

 // constructor
 public RemotePlayerState(Communicator context) {
 this.context = context;
 }
 // event handlers:
 public void challenge(PlayerInfo opponent) { }
 public void respondChallenge(String answer) { }
 public void version(String newVersion) { }
 public void respondVersion(String answer) { }
 public void move(BoardPiece piece, PlayerInfo player) { }
 public void responseTimeout(Player unresponsivePlayer) { }
 public void forfeit(Player loser) { }
 public void networkOutage() { }
 public void networkRestored() { }
 public void requestReceived(Object message) { }
 public void responseReceived(Object message) { }
}

The context class (Controller or Communicator) simply dispatches an incoming event to its
current state object to handle the event. Listing G-4 shows the context classes. Note that all
conditional logic in the context classes has disappeared because of applying the State pattern.

Listing G-4: The Controller and Communicator context classes (Figure G-28 shows the
class diagram).

public class Controller {

 LocalPlayerState currentState; // field has package-wide visibility

 public void challenge(PlayerInfo opponent) {
 currentState.challenge(opponent);
 }
 public void respondChallenge(String answer) {

Ivan Marsic Rutgers University 518

 currentState.respondChallenge(answer);
 }
 public void version(String newVersion) {
 currentState.version(newVersion);
 }
 public void respondVersion(String answer) {
 currentState.respondVersion(answer);
 }
 public void move(BoardPiece piece, PlayerInfo player) {
 currentState.move(piece, player);
 }
 public void responseTimeout(Player unresponsivePlayer) {
 currentState.responseTimeout(unresponsivePlayer);
 }
 public void forfeit(Player loser) {
 currentState.forfeit(loser);
 }
 public void networkOutage() {
 currentState.networkOutage();
 }
 public void networkRestored() {
 currentState.networkRestored();
 }
 public void userAcknowledged() {
 currentState.userAcknowledged();
 }
}

public class Communicator {

 RemotePlayerState currentState; // field visible package-wide

 public void challenge(PlayerInfo opponent) {
 currentState.challenge(opponent);
 }
 public void respondChallenge(String answer) {
 currentState.respondChallenge(answer);
 }
 public void version(String newVersion) {
 currentState.version(newVersion);
 }
 public void respondVersion(String answer) {
 currentState.respondVersion(answer);
 }
 public void move(BoardPiece piece, PlayerInfo player) {
 currentState.move(piece, player);
 }
 public void responseTimeout(Player unresponsivePlayer) {
 currentState.responseTimeout(unresponsivePlayer);
 }
 public void forfeit(Player loser) {
 currentState.forfeit(loser);
 }
 public void networkOutage() {
 currentState.networkOutage();
 }
 public void networkRestored() {

Appendix F User Interface Programming 519

 currentState.networkRestored();
 }
 public void requestReceived(Object message) {
 currentState.requestReceived(message);
 }
 public void responseReceived(Object message) {
 currentState.responseReceived(message);
 }
}

We show the code for only one state of the Controller in Listing G-5. Based on the above state
table for the controller, we know that only three events are handled in the Controller state 1:
Challenge Enabled.

Listing G-5: Concrete state class ChallengeEnabled for the Controller context.

public class ChallengeEnabled extends LocalPlayerState {
 public void challenge(PlayerInfo opponent) {
 // display the status: opponent challenged

 // set the next state of the context: Activity Disabled
 context.currentState = ...
 }
 public void respondChallenge(String answer) {
 if (answer.equals("accepted") && isLocalPlayerX) {
 // set the next state of the context: Move Enabled

«interface»
Player

LocalPlayerState RemotePlayerStateController Communicator

ChallengeEnabled ActivityDisabled

VersionCounteroffer

BoardMoveEnabled BoardMoveDisabled

MatchFinalizing Logging out

Monitoring WaitingForResponse

NoResponseReceived

ConnectionLost

currentState currentState

Context objectContext object Context objectContext object

Concrete statesConcrete states
Concrete statesConcrete states

Figure G-28: Class diagram that combines two design patterns, Remote Proxy and State,
for the distributed game of tic-tac-toe.

Ivan Marsic Rutgers University 520

 context.currentState = ...
 }
 else if (answer.equals("accepted") && ! isLocalPlayerX) {
 // set the next state of the context: Move Disabled
 context.currentState = ...
 }
 else if (answer.equals("rejected") {
 // set the next state of the context: Challenge Enabled
 context.currentState = ...
 }
 // perhaps should also handle else case for anything...
 }
 public void networkOutage() {
 // set the next state of the context: Activity Disabled
 context.currentState = ...
 }
}

As seen, the events that are not relevant for the given state are not defined—the corresponding
methods are inherited from the abstract base state class.

G.9.7 Model-View-Controller (MVC) Design Pattern

The Model-View-Controller pattern is useful for implementing different interaction and
visualization techniques for the system data (the so-called “model” part of MVC). We already
discussed splitting the original Controller object into the part that handles the local player’s
moves and the part that displays the remote player’s moves. These parts correspond to the
“controller” part of MVC and the “view” part of MVC, respectively. A partial class diagram for
the “model” part of MVC is shown in Figure G-29. It is partial because the model should include
Match Invitation, Invite Queue, and all other “knowing” objects.

Note that GameBoard and its derived classes implement the Composite design pattern. The
Composite pattern allows for treating a group of objects in the same way as a single instance of an
object. The intent is to “compose” objects into tree structures to represent part-whole hierarchies.
In our case, NineBoard is composed of nine StandardBoards.

As shown in the class diagram in Figure G-29, the nine-board version of tic-tac-toe should not be
represented as a single board with 99= 81 pieces, because to enforce the rules of this game we
need to know the identity of the sub-boards. We do not need a special attribute to identify each
sub-board because the nine boards are created once for a match and we can enforce a convention
that the first three sub-boards represent the first row, the second three the second row, and the last
three the third row.

Appendix F User Interface Programming 521

G.10 Concurrency and Multithreading

______ TO BE COMPLETED ______

How We Did It & Plan of Work

The project took a tremendous amount of effort from all of the team members who cared. There
were several occasions that initial ideas had to be trashed halfway through and reworked
completely in order to deal with the obstacle at hand, which then led the majority of
documentation having to be redone by me to reflect the changes. This was frustrating because we
could not move forward with the project because all the previous documentation was now simply
invalidated and no longer accurate because we did not account for problems running out of
memory or because the algorithm was not performing the way it was supposed to. This gave little
room for error in order to get a decent grade. I feel that our schedule did not account for these
types of mistakes that can hinder a group’s progress and in turn hurt a group’s grades for things
students could not account for beforehand.

«interface»
GameBoard

size

+ getSize()
+ addPiece()

Gameroom

matchStatus

+ getStatus()
+ setStatus()
+ getBoard()

1
board

Tic-tac-toe Model part of MVC

StandardBoardNineBoard

BoardPiece

position

+ getPosition()

X_Piece O_Piece

pieces

0..9

boards9

«interface»
GameBoard

size

+ getSize()
+ addPiece()

«interface»
GameBoard

size

+ getSize()
+ addPiece()

Gameroom

matchStatus

+ getStatus()
+ setStatus()
+ getBoard()

Gameroom

matchStatus

+ getStatus()
+ setStatus()
+ getBoard()

1
board

Tic-tac-toe Model part of MVC

StandardBoardNineBoard

BoardPiece

position

+ getPosition()

BoardPiece

position

+ getPosition()

X_Piece O_Piece

pieces

0..9

boards9

Figure G-29: Class diagram for classes that constitute the Model part of the Model-View-
Controller design pattern for the game of tic-tac-toe.

Ivan Marsic Rutgers University 522

The techniques that were the most useful to the group were undoubtedly working together in the
labs every step of the way, especially when coding. This way we could get our program to display
and function exactly as was intended. Although later on we found that certain ideas we had before
for the functionality of our project were a little more complicated than we had initially thought, at
least we could agree on it as a group and there was no more confusion about the functionality of
our program amongst our members, (the members that showed up consistently that is…as we had
one that did not participate very much and rarely showed up to any meetings).

Me says: This class has taught me that you need one page of documentation for every line of
code. Documentation is key to software projects. I came into this class expecting a lot of coding,
and have come out really understanding what a software engineer is and why documentation is
important. I do feel that we did a lot of documentation, maybe more than needed, versus the real
world.

One of the things that I found to be the least valuable
in our project specifically was the design patterns
because it would have been very nice to know them at
the beginning of designing the application in order to
incorporate them without a very large time overhead.
Also, the implementation that we had started long
before knowing about these concepts could not be
adapted to include many design patterns as it became
inefficient to do so. A few patterns/techniques
described in the book were a common sense type of
thing for me. I have used these patterns when coding
but never thought of them as a technique.

Irene says: This class teaches you how to deal with
different types of people, but you might pull out a few
chunks of hair first. It has definitely opened my eyes to
the reality of software engineering. Working in a team
can be a nightmare, and I say that not only because of my experiences, but because of the qualms
of many of the other groups as well. When you work with a bunch of incompetent people,
without a doubt the development of your software will be a terrible hardship. Trying to get
members to realize what they need to do and how they should do it was sadly the most
challenging and hardest part of the entire semester. I will adopt a pace of work at the outset,
regardless of the others, that allows me to reduce dependence on them.

The techniques that were least useful to our group surprisingly was splitting up the work and
working on it gradually. Although this seems as one of the best things to do, it turned out to work
against us in the long run. This was because of procrastination and just general lack of effort from
certain members. This in turn put more work on the people that were willing to shoulder the
responsibilities at the end when deadlines approached and the other team members’ work was still
not complete or was of poor quality. I turned out to be one of those people and the additional
responsibilities and sheer magnitude of work especially for the reports was not pleasant at all.

The design
under
discussion …

The design
under
discussion …

523

Appendix H
Solutions to Selected Problems

Problem 2.1 — Solution

Problem 2.2 — Solution

Problem 2.3 — Solution

Enumerated requirements for the system-to-be:

REQ1: The system shall periodically read the patient’s vital signs, specifically heart rate and
blood pressure. The system shall detect abnormalities in the patient’s vital signs. The
system shall alert the remote system at hospital when an abnormality is detected.

REQ2: The system shall detect when the patient is exercising and adjust the safe ranges of vitals.

REQ3: The system shall verify that its sensors are working correctly. The system shall report
sensor failures to the remote hospital.

REQ4: The system shall monitor its battery power. The system shall alert the owner when its
battery power is low.

As discussed in Section 2.2 (see the discussion of Table 2-1), the above requirements are
relatively compound, but Test-Driven Development (TDD) favors elemental requirements. If we
were to test REQ1 and the system was not reporting the blood pressure in a timely manner, the
entire requirement REQ1 would fail Verification and then it would be impossible to tell if the
alert was broken, or the detection of abnormalities, or the heart rate sensor, or the blood pressure
sensor. For this reason, one should split up REQ1 into three elemental requirements:

REQ1a: The system shall read the patient’s vital signs, specifically heart rate and blood pressure.

REQ1b: The system shall detect abnormalities in the patient’s vital signs.

REQ1c: The system shall alert the remote hospital when an abnormality is detected.

Each of these elemental requirements can be separately tested, and each test would
unambiguously identify the failure cause. I leave it to the reader as exercise to break up the
remaining compound requirements and organize them hierarchically.

Ivan Marsic Rutgers University 524

A discussion with a medical expert may reveal that safe ranges of vital signs vary across different
individuals, depending on age, gender, height, weight, chronic condition, hereditary factors, etc.
They may vary even for the same person over time. Therefore, it may be appropriate to add a
requirement to allow a medical professional to adjust the safe ranges when needed:

REQ5: The system should allow an authorized medical professional to remotely modify the safe
ranges of vital signs.

Although not explicitly mentioned in the problem statement, we may consider providing a
capability to reset the system for false alarm or malfunction. Another option not mentioned in the
problem statement is to alert the patient or people nearby about abnormal vitals or malfunctioning
device (the problem statement requires only alerting the hospital). It may also be of interest to
maintain a history of all vitals readings (or diagnostic tests). This option would require extra
memory space on the device or communication bandwidth (and battery power).

Finally, although the problem statement does not mention such feature, it may not be enough to
have communication between the hospital and the patient’s device only to report alerts or modify
safe ranges. The hospital may wish to ping the device to find out if it is still working; or, the
device may send periodic “hello” messages to report that it is alive and functioning properly.

One may notice the issue of precise localization of the system boundary: what functions are to be
developed versus what is assumed to exist. For example, the way REQ1 is worded it does not
mention that we need to develop the software for controlling the analog sensors when measuring
the vital signs. For the sake of keeping this problem simple, we will assume that the “sensors”
include the control hardware and software, and our software-to-be will interact with the “sensors”
via application programming interfaces (APIs) to take the acquired data.

The first four requirements are mandatory (“shall” type), because the system would not be useful
if any were missing. By re-reading the problem description, we can see that the customer strongly
demanded the related features. The above are all functional requirements; the problem description
does not mention any non-functional properties. Because of medical problem domain, it would be
appropriate to consider “high reliability” as a non-functional requirement.

Problem 2.4 — Solution

Problem 2.5 — Solution

Problem 2.6 — Solution

Problem 2.7 — Solution

Solutions to Selected Problems 525

Problem 2.8 — Solution

During a single sitting, the buyer (bidder) only can make a payment. A notification will
be sent to the seller (auctioneer) about the successful payment and a request to ship the
item. The subsequent activities of tracking the shipment and asking the buyer and seller
to rate the transaction must happen in different sittings. Here shown is only the main
success scenario.

Use Case UC-x: BuyItem

Initiating Actor: Buyer

Actor’s Goal: To purchase auctioned item for which s/he won the bid & have it shipped

Participating Actors: Seller, Creditor

Preconditions: Buyer has won the auction and has sufficient funds or credit line to pay
for the item. Buyer is currently logged in the system and is shown a
hyperlink “Purchase this item.” Seller has an account to receive
payment. Seller already posted the invoice (including shipping and
handling costs, optional insurance cost, etc.) and acceptable payment
options, such as “credit card,” “money order,” “PayPal.com,” etc.

Postconditions: Funds are transferred to the seller’s account, minus selling fees. Seller is
notified to ship the item. Auction is registered as concluded.

Flow of Events for Main Success Scenario:
 1. Buyer clicks the hyperlink “Purchase this item”
 2. System displays the invoice from seller with acceptable payment options
 3. Buyer selects the “credit card” payment method
 4. System prompts for the credit card information
 5. Buyer fills out the credit card information and submits it
 6. System passes the card info and payment amount on to Creditor for authorization
 7. Creditor replies with the payment authorization message
_

8. System (a) credits the seller’s account, minus a selling fee charge; (b) archives the
transaction in a database and assigns it a control number; (c) registers the auction as
concluded; (d) informs Buyer of the successful transaction and its control number; and
(e) sends notification to Seller about the payment and the shipment address

The above use case describes only the key points. In reality, the seller should also be asked for the
shipping and billing address and to choose a shipping type. I am not familiar with how eBay.com
implements this process, so the reader may wish to compare and explain the differences.

Extensions (alternate scenarios) include:

 Buyer abandons the purchase or the time allowed for initiating this use case has expired

 Buyer selects different payment method, e.g., money order or PayPal.com account

 Buyer provides invalid credit card information

 Creditor denies the transaction authorization (insufficient funds, incorrect information)

 Internet connection is lost through the process

Ivan Marsic Rutgers University 526

Problem 2.9 — Solution

Problem 2.10 — Solution

Surely several alternative design solutions are possible, but your basic question is: Does your
design meet all the customer’s needs (as specified in the problem description)? Next, is it easy for
the customer to understand that your design artifacts are indeed there to meet their needs?

(a)

The Owner is the key actor, but the system is also activated by the motion detector and by the
“electric eye” sensor. Additionally, we need a timer to schedule the automatic switching off the
light. Hence, we have four actors: Owner, MotionDetector, Timer, and ElectricEye. Their goals
will be explained below.

(b)

 A possible use case diagram is shown in the following figure:

As explained in Section 2.3, the system is always passive and must be provoked to respond.
Hence, automatic switching the light on is represented as the use case initiated by the motion
detector—the motion detector literally operates the light. In this use case, the system starts the
timer and after it counts down to zero, the timer switches the light off.

The requirements also demand that door closing must include a safety feature of automatic
reversal of the door movement. The actual initiator is the electric eye sensor, and for this purpose,
we have the AutomaticReverse use case. For this to function, the system must arm the electric eye
sensor in the use cases RemoteClose and ManualClose (indicated by the communication type

OwnerOwner

MotionDetectorMotionDetector

ElectricEyeElectricEye

TimerTimer

«initiate» «participate»

«initiate»

«initiate»

«
in

iti
a

te
»

AutoLightON

AutoLightOFF

RemoteOpen

AutomaticReverse

ManualOpen

RemoteClose

ManualClose«participate»

«participate»

Solutions to Selected Problems 527

«participate»). The electric eye sensor is armed only when the garage door closes and not
when it opens. The AutomaticReverse use case can be represented as follows:

Use Case: AutomaticReverse

Initiating Actor: ElectricEye (“electric eye” sensor)

Actor’s Goal: To stop and reverse the door movement if someone or something passes
under the garage door while it closes.

Preconditions: The garage door currently is going down and the infrared light beams
have been sensed as obstructed.

Postconditions: The door’s downward motion is stopped and reversed.

Flow of Events for Main Success Scenario:
 1. ElectricEye signals to the system that the infrared light beams have been sensed as

obstructed

2. System (a) stops and reverses the motor movement, and (b) disarms the ElectricEye
sensor

 3. System detects that the door is in the uppermost position and stops the motor

A possible extension (alternate scenario) is that the communication between the system and the
motor is malfunctioning and the door keeps moving downward. To detect this possibility, we
would need to introduce an additional sensor to measure the door motion.

Also, it should be noticed that we assume a simple Open use case, i.e., the opening operation does
not include automatic close after the car passes through the door. (In case this was required, we
would need to start another timer or a sensor to initiate the door closing.)

(c)

The use diagram is shown in the part (b) above.

(d)

For the use case RemoteOpen, the main success scenario may look something like this:
 1. Owner arrives within the transmission range and clicks the open button on the remote

controller
 2. The identification code may be contained in the first message, or in a follow-up one

3. System (a) verifies that this is a valid code, (b) opens the lock, (c) starts the motor, and
(d) signals to the user the code validity

 4. System increments the motor in a loop until the door is completely open
 5. User enters the garage

Alternate scenarios include:

 The receiver cannot decode the message because the remote transmitter is not properly
pointed for optimal transmission

 The remote controller sends an invalid code. In this and the previous case, the system
should sound the alarm after the maximum allowed number of attempts is exhausted

Ivan Marsic Rutgers University 528

 The Owner changes his/her mind and decides to close the door while it is still being
opened

 It is left to the reader to describe what exactly happens in these cases.

(e)

System sequence diagram for RemoteOpen:

(f)

The domain model could be as follows:

(a)

Main success scenario for RemoteOpen

: System

Owner
sendOpeningSignal(code)

verify code

signal: valid code

unlock,
start the motor

increment
the motor

loop

: System

Owner
sendOpeningSignal(code)

verify code

signal: valid code

unlock,
start the motor

increment
the motor

loop

An alternate scenario for RemoteOpen

(b)

: System

Owner

sendOpeningSignal(code)
verify code

signal: invalid code

same as main
success scenario

sound alarm

alt

loop

numTrials <= maxTrials

[else]

: System

Owner

sendOpeningSignal(code)
verify code

signal: invalid code

same as main
success scenario

sound alarm

alt

loop

numTrials <= maxTrials

[else]

Solutions to Selected Problems 529

Communicator Code

LockOperator

lockStatus

MotorOperator

motorStatus

CodeChecker

numTrials
maxTrials

CodeStore

con
ve

ysR
e

que
sts

obtains

notifiesCodeValidity

verifie
s

retrievesValidCodes

notifiesCodeValidity

ElectricEye

LightOperator

lightStatus

MotionDetectorAlarmOperator controls

co
n

tr
o

ls

no
tif

ie
s

(g)

Operation contracts for RemoteOpen:

Problem 2.11 — Solution

The developer’s intent is to prevent the theft of code. Therefore, this is not a legitimate use case.

Problem 2.12: Restaurant Automation — Solution

Brief use case descriptions are as follows.

UC1: ClockIn — Employee records the start time of his/her shift or upon
arriving back from a lunch break, assuming, of course, that the
employee clocked-out before going to lunch.

UC2: ClockOut — Employee records the end time of his/her shift or when
going out for a lunch break. (The system could automatically log out
the employee from any open sessions.)

UC3: LogIn — Employee logs-in to the system in order to perform his/her
necessary functions.

UC4: LogOut — Employee logs-out of the system, including if another
employee needs to use that terminal.

UC5: MarkTableReady — Busboy marks a table ready for use after it has been cleaned and
prepared for a new party. The Host is automatically notified, so now they can seat a new
customer party at this table.

Ivan Marsic Rutgers University 530

UC6: SeatTable — Host seats a customer, marks the table as occupied and assigns a waiter to it.

UC7: AddItem — Waiter adds an item to a table’s tab.

UC8: RemoveItem — Waiter removes an item from a table’s tab that does not belong there. The
Manager enters his/her authorization code to complete the item removal process.

UC9: AdjustPrice — Waiter adjusts the price of a menu item due to a coupon, promotion, or
customer dissatisfaction.

UC10: ViewTab — Waiter views the current tab of a particular table.

UC11: CloseTab — Waiter indicates that a tab has been paid, and that the transaction is
completed. The table’s tab’s values are reset to “empty” or “0” but the transaction is
recorded in the database. The system automatically notifies the Busboy so that he/she can
clean the “dirty” table. (There could be an intermediate step to wait until the party leaves
their table and only then the Waiter to register a table as waiting to be cleared.)

UC12: PlaceOrder — Waiter indicates that a table’s tab is completed. The kitchen staff (Cook) is
notified that the order must be prepared.

UC13: MarkOrderReady — Cook announces the completion of an order. The status of the order
tab is changed, the tab is removed from the order queue in the kitchen, and the appropriate
Waiter is notified.

UC14: EditMenu — Manager modifies the parameters of a menu item (name, price, description,
etc.) or add/removes an item to the menu.

UC15: ViewStatistics — Manager inspects the statistics of the restaurant.

UC16: AddEmployee — Manager creates a profile for a new employee. The profile will contain
information pertinent to that employee, such as employee name, telephone number, ID,
salary and position.

UC17: RemoveEmployee — Manager deletes a profile of a former employee.

The use case diagram is shown in Figure H-1. The auxiliary uses cases UC3 and UC4 for
login/logout are included by other use case (except UC1 and UC2), but the lines are not
drawn to avoid cluttering the diagram. There could also be a use case for the Manager to
edit an existing employee profile when some of the parameters of an employee profile need
to be changed. The reader should carefully trace the communications between the actors and
the use cases and compare these with the brief description of the use cases, given above.

Solutions to Selected Problems 531

I chose to include the database as part of the system because I feel that showing it as an external
system (supporting actor), although true, would not contribute much to the informativeness of the
diagram.

Problem 2.13: Traffic Information — Solution

The use case diagram is shown in Figure H-2. UC1 ViewStatisticsAcrossArea and UC2
ViewStatisticsAlongPath directly ensue from the problem statement (described at the book
website, given in Preface). Of course, the system cannot offer meaningful service before it
collects sizeable amount of data to extract the statistics. It is sensible to assume that somebody
(Administrator) should start the data collection process (UC3). The data collection must be run
periodically and that is the task of the Timer, which can be implemented as a Cron job
(http://en.wikipedia.org/wiki/Cron)—an automated process that operates at predefined time intervals
and collects data samples (UC4 and UC5).

As part of UC4, collecting the sample includes contacting the Yahoo! Traffic website to get the
latest traffic updates for a given location. UC5 includes contacting the Weather.com website to
read the current weather information. Also, in UC1 and UC2, the statistics are visualized on a
geographic map retrieved from the Google Map website.

Host

Cook

Employee

Waiter

Busboy

Manager

Restaurant Automation System

UC5: MarkTableReady

UC8: RemoveItem

UC6: SeatTable

UC7: AddItem

UC10: ViewTab

UC11: CloseTab

UC12: PlaceOrder

UC1: ClockIn

UC2: ClockOut

UC3: LogIn

UC4: LogOut

UC9: AdjustPrice

UC13: MarkOrderReady
UC14: EditMenu

UC15: ViewStatistics

UC16: AddEmployee

UC17: RemoveEmployee

Employee

«include»

«include»

Figure H-1: The use case diagram for the restaurant automation project (Problem 2.12).

Ivan Marsic Rutgers University 532

The system may require login, particularly for the Administrator, but I chose not to show it
because this is unessential to the problem at hand.

There are two use cases related with data collection, UC4 and UC5. The system sequence
diagram for UC4 is shown in Figure H-3. The Cron job can be designed to run both traffic and
weather data collection at the same time. The URL request is formed for each ZIP code in the
given area. The traffic server’s response must be processed to extract the traffic data; the data is
stored only if it is new (not duplicate). A short delay (say 2 seconds) is inserted between two
requests so that so that the traffic server does not mistake the large number of requests for a
denial-of-service attack.

Although the above design shows a single system, a better solution would be to design two
completely independent systems: one for data collection and the other for user interaction

: System

Timer / Cron Job
collect traffic sample

re-set the cron-job timer

read next zip code

loop [for all zip codes]

prepare request URL

Database

get traffic data (“URL”)

process the response

Yahoo! Traffic

store traffic sample

delay before next query

opt sample data is not duplicate

Figure H-3: System sequence diagram for traffic data collection use case (Problem 2.13).

Traffic Information System

«participate»

«initiate»

«initiate»
User

Administrator

Database

Timer /
Cron Job

Weather.com

Google Map

Yahoo! Traffic

«initiate»
«participate»

«initiate»

«initia
te»

«participate»

«p
ar

tic
ip

at
e»

«participate»

«participate»

UC1: ViewStatisticsAcrossArea

UC3: Start

UC4: CollectTrafficSample

UC5: CollectWeatherSample

UC2: ViewStatisticsAlongPath

Figure H-2: The use case diagram for the traffic information project (Problem 2.13).

Solutions to Selected Problems 533

(viewing traffic statistics). Their only interaction is via a common database which contains the
collected data and traffic/weather records.

Problem 2.14: Patient Monitoring

Problem 2.15: Grocery Inventory Management Using RFID

(a)

We first need to identify the actors for the software to be developed. Clearly,
human actors include Store Manager and Store Associate. There may be several
store managers or store associates, but recall that an actor represents a role, not an
individual. Store Manager has three types of interactions with the software-to-be:
(1) be notified about a depleted stock state; (2) assign the shelf replenishment
task; and (3) be notified about a “replenish-completed” event. Store Associate has
three types of interactions with the software-to-be: (1) be notified about an
assigned shelf replenishment task; (2) add an item to the shelf; and (3) generate a
“replenish-completed” event. In addition, there will be an information database that stores
inventory and task information.

A key issue is whether the customer is an actor. To help resolve this issue, Figure H-4 shows the
relationship of human actors that interact with product items. Customer removes items (but may
also return an item if he or she changes their mind). Store Associate adds items to the shelf, but
may also remove items, for example if they reached their expiration date. However, as Figure H-4
illustrates, human actors do not directly interact with the software-to-be. Rather, it is the RFID
reader that notifies the software-to-be about added or removed items. Therefore, we decide that
RFID reader is an initiating actor.

Although this may look a bit peculiar, this peculiarity is because use cases are not best suited for
representing interactions initiated by non-human actors. To confirm with use case descriptions,
we will claim that the goal of RFID reader is “To record removal of an item from a shelf and
notify the store manager if replenishment is needed,” which again seems peculiar for a non-
animate actor to have a goal. A better approach to represent such scenarios is to use state
diagrams (Chapter 3).

The system should automatically send periodic reminders as follows:

- to the store manager, in case the replenishment task is not assigned within a specified time after
the “low-stock” or “out-of-stock” state is detected

- to the store associate, if the task is not completed within a specified time after it is assigned.

The summary use cases are as follows:

RFID tag

Ivan Marsic Rutgers University 534

UC-1: RemoveItem — RFID Reader notifies the system that a product item was removed from
the shelf. The system also detects “low-stock” and “out-of-stock” states for a product by checking
the product’s item count and notifies Store Manager. (Requirements: REQ1 – REQ4)

UC-2: AddItem — RFID Reader notifies the system that a product item was placed on the shelf.
(REQ6)

UC-3: AssignReplenishTask — Store Manager assigns a store associate with a task to replenish a
particular shelf with a specific product. Store Associate is notified about the details of the
assigned task. (REQ5)

UC-4: ViewPendingWork — Store Manager or Store Associate views their own work that needs
to be done: Store Manager assigns replenish tasks and Store Associate performs those tasks. Store
Manager may also view the pending tasks assigned to Store Associate(s).

UC-5: SendReminder — Timeout Timer sends a reminder to the Store Manager (if the
replenishment task is not assigned within a specified time) or to the Store Associate (if the
replenishment completion is not reported within a specified time).

UC-6: ReplenishCompleted — Store Associate inputs in the system that the replenishment task is
completed. The system updates the database and notifies the store manager. (REQ7)

Use cases UC-3, UC-4, and UC-6 also include user authentication, which is labeled as
UC-7: Login.

Notice that there is no point in splitting UC-1 into smaller use cases to address individual
requirements, because all of these behaviors should happen together, when appropriate.

An important design solution is using a database to store information about pending work for
store employees, i.e., the status of replenishment tasks. We cannot rely solely on a token-passing
mechanism that generates a request for replenishment once a product count dips below the
threshold, then the store manager assigns this task, a store associate performs the task, and finally
signals its completion. Instead, we must assume that there may be many simultaneous “out-of-
stock” events and replenishment activities, and there will be randomness involved in the relative
order of tasks and activities. The store manager may not assign the task in the same order as the
“out-of-stock” events appeared, and the store associate may not perform the tasks in the order that

Customer

Store Associate

RFID Reader Software-to-be

Main Computer

RFID Tag

Customer

Store Associate

RFID Reader Software-to-be

Main Computer

RFID Tag

Figure H-4: Relationship of human actors to the software to be developed is mediated by
the RFID system (Problem 2.15). This justifies choosing the RFID reader as the initiating
actor for use cases RemoveItem and AddItem, instead of human actors.

Solutions to Selected Problems 535

the notifications arrived. To facilitate the work of store employees, we decide that a central
repository (database) will store all information about inventory management (events, tasks,
employees associated with tasks, etc.). The employees will access this information at their
convenience and make decisions based on various priorities and other factors.

(b)

The use case diagram for the supermarket inventory-management system is shown in Figure H-5.
To avoid clutter in the diagram, the Database actor is shown as not connected to any use cases. In
reality, Database is connected to all use cases as a «participating» actor. Additionally, use cases
UC-3, UC-4, and UC-6 «include» UC-7: Login (user authentication).

Notice that UC-4 AssignReplenishTask is not directly initiated by an actor, because it is unlikely
that the manager would directly enter UC-4 to assign a task. The manager may know the task ID
(after reading an email notification), and may be able to retrieve the task directly. However, it is
more likely that the manager would first view pending tasks (UC-3: ViewPendingWork) and then
assign task(s) (UC-4: AssignReplenishTask). Therefore, Figure H-5 indicates that UC-4
«extends» UC-3. In other words, UC-4 is an optional use case, initiated from within UC-3. Seeing
tasks in context makes for easier and more meaningful decisions. The decision may depend on
task priority, employee workload, etc.

«extend»

RFID Reader Store
Manager

«initiate»

«initia
te»

«initiate»

Store Associate
Timeout Timer

«initiate»

Database

«participate»

«initiate»

«initia
te»

System for Inventory Management

«extend»

UC1: RemoveItem

UC2: AddItem

UC4: AssignReplenishTask

UC5: SendReminder

UC6: ReplenishCompleted

UC3: ViewPendingWork

UC7: Login

«include»

Figure H-5: Use case diagram for supermarket inventory-management software
(Problem2.10). The actor-to-use-case communications without labels are all of the
«participate» type (omitted to avoid clutter).

Ivan Marsic Rutgers University 536

Figure H-5 also indicates that UC-3 «extends» UC-6: after signaling that one task is completed,
the store associate may wish to see his other pending tasks and select the next one to work on.
These choices for what is considered the primary activity vs. optional extension may need further
deliberation.

(c)

This part describes potential extensions of the basic inventory system.

We might add another user category (or, actor) “helpout”—this is a store associate who currently
has a low workload and wishes to volunteer to assist another. Such associate would be able to see
all pending replenishment tasks. To preserve privacy, we may allow store associates to see all
pending task while preserving anonymity of the task assignees.

Another option is to allow employees to establish “friendship networks,” so members can see
each other’s pending tasks and offer assistance. Helpout and friendship-network options would
allow for quicker restocking, reduce the employees’ downtime, and and increase morale from
teamwork.

In UC-1: RemoveItem, the system is currently checking for two thresholds: “low-stock” or “out-
of-stock.” The management might decide to check multiple thresholds, e.g., to track the rate of
sales for different product (not only item counts), or to receive an early warning to contact the
supplier in case there is no more of this product in the stockroom. In addition, different threshold
values may be used for different products.

In UC-3: AssignReplenishTask, the store manager might wish to see which employees are
currently on shift, as well as various statistics, such as the total number of tasks currently assigned
to each employee, or the total number of tasks completed by each employee over a given past
interval. In addition, UC-3 should include the option to re-assign a task, in case the manager
changed his or her mind (before the task becomes overdue). This is not explicit in the
requirements, but can be assumed as needed.

One may wonder if UC-3 AssignReplenishTask is necessary at all. Perhaps it is possible to
specify a clever set of business rules that will allow the system automatically to assign the task as
part of UC-1: RemoveItem, when the count falls below a threshold? The system would
automatically assign the task to an employee without manager’s involvement. What are the merits
of this solution? For example, it may be useful for large and busy supermarkets. Such automation
would enable the manager to focus on more important activities, such as improving infrastructure
and making business decisions. It also avoids the worst-case scenario where the manager is
prevented from assigning the task for a long time. Potential problems with an automated task
assignment include inability to specify a comprehensive set of assignment rules. Also see the
solution for Problem 2.11 for potential extensions of UC-3 that may be difficult to reduce to a set
of logical rules, and may require human involvement.

UC-3 may allow store associates to push back or ask for help if they are overloaded or unable to
work on the task, e.g., for health reasons. The store associate might need to react back to an
assigned task, such as in case the stockroom is out of this product, or the store is waiting for the
supplier to deliver. The question is if this option should be part of our system-to-be, or should
they use other, independent channels, such as email, to inform the manager about problems and
ask for task reassignment.

Solutions to Selected Problems 537

We may consider introducing an additional use case related to the replenishment task,
UC-8: StartReplenishing, so that the store associate can inform the system that he or she is
currently restocking the shelf. The purpose of this use case is to avoid unnecessary message about
product depletion to the store manager. For example, if the store associate puts one item on an
empty shelf and the customer immediately removes this item, the system would generate an
unnecessary “out-of-stock” message for the store manager. Also, the reminder messages to the
store associate should be avoided if he or she is currently restocking the product.

There are several issues to resolve if UC-8: StartReplenishing is introduced. First, when and
where the store associate can signal the start-of-task event? He or she may do it from an office
computer, but then get distracted by another task before actually starting the restocking, and then
postpone restocking for another time or day, or forget about it. This scenario would leave the
system in an undefined state for a long time. Another option is to assume that the associate will
signal the task-start only from the point of replenishment, using a mobile device. The latter option
assumes that every associate will be equipped with a mobile device, e.g., smart phone.

Second, if the store associate is interrupted by another task during restocking, in the worst case,
he may leave the task unfinished. Therefore, the system should start a timeout timer and send
reminders if the task is not reported as completed within a specified interval.

We may add a use case for store associates who currently have low workload and wish to
volunteer to assist others, UC-9: VolunteerHelp. Such an associate would be able to see all
pending replenishment tasks, while preserving anonymity of the assignees. Another option is to
allow employees to form “friendship networks,” so the members can see each other’s pending
tasks and offer assistance. Volunteering options would allow for quicker restocking, reduce the
employees’ downtime, and and increase moral from teamwork.

More ideas about extending the existing use cases are presented in the solution for Problem 2.11.

Problem 2.16: Grocery Inventory Management

Notice that the following solution describes only the relatively straightforward options for the
inventory management use cases. Ideas for extensions and unresolved issues are listed after each
use case is presented. These extensions should be discussed with the customer before a decision is
made about the course of action. The selected functions should be truly useful to the customer,
rather than just a feature bloat. Of course, the constraints on the development time and budget
must be factored in.

There are two use cases related to the requirements REQ1 – REQ4: UC-1: RemoveItem and
UC-5: SendReminder. Detailed description for UC-1: RemoveItem is as follows:

Use Case UC-1: RemoveItem
Related Requirements: REQ1 – REQ4
Initiating Actor: RFID Reader
Actor’s Goal: To update the product item counter in Database after a product is

removed and to notify Store Manager if the product is out of stock
Participating Actors: Database, Store Manager, Timeout Timer
Preconditions: • In Database, the product-count 0

• Threshold 0 specified for “out-of-stock” detection

Ivan Marsic Rutgers University 538

Postconditions: • In Database, the updated product-count 0
• If updated product-count Threshold, then:
 - an “out-of-stock” task is recorded in Database that needs to be
 assigned (currently marked as “unassigned”)
 - notification is sent to Store Manager
 - Timeout Timer started

Flow of Events for Main Success Scenario:
 1. RFID Reader reports that a specific tag moved out of coverage
 2. System (a) using tag-ID (EPC code) retrieves product-name and product-count from

Database; (b) decrements it by 1
 3. System stores the updated product-count to Database and exits this use case

Flow of Events for Extensions (Alternate Scenarios):
1a. Message from RFID Reader corrupted/unrecognizable
 1. System discards the message, records occurrence in Database, and exits this use case
2a. The query result for the tag-ID returned by Database is nil
 1. System discards the message, records occurrence in Database, and exits this use case
2b. Updated product-count 0
 1. System stores all relevant parameters but does not update product-count in Database
 2. System signals error to Store Manager and exits this use case
2c. Updated product-count Threshold (but product-count 0!)
 1. System sends notification “out-of-stock” to Store Manager
 2. System starts Timeout Timer
 3. Same as in Step 3 above

Notice that in the extension scenarios of UC-1, we assume that corrupted messages from the
RFID reader are a mild problem (unless they become very frequent!), and so are unrecognizable
tag IDs (again, unless they become very frequent!). Therefore, they are silently ignored.
However, if the updated product-count is less than zero, this is considered a serious error and it is
brought to the attention of the store manager. (Negative item count is possible because of
errouneous detection of remove-item events by the RFID reader, because RFID readers are
unreliable.) The reader may question these choices and, by providing compelling arguments,
decide otherwise. For example, an unknown tag-ID (or EPC code) may occur because a new
product was introduced but never entered in the database. In this case, it may be useful to prompt
an appropriate store employee to check if the unknown tag-ID corresponds to an actual product.

There are more subtleties that should be considered in UC-1. For example, what happens if a
customer removes an item, this generates an “out-of-stock” event, but then the customer changes
his or her mind and puts the item back? Another use case (UC-2: AddItem) will detect an added
item, but should the system revoke the “out-of-stock” event? My answer is no, because this
behavior would be too complicated to implement, and leaving it alone would not cause major
problems. (Of course, a customer may place to the shopping cart a large number of items of the
same product, and then put all or most of them back. This incident may result in an unnecessary
“out-of-stock” event and a consequent replenshment task.)

Other extension scenarios for UC-1 include the possibility that the client computer is unable to
access the database, or it is unable to deliver the notification to the (mail) server. They are not
shown in the description of UC-1 and are left as an exercise to the reader.

Solutions to Selected Problems 539

For both UC-1 and UC-2, there is a risk that the actual item count in reality is different from what
the system thinks it is (and has it recorded in the database). What is the worst thing that can
happen because of an incorrect count? —The out-of-stock event will be generated too early or too
soon. This not a major concern, if the difference between the actual and observed count is small.

UC-2: AddItem — An issue arises if in UC-6: ReplenishCompleted (described below) the store
associate manually can enter the total number of items that he restocked. The system could use
this product-total to check if the RFID reader erroneously reports more items than the total
possible. An important issue is whether it is possible that a sporadic “add item” event increments
the product-count to a value greater than the total. One may argue that if there was no out-of-
stock event since the last replenishment, then the total cannot be exceeded, because customers do
not do replenishment—they just return previously removed items. However, it may happen that
an item is returned after being purchased and then re-shelved by a store employee. E.g., the item
might be purchased before the last replenishment task was completed, and returned after the
replenishment.

Notice that in UC-2, the system in not checking any thresholds. For example, at first one might
think that by detecting when the item count exceeds a threshold, this event could be used to signal
the completion of the replenshment task. However, just exceeding a threshold by one does not
mean that the employee completed the task, because it does not capture human intention. RFID
system is unreliable, but even if the system could detect the threshold event reliably, it cannot
know how many items the employee intends to restock. Only the employee doing restocking
knows when he or she completed the task as intended. Therefore, the employee must signal the
completion explicitly (see UC-6: ReplenishCompleted).

Use Case UC-3: AssignReplenishTask
Related Requirements: REQ5
Initiating Actor: Store Manager
Actor’s Goal: To assign a store associate with a task to replenish a particular shelf

with a specific product
Participating Actors: Database, Store Associate, Timeout Timer
Preconditions: • In Database, there is 1 unassigned “out-of-stock” task

• Store Manager knows the identifier of the task to assign
Postconditions: • In Database, the assigned task is moved from the list of unassigned

tasks to the list of pending tasks
• Notification “replenish-stock” sent to Store Associate;
Timeout Timer started

Flow of Events for Main Success Scenario:
 1. include::Login (UC7)
 2. Store Manager uses a task identifier to retrieve an unassigned task
 3. System retrieves the requested task from Database and displays its information
 4. Store Manager provides the identifier of a store associate to be assigned the task
 5. System checks that the store associate is available, updates the task assignee’s attribute

with the store associate identifier, and stores the task as pending to Database
 6. System notifies the Store Associate about a “replenishment-shelf” task
 7. System starts Timeout Timer and exits this use case

Flow of Events for Extensions (Alternate Scenarios):
3a. The query result for the unassigned task returned by Database is nil

Ivan Marsic Rutgers University 540

 1. System displays an error message and exits this use case
3b. The task type is not “out-of-stock”
 1. System displays an error message and exits this use case
5a. The given identifier for store associate does not exist or the associate is not available
 1. System displays an error message and asks the user to try again
 2. Same as in Step 4 above

The detailed description of UC-3: AssignReplenishTask implies that two lists are maintained in
the database: unassigned tasks and pending tasks. We may instead maintain a single list of
pending tasks, where each pending task is associated with the task assignee. When an “out-of-
stock” event occurs in UC-1, the system creates a new pending task for Store Manager: to assign
a restocking task to a Store Associate.

Notice that in the preconditions for UC-3, the system checks that there is al least one unassigned
“out-of-stock” task, rather than checking whether a product count is lower than a threshold. We
trust that an unassigned task is created because product-count Threshold, and this is stated as a
postcondition for UC-1. If UC-1 is correctly implemented, there is no need to check its
postconditions in UC-3.

Before assigning a task in UC-3, the store manager may first check that the store has this product
in the stockroom. Otherwise, it must be ordered from a supplier. Also, he may check the
availability of different store associates (to avoid assigning task to an employee who is not on
shift) and their existing workload.

An important issue that needs to be resolved is whether the manager will see only the restocking
tasks or all tasks assigned to different employees, such as cleaning, posting promotional coupons
on the shelves, contacting the suppliers, manning the checkout registers, etc. A categorization of
tasks would be helpful when picking the employee for a task. Each employee is best suited for a
different type of job. E.g., do not assing a person of small stature to do heavy-item restocking.

Another extension is to support assigning priorities to tasks. For example, “out-of-stock” has a
greater priority than a “low-stock” event; products that are more popular should be restocked
first; products that are more expensive should be restocked first, etc. The priority may be decided
on other factors, such as supplier agreements, seasonal products, etc. Another possibility is that
the manager may wish to minimize the delay for overdue tasks, so these tasks get the highest
priority. We may also consider the option of having the system automatically to prioritize the
pending tasks, based on a set of logical rules. The manager would then assign the highest priority
task first (or re-assign, for overdue tasks).

Currently, we assume that the manager does not specify the time by which he/she wants the
replenishment task done. The priority just reflects on the task’s ranking, but does not guarantee
timeliness—no specific deadline is set. Assigning a high priority to a task will ensure that this
task will be worked on among the first ones, but does not guarantee that the task will be
performed before a desired deadline. Worse, the deadline is not explicitly stated or recorded.
Should we allow the manager to specify a deadline, and what should happen if the deadline is not
met? For example, the system may automatically reassign the task to another employee without
bothering sending repeated reminders. This is a business rule that needs to be implemented.

UC-4: ViewPendingWork — Store Manager

Solutions to Selected Problems 541

UC-5: SendReminder ensures that the replenishment task is assigned within a reasonable period.
This use case also addresses REQ5, so perhaps it can be omitted from the solution (and similar is
true for UC-4: ViewPendingWork), but it is provided here for completeness. Detailed description
for UC-5: SendReminder is as follows:

Use Case UC-5: SendReminder
Related Requirements: REQ4 and REQ5
Initiating Actor: Timeout Timer
Actor’s Goal: To remind Store Manager that the replenishment task must be

assigned for an out-of-stock product
Participating Actors: Store Manager
Preconditions: • Timeout occurred for an unassigned “out-of-stock” task
Postconditions: • Count of notification attempts for the task incremented in Database

• If attempts-count max-attempts, then “out-of-stock” notification
 re-sent to Store Manager; else notification sent system-wide
• Timeout Timer re-started

Flow of Events for Main Success Scenario:
 1. System sends notification “out-of-stock” to Store Manager
 2. System starts Timeout Timer and exits this use case

Flow of Events for Extensions (Alternate Scenarios):
1a. Number of notification attempts exceeded a maximum
 1. System sends a store-wide “out-of-stock” notification
 2. Same as in Step 2 above

The extension scenario accounts for the possibility that the store manager does not react on the
notification for a long time, e.g., because he or she fell ill or quit the job. Because the store must
continue functioning normally, the system should notify a pre-specified set of workers about this
exception, so the responsibility can be reassigned.

There is an extension of this use case for reminding the Store Associate if the shelf-replenishment
completion is not reported within a specified time. I leave it to the reader as an exercise to write
this extension of UC-5.

If rigid timers are a concern then the system may adaptively compute the new timer period before
exiting this use case. So, during busy shopping periods reminders could be sent more often. This
adaptation would help preventing missed sales on a busy day. However, the developer should
keep in mind that many factors (other than sending frequent reminders) influence timely
completion of the replenishment task, such as availability of the employees, their current
workload, availability of products in the stockroom, etc.

In the current version of UC-5, if a shelf-replenishment task is overdue, the system first sends a
reminder only to the store associate, and then storewide. An option is to add an intermediate
level, where a notification is sent to the manager, and only if the manager does not react, send it
storewide.

UC-6: ReplenishCompleted — The system could also allow the store associate to enter the total
number of new items that were restocked. This way the system would know how many items
were actually placed and make a correction if the reader misreported the item count. This total

Ivan Marsic Rutgers University 542

can be used to check that the number of “remove item” events (UC-1) is never greater than the
total, unless there were some “add item” events (UC-2) in the meantime.

When the store associate is restocking the shelf, we assume that the items are already tagged with
their RFID tag at another location. If this assumption is not true (i.e., the store associate does tag
the items while restocking), then the system may have issues with duplicate readouts of the same
tag. (Recall that the tag EPC does not distinguish individual items, but rather only the product
types!) We may install a small display on each shelf to show the associate the current number of
items and allow for corrections in case the system got it wrong. However, it would be very
inefficient if the associate made corrections every time a wrong count is obtained. A more
efficient approach is to enter the total count at the end of restocking. Of course, this approach
assumes that the associate knows the correct total and enters it correctly into the system!

Problem 2.17 — Solution

Problem 2.18 — Solution

Problem 2.19: Home Access Using Face Recognition

The detailed description of AddUser for case (a), local implementation of face recognition, is as
follows. (The use case RemoveUser is similar and left as an exercise.)

Use Case UC-3: AddUser (sub-use case)

Related Requirements: REQ6 stated in Table 2-1

Initiating Actor: Landlord

Actor’s Goal: To register a new resident and record his/her demographic information.

Participating actors: Tenant

Preconditions: The Landlord is properly authenticated.

Postconditions: The face recognition system trained on new resident’s face.

Main Success Scenario:
 1. Landlord requests the system to create a new user record
 2. System (a) creates a fresh user record, and (b) prompts for the values of the fields (the

new resident’s name, address, telephone, etc.)
 3. Landlord fills out the form with the tenant’s demographic information and signals

completion
 4. System (a) stores the values in the record fields, and (b) prompts for the Tenant’s

“password,” which in this case is one or more images of the Tenant’s face
 5. Tenant poses in front of the camera for a “mug shot” and signals for image capture
 6. System (a) performs and affirms the image capture, (b) runs the recognition training

algorithm until the new face is “learned,” (c) signals the training completion, and (d)
signals that the new tenant is successfully added and the process is complete

Solutions to Selected Problems 543

For case (b), where face recognition is provided by a remote company, we need to distinguish a
new actor, the FaceReco Company that provides authentication services. The detailed use case is
as follows:

Use Case UC-3v2: AddUser

Related Requirements: REQ6 stated in Table 2-1

Initiating Actor: Landlord

Actor’s Goal: To register a new resident and record his/her demographic information.

Participating actors: Tenant, FaceReco

Preconditions: The Landlord is properly authenticated.

Postconditions: The face recognition system trained on new resident’s face.

Main Success Scenario:
 1. Landlord requests the system to create a new user record
 2. System (a) creates a fresh user record, and (b) prompts for the values of the fields (the

new resident’s name, address, telephone, etc.)
 3. Landlord fills the form with tenant’s demographic information and signals completion
 4. System (a) stores the values in the record fields, and (b) prompts for the Tenant’s

“password,” which in this case is one or more images of the Tenant’s face
 5. Tenant poses in front of the camera for a “mug shot” and signals for image capture
 6. System (a) performs the image capture, (b) sends the image(s) to FaceReco for training

the face recognition algorithm, and (c) signals to the Landlord that the training is in
progress

 7. FaceReco (a) runs the recognition training algorithm until the new face is “learned,”
and (b) signals the training completion to the System

 8. System signals to the Landlord that the new tenant is successfully added and the
process is complete

Notice that above I assume that FaceReco will do training of their recognition system in real time
and the Landlord and Tenant will wait until the process is completed. Alternatively, the training
may be performed offline and the Landlord notified about the results, in which instance the use
case ends at step 6.

Problem 2.20: Automatic Teller Machine — Solution

Problem 2.21: Virtual Mitosis Lab — Solution

The solution is shown in Figure H-6. The cell elements mentioned in the problem statement
(described at the book website, given in Preface), directly lead to many concepts of the domain
model: bead, centromere, nucleus, cell, guideline, etc. Two animations are mentioned in Figure 2
(see the problem statement at the book website), so these lead to the concepts of
ProphaseAnimator and TelophaseAnimator. Also, the Builder concept is derived directly from the
problem statement.

Ivan Marsic Rutgers University 544

The concept which may not appear straightforward is the StateMachine. We may be tempted to
show only the “Next” button, which is mentioned in the problem statement, as a concept. But,
that does not tell us what is controlling the overall flow of the simulation. This is the task for the
StateMachine, which keeps track of the current stage and knows when and how to transition to
the next one. The “nextStageEnabled” attribute is set true when the StateMachine is notified of
the current stage completion. This lets the user to proceed to the next stage of mitosis.

Notice that some concepts, such as Centromere, Bead, and Nucleus, are marked as “thing”-type
concepts, because they only contain data about position, color, and do not do any work.
Conversely, the “worker”-type concepts, such as Chromosome and Cell exhibit behaviors. Given
a non-zero displacement, the Chromosome has to bend according to the parabolic equation
derived in the problem sttement at the book website (given in Preface). The Cell notifies the
StateMachine when the user completes the required work.

In terms of entity-boundary-control classification, StateMachine is a «control» object because it
coordinates the work of other objects. NextButton and Instructions are «boundary» objects. All
other objects are of «entity» type.

Some attributes are not shown. For example, beads, centromere, nucleus, cell, guidelines, etc.,
also have the size dimension but this is not shown because it is not as important as other
attributes.

Also, some associations are omitted to avoid cluttering the diagram. E.g., the animators have to
notify the StateMachine about the completion of the animation. Some concepts are related in
more than one way. For example, Chromosome contains Beads and Centromere, but I chose not
to show this. Instead, I show what I feel is more important, which is Beads are-uniformly-
aligned-along Chromosome and Centromere is-centered-at Chromosome. These associations are

Centromere

color
position

centeredAt

notifiesCompletion

ManualBuilder

co
nt

a
in

s

starts

Cell

Chromosome

color
position
displacement

Bead

color
position

Nucleus

visible

Spindle

position
length

«control»
StateMachine

tableOfStates
currentState
nextStageEnabled

AutoBuilder

Equator

ProphaseAnimator

no
tif

ie
sC

om
pl

e
tio

n

uniformlyAlignedAlong

Guideline

position

*1

1 1

contains

1

1

co
nt

ai
ns

notifiesC
om

p
letion

1

1 .. 4

1 2

contains

contains

11
1

2

m
ak

es
In

vi
si

bl
e

m
ak

es
V

is
ib

le

TelophaseAnimator

splitsInTwo

Student

«boundary»
NextButton

«boundary»
Instructions

pushes

transitions

displays

Figure H-6: The domain model for the cell division virtual laboratory (Problem 2.16).

Solutions to Selected Problems 545

important to note because they highlight the geometric relationship of the chromosome and its
elements.

In anaphase, a yet-to-be specified concept has to make spindle fibers visible and centromeres
displaceable. Also, the AutoBuilder manipulates all the cell components, and the ManualBuilder
snaps the Beads into their final position. It is debatable whether the Guideline should be
associated with the Nucleus or with the ManualBuilder, because unlike other concepts, which
correspond to physical parts of the cell, the guidelines are an abstraction that only serves to help
the user construct the cell. I have shown it associated with Nucleus.

The notifications shown in the model are tentative and need to be reconsidered in the design
phase. In the Build phase, it makes sense that each Chromosome notifies the Cell of its
completion. The Cell, in turn, notifies the Builder when it has two Chromosomes completed,
which finally notifies the StateMachine.

Problem 2.22 — Solution

Problem 2.23 — Solution

Problem 2.24 — Solution

Problem 2.25 — Solution

Problem 2.26 — Solution

Problem 2.27 — Solution

Problem 2.28 — Solution

Problem 2.29: Fantasy Stock Investment — Solution

(a)

Based on the given use case BuyStocks we can gather the following doing (D) and knowing (K)
responsibilities. The concept names are assigned in the rightmost column.
Responsibility Description Typ Concept Name
Coordinate actions of all concepts associated with a use case and delegate
the work to other concepts.

D Controller

Ivan Marsic Rutgers University 546

Player’s account contains the available fantasy money currently not
invested into stocks (called account balance). Other potential info includes
Player’s historic performance and trading patterns.

K InvestmentAcct

A record of all stocks that Player currently owns, along with the quantity
of shares for each stock, latest stock price, current portfolio value, etc.

K Portfolio

Specification of the filtering criteria to narrow down the stocks for
querying their current prices. Examples properties of stocks include
company name, industry sector, price range, etc.

K QuerryCriteria

Fetch selected current stock prices by querying StockReportingWebsite. D StockRetriever
HTML document returned by StockReportingWebsite, containing the
current stock prices and the number of available shares.

K StockPricesDoc

Extract stock prices and other info from HTML doc StockPricesDoc. D StockExtractor
Information about a traded stock, such as ticker symbol, trading price, etc. K StockInfo
Prepare HTML documents to send to Player’s Web browser for display.
E.g., create a page with stock prices retrieved from StockReportingWebsite

D PageCreator

HTML document that shows Player the current context, what actions can
be done, and outcomes of the previous actions/transactions.

K InterfacePage

Info about a product, e.g., company name, product description, images, … K Advertisement
Information about advertising company; includes the current account info. K AdvertiserAcct
Choose randomly next advertisement to be displayed in a new window.
Update revenue generated by posting the banner.

D AdvertisePoster

Transaction form representing the order placed by Player, with stock
symbols and number of shares to buy/sell.

K OrderForm

Update player’s account and portfolio info after transactions and fees.
Adjust the portfolio value based on real-world market movements.

D AcctHandler

Log history of all trading transactions, including the details such as
transaction type, time, date, player ID, stocks transacted, etc.

D Logger

Watch periodically real-world market movements for all the stocks owned
by any player in the system.

D MarketWatcher

Track player performance and rank order the players for rewarding. D PerformTracker
Persistent information about player accounts, player portfolios, advertiser
accounts, uploaded advertisements, revenue generated by advertisements,
and history of all trading transactions.

K Database

Information on the Fantasy Stock Investment Website’s generated
revenue, in actual monetary units, such as dollars.

K RevenueInfo

Although it is generally bad idea to mention specific technologies in the domain model, I breach
this rule by explicitly mentioning HTML documents because I want to highlight that the system
must be implemented as a Web application and HTML will remain the Web format for the
foreseeable future.

It may not be obvious that we need three concepts (StockRetriever, StockExtractor, PageCreator)
to retrieve, extract, format, and display the stock prices. The reader may wonder why a single
object could not carry out all of those. Or, perhaps two concepts would suffice? This decision is a
matter of judgment and experience, and my choice is based on a belief that that the above
distribution allocates labor roughly evenly across the objects. Also, the reader may notice that
above I gathered more concepts than the use case BuyStocks alone can yield. Some concepts are
generalized to cover both buying and selling transaction types. Other concepts, such as
MarketWatcher, PerformTracker and RevenueInfo are deduced from the system description,

Solutions to Selected Problems 547

rather than from the use case itself. Finally, the above table is only partial, because some obvious
responsibilities, such as user authentication, are currently unassigned.

Also, having the Portfolio concept alone is probably inadequate, because we may want to know
details of each stock a Player owns. For this, we could re-use the StockInfo concept, so that
Portfolio contains StockInfo. But this may be inadequate because StockInfo represents the current
status of a stock on an exchange and the portfolio information may need a different
representation. For example, we may want to know the price at which a stock was bought
originally as well as its historic price fluctuations. Hence, a new concept should be introduced.
Also, an additional concept may be introduced for Player’s contact and demographic information.

(b)

Attributes:

Once the concepts are known, most of the attributes are relatively easy to identify. One attribute
which may not be obvious immediately is the website address of the StockReportingWebsite. Let
it be denoted as URL_StockRepSite and it naturally belongs to the StockRetriever concept.

Associations:

It is left to the reader to identify and justify the associations. My version is shown in Figure H-7.
One association that may be questionable at first is “asks for stock prices” between
MarketWatcher and StockRetriever. The reason is that I assume that MarketWatcher will use the
services of StockRetriever to obtain information about market movements, instead of duplicating
this functionality. MarketWatcher only decides what stocks to watch (all owned by any of our
investor players), how frequently, and then convey this information to AcctHandler to update the
values of Portfolios.

(c)

«control»
Controller

«entity»
InvestmentAcct

investorName
accountBalance
rewardBalance

«control»
StockRetriever

URL_StockRepSite

«entity»
PageCreator

«entity»
AcctHandler

«entity»
Portfolio

ownedStocks
portfolioValue

«boundary»
QueryCriteria

selectedFilters

«boundary»
StockPricesDoc

«boundary»
InterfacePage

«entity»
Advertisement

«entity»
Logger

«entity»
StockInfo

tickerSymbol
sharePrice
availableShares

«entity»
AdvertiserAcct

companyName
balanceDue

«entity»
AdvertisePoster

«boundary»
OrderForm

stocksToTrade

«entity»
MarketWatcher

«entity»
StockExtractor

gi
ve

sP
ag

es
T

oD
is

pl
a

y

receives

po
st

s
re

ce
iv

e
s

as
ks

F
o

rN
ew

A
d

re
tr

ie
ve

s

contains

updates

updates

receives

pr
o

ce
ss

es

no
tif

ie
s extracts

as
ks

F
or

S
to

ck
P

ric
es

Figure H-7: The domain model for the fantasy stock investment website (Problem 2.18).

Ivan Marsic Rutgers University 548

The domain model is shown in Figure H-7.

(d)

Concept types are already labeled in Figure H-7. Advertisement could be argued as «boundary»,
but I label it as «entity», because this is actually the info stored in database, based on which the
actual banner is generated. All concepts that appear on the boundary of the system, either
between the system and the user’s browser or between the system and the stock reporting website
are marked as «boundary». So far we have two «control» concepts, and as we process more use
cases, we may need to introduce dedicated Controllers for different uses cases. The remaining
concepts are of «entity» type.

It may not be readily apparent that StockRetriever should be a «control» type concept. First, this
concept interacts with actors, in this case StockReportingWebsite, so it is another entry point into
our system. The most important reason is that StockRetriever will be assigned many coordination
activities, as will be seen later in the solution of Problem 2.21.

Problem 2.30: Automatic Teller Machine — Solution

The solution is shown in Figure H-8.

alt

id := create()

e := getNext()

: Controller : IDChecker : CustomerIDStore : AcctManager: AcctInfo

balance := withdraw(amt)

alt

Customer
enterCard()

: CustomerID

acct := checkID(id) loop

: CashDispenserCtrl: GUI

dispenseCash()

acct != null

balance >= 0

compare(id, e)

enterPIN()

askPIN()

enterCustomerID()

askAmount()
askAmt()

enterAmt()

acct := create()

enterAmount(amt)

notifyInvalidID()
[else]

notifyID()

[else]

Figure H-8: The sequence diagram for the ATM, use case “Withdraw Cash” (Problem 2.19).

Solutions to Selected Problems 549

Problem 2.31: Online Auction Site — Solution

The solution is shown in Figure H-9. As already stated, in this simple version I assume that the
items have no attribute indicating the auction expiration date.

Although viewing bids before making decision is optional, I assume that this is a likely
procedure. Before closing, Seller might want to review how active the bidding is, to decide
whether to hold for some more time before closing the bid. If bidding is “hot,” it may be a good
idea to wait a little longer.

The system loops through the bids and selects the highest automatically, rather than Seller having
to do this manually.

Notice that in this solution the system does not notify the other bidders who lost the auction; this
may be added for completeness.

The payment processing is part of a separate use case.

Problem 2.32: Fantasy Stock Investment — Solution

(a)

List of responsibilities:

R1. Send the webpage received from StockReportingWebsite to StockExtractor for parsing

getItem(name)

: Controller

Seller
viewBids(itemName)

closeAuction(itemName)

Buyer

: ItemsCatalog : ItemInfo

getBidsList()

display bids

Before
displaying bids,
Controller could
sort them in
descending order.

Seller decides
to go with the
highest current
bid.

getItem(name)

getBidsList()

getNext()loop

compare bid amounts

: BidsList

Automatically
select the highest
current bid.

: Bid

getBidder()

: BuyerInfo

getAddress()

send email notification

setReserved(true)

Figure H-9: The sequence diagram for the online auction website, use case CloseAuction
(Problem 2.20).

Ivan Marsic Rutgers University 550

R2. Send message to PageCreator to prepare a new webpage and insert the retrieved stock
prices, the player’s account balance, and an advertisement banner

R3. Send message to AdvertisePoster to select randomly an advertisement

R4. Pass the webpage to Controller to send it to the player’s web browser for viewing

Figure H-10 shows a feasible solution. Because StockRetriever is the first object to receive the
stock prices from a third-party website, it naturally gets assigned R1. In this solution it also gets
assigned R2 and R4, thus ending up performing most of the coordination work. Another option
would be to assign R2 to StockExtractor by the principle of Expert Doer, because it first gets hold
of StockInfo. However, High Cohesion principle argues against StockExtractor collaborating with
PageCreator. Parsing HTML documents and extraction of stock information is sufficiently
complex that StockExtractor should not be assigned other responsibilities.

The diagram in Figure H-10 should be extended to consider exceptions, such as when the query
to StockReportingWebsite is ill formatted, in which case it responds with an HTML document
containing only an error message and no stock prices.

Problem 2.33 — Solution

Problem 2.34: Patient Monitoring — Solution

Problem 2.35 — Solution

The reader should note a usability problem with the given draft design. Consider a scenario where
a vital sign sensor just failed and it reports out-of-range values, although the patient’s vitals are
currently normal. In this case, first a message will be sent to the hospital alerting about abnormal
vitals. Then, the diagnostic tests will be run and the sensor will be found faulty. A second

extractStocks()
si := create()

postPage(page)

: StockRetriever : StockExtractor si : StockInfo : PageCreator : InvestmentAcct: AdvertisePoster

ad := selectAd()

receive
(StockPricesDoc)

page := preparePage(si)

: Controller

bal := getBalance()

alt bal >= 0
page :=
createTradingPage()

page :=
createWarningPage()

getInfo()

si

Figure H-10: A sequence diagram for the fantasy stock investment website (Problem 2.21).

Solutions to Selected Problems 551

message will be sent to the hospital informing about a faulty sensor. The reader should consider
whether this scenario would cause confusion with the hospital personnel, and how the given
design should be improved to improve the usability. (Note that running diagnostic tests before
each measurement may not be a solution, because the tests may take time and one should assume
that the hardware is of good quality and does not break often. A better solution should be
conceived.) A similar issue exists when the patient begins exercise—the system first measures the
vital signs, finds them to be out-of-range, and alerts the hospital. The vitals will be adjusted in the
same cycle, but a false alarm would have been unnecessarily generated.

Finally, the draft design is unclear about this detail, but one would hope that all vital signs are
checked for abnormality before a single alert is sent to the hospital, instead of sending individual
alerts for different out-of-range vitals. This approach conserves the battery energy (although by
removing redundant messages it may impact the communication reliability!)

Below I solve both (a) and (b) parts of the problem together.

Start by observing the way the existing design treats the Vitals Safe Ranges. It assumes a method
adjust(exercise-mode) called by the Controller. It is hard to imagine that the new safe
range values would be computed in real time, either by the Controller or by VSafeRanges. These
values must be pre-computed and available. Because safe ranges contain very small amount of
data, there is no need to reload the appropriate values from the database. Instead, VSafeRanges
would simply switch to different values, depending on whether the patient is exercising. One can
imagine that VSafeRanges would have a Boolean attribute isExercising set by the method
adjust(). Therefore, a more apt name for this method would be setExercising(). Based
on the current value of isExercising, VSafeRanges’ method getValues() would return
appropriate ranges.

One may observe that Expert Doer Principle is not well used, because there are several messages
that are sent by objects that acquired the message information second-hand, from other objects
that first determined the information needed to send the message. Specifically, the Controller asks
AbnormalityDetector, SensorDiagnostic, and ActivityObserver to obtain certain information and
return it back to the Controller. Finally, the Controller sends respective messages to the
HospitalAlerter and VitalsSafeRanges. If we adhered to Expert Doer, the messages should have
been sent by the original information sources, which in our case are: AbnormalityDetector,
SensorDiagnostic, and ActivityObserver.

However, the adherence to Expert Doer would conflict with High Cohesion Principle, because
the original information sources would be assigned an additional responsibility of sending the
messages in addition to their primary responsibility of determining the relevant information.
Given that AbnormalityDetector, SensorDiagnostic, and ActivityObserver already have non-
trivial responsibilities, we should be reluctant to assign them any additional responsibility.

A key strength of the given design is that most objects have a low dependency on other objects:
they only report their results back to the Controller. Only the Controller has many need-to-know
responsibilities, such as isOutOfRange, isFaulty, and isExercising. This approach
results in a low cohesion for the Controller. Also, the given design achieves low coupling on most
objects except the Controller, since other objects are not concerned with communicating data
other than to the Controller. This is a common tradeoff in design of real systems which achieves
centralization and understandability of the code. Although the Controller has many

Ivan Marsic Rutgers University 552

communication responsibilities, the task is simplified because the communications follow a
uniform pattern: readingclassifyingalerting. There is one place to look for understanding the
system flow: all sensing tasks follow a uniform chain of actions:

data := readSensor()

: Alerter: SensorReader

[ok == FALSE]

: Classifier: Controller

ok := isAnomalous(data)

opt send(Alert)

check data

wakeup

We will slightly improve upon this design in the next sequence diagram.

One may believe that merging some of the concepts would simplify the given design. For
example, FailureDetector may appear redundant and SensorDiagnostic sufficient to assume both
responsibilities: “run the tests” and “interpret the results.” This assumption would be true only if
one or both of these responsibilities are trivial to implement.

Other candidates for simplification include: ActivityObserver, ActivityClassifier, and
ActivityModel. Again, this assumption would be true only if some or all of these responsibilities
are trivial to implement. However, although reading the activity sensor may not be complex,
activity classification is a very complex task. To become convinced, I urge the reader to try to
think about an algorithm that takes accelerometer input and decides if it represents exercise. I
suspect that several more classes would be needed for a good design, rather than merging the
given three classes.

Taken to the extreme, this strategy of simplification would lead to three responsibilities:
“sensing,” “classification,” and “alerting.” However, such “simplification” would actually make
the design worse, because each of the associated concepts would be bloated with complex
responsibilities. The complexity would be just shifted from the structure between the classes into
the classes themselves. In effect, the complexity would be hidden inside individual classes. The
structure would appear simple, but each class would be very complex! In terms of design
principles, the new design would exhibit loose coupling (good) but also low cohesion (bad). We
cannot avoid the elementary computations needed for “sensing,” “classification,” and
“alerting”—all we can do is to redistribute those computations. Good design helps us expose the
conceptual structure of the computations and distribute them across several classes.

There is a more subtle coupling problem with the draft design. ActivityClassifier cannot decide if
the patient is exercising based on individual samples from the motion sensor. It must maintain a
time series data and perform continuous classification of the patient activity. As a result,
ActivityClassifier needs to be “statefull” and will maintain a Boolean attribute isExercising.
Earlier we mentioned that VSafeRanges will also maintain the same state variable. The coupling
problem arises because the system must ensure the consistent value for duplicate copies of the

Solutions to Selected Problems 553

state variable isExercising. This problem can be avoided by maintaining a single copy of
isExercising and retrieving it when needed, as shown in this modified design:

vital := readVitalSign()

: VSafeRanges: VitalSignReader

wakeup

[abnormal == TRUE]

: AbnormalDetect

: Controller

ranges := getValues(isExer)

abnormal := isOutOfRange(vital, isExer)

opt
send(Hospital Alert Abnormal Vitals)

check if in/out

: ActivityClassif

isExer := isExercising()

Problem 2.36 — Solution

Problem 3.1 — Solution

Problem 3.2 — Solution

We can name the states as desired, but we must ensure that the entire state space is covered in our
state diagram. The state space is shown in the figure (a). There are four different states, but there
is only one type of the event: button-pushed. The corresponding UML state diagram is shown in
the figure (b).

Ivan Marsic Rutgers University 554

Counting Arming Lock

counter = 0 (if counting down)
or: duration threshold

(if counting up)

Initializing Stopped

unlock

lock

Paused
resume

pause

State space
B

u
lb

 2

Bulb 1

Unlit

Lit

Unlit Lit

State space
B

u
lb

 2

Bulb 1

Unlit

Lit

Unlit Lit

(a) (b)

button-pushed

button-pushed

button-pushedbutton-pushed

State diagram

Bulb1 lit
Bulb2 unlit

Bulb1 unlit
Bulb2 lit

Both bulbs
unlit

Both bulbs
lit

button-pushed

button-pushed

button-pushedbutton-pushed

State diagram

Bulb1 lit
Bulb2 unlit

Bulb1 unlit
Bulb2 lit

Both bulbs
unlit

Both bulbs
lit

Problem 3.3 — Solution

(a)

List of states:
 Counting – In this state, the auto-locking subsystem is counting down (or, up) for the

duration of the timeout time. (We are assuming that the lock is currently open.)
 Stopped – In this state, the auto-locking subsystem is idle waiting for the user to open the

lock. (We are assuming that the lock is currently closed.)
 ArmingLock – In this state, the auto-locking subsystem is arming the lock device.
 Initializing – In this state, the auto-locking subsystem is initializing the timer for the

requested duration of the timeout time.
 Paused – In this state, the counting is suspended (it has not reached the threshold yet)

either for a given period or indefinitely.

(b)

List of events:
 Counter expired – counter = 0 (if

counting down), or: duration
threshold (if counting up)

 Lock – User requested arming the lock
 Unlock – User requested disarming the lock
 Pause – User requested pausing the countdown
 Resume – User requested resuming the countdown

Notice that for the remaining two transitions (Arming
Stopped, and Initializing Counting) the transition is
automatic (after the state activity is completed) and it is not caused
by an event.

Problem 3.4: Virtual Mitosis Lab — Solution

Initial part of the state transition table is shown in Figure H-11. The stages follow each other in
linear progression and there is no branching, so it should be relatively easy to complete the table.

Solutions to Selected Problems 555

StateMachine

states : Hashtable
current : Integer
completed : boolean

+ next() : Object
+ complete() : Object
+ back() : Object

The design is changed so that the Boolean attribute “nextStageEnabled” is abandoned in favor of
splitting each mitosis stage into two states: stage-started and stage-completed.

Notice that the domain model in Figure H-6 does not include a concept
that would simulate the interphase stage. Because interphase does not
include any animation and requires no user’s work, we can add a dummy
object, which is run when interphase is entered and which immediately
notifies the state machine that interphase is completed.

Part of the state diagram is shown in Figure H-12. I feel that it is easiest to
implement the sub-states by toggling a Boolean variable, so instead of subdividing the stages into
stage-started and stage-completed as in the table in Figure H-11, the class StateMachine
would have the same number of states as there are stages of mitosis. The Boolean property
completed, which corresponds to the “nextStageEnabled” attribute in Figure H-6, keeps track
of whether the particular stage is completed allowing the user to proceed to the next stage. The
class, shown at the right, has three methods: next(), complete(), and back(), which all
return Object, which is the output issued when the machine transitions to the next state.

Build started

Build completed

Interphase started

Interphase completed

C
u

rr
e

n
t

s
ta

te

Next state

Output

Input

Next Completion
notification

Build completed

Build end-display

Interphase started

Interphase start-display

Interphase completed

Interphase end-display

Prophase started

Prophase start-display

Prophase started
Prophase completed

Prophase end-displayrun ProphaseAnimator

Prophase started

Back

Build started

Build start-display

Build started

Build start-display

Interphase started

Interphase start-display

Interphase started

Interphase start-display

Figure H-11. Partial state transition table for the mitosis virtual lab (Problem 3.4). The
empty slots indicate that the input is ignored and the machine remains in the current state.

Ivan Marsic Rutgers University 556

Problem 3.5 — Solution

We identify the two most important entities of the inventory tracking system as Shelf (there are
many shelves in the store), and Replenish-Task. Notice that there may be more than one products
out-of-stock at once. Similarly, there may be several replenish tasks currently in the system. See
Figure H-13 for their state diagrams.

The task j is created when a shelf replenishment is needed, i.e., the system detects “low-stock”
and “out-of-stock” states for a product, rather than when the store manager assigns a store
associate to the task. This way the system can send periodic reminders:

- to the store manager, in case the replenishment task is not assigned within a specified time

- to the store associate, in case the replenishment task is not completed within a specified time.

mitosis stage i

complete /
show end-display

next /
warning

mitosis stage i 1

next /
show
start-display

back / show start-displayback / show start-display

completed = falsecompleted = true

next /
show
start-display

mitosis stage i + 1

completed = truecompleted = true

Figure H-12: Partial state diagram for the mitosis virtual lab (Problem 3.4).

Solutions to Selected Problems 557

We may consider introducing an additional state for the replenishment task, Task-In-Progress, so
that the store associate can inform the system that he or she is currently restocking the shelf. The
purpose of this state is to avoid unnecessary messages about a depletion state to the store
manager. For example, if the store associate puts one item on an empty shelf and the customer
immediately removes this item, the system would generate an unnecessary “out-of-stock”
message for the store manager. The system should also start a timer to send reminders if the task
is not reported as completed within a specified interval (see the discussion of a potential use case
UC-8: StartReplenishing in the solution of Problem 2.10).

Problem 3.6 — Solution

item-added

item-removed
[count THRESHOLD]

Shelf_i state:

Task_j state:

Product_i
stocked

task-assigned /
notify-associate

item-removed
[count < THRESH] /

notify-manager

item-added

item-added

item-removed
[THRESH > count > 0]

Product_i
low-stock

item-removed
[count = 0] /

notify-manager

item-added

Product_i
out-of-stock

task-completed /
notify-manager

timeout /
notify-associate

timeout /
notify-manager

Task_j
needed

Task_j
completed

Task_j
assigned

Figure H-13: State diagrams for Shelf and Task entities (Problem 3.5).

Ivan Marsic Rutgers University 558

Problem 3.7: Elevator Control — Solution

Part of the interaction diagram is shown in Figure H-14. The UML diagram shows only the
interaction sequence for the case when the elevator car arrives at floor f. The other two cases,
when the car departs from the current floor and when a physical button is pushed are left to the
reader as exercise. Notice that we do use several “opt” choices rather than an “alt” choice,
because the events (car-arrived, car-departed, button pushed) are not mutual
alternatives. Although car-arrived and car-departed cannot happen at the same time,
they should not be represented with an “alt.” Because it may be that neither one of
them happened, it is not appropriate to show them as:

IF (car-arrived) THEN do-actions-when-car-arrived
ELSE do-actions-when-car-departed

(Note: Compare this solution to that of Problem 5-6.)

setIlluminate(
false)

dcf : DoorControl: CarControl: InfoPanel

arrivedAt(f : int)

start

: ElevatorMain

loop

obf : OutButton ibf : InButton

illuminate()

readFloorSensors()

readButtons()

adjustDisplay()

stopMotor()
stopAt(f : int)

openDoors()

startMotor()

setIlluminate(false)

illuminate()

opt car arrived at floor f

closeDoors()

operateDoors()

{30 sec.}

opt button(s) pushed

car departedopt

Figure H-14. Partial interaction diagram for the elevator problem (Problem 3.7).

Solutions to Selected Problems 559

Problem 3.8: OCL Contract for Auction Website — Solution

First, we need to add one attribute and one operation to the original class diagram, to make the
solution easier. We will add an attribute heldBy : BuyerInfo on the class ItemInfo,
which refers to the person to whose name the item is currently reserved (if any). To access this
attribute, we add operation getHeldBy() : BuyerInfo on the same class.

Finally, we will also need to check for the highest bidder. Unlike old-fashioned auctions where all
participants are in the same room, we cannot assume that the highest bid will arrive last. The
order of bid arrivals will depend on the time an order is placed as well as on network delays.
Therefore, bids must be explicitly ordered. There is an interesting side issue of how and when the
class BidsList determines the highest bidder. One option is to introduce an operation
getHighestBidder() : BuyerInfo and do sorting every time this operation is invoked.
Another option is to sort the bids every time a new bid is added, in which case the highest bid is
accessed as the first item (head) of the list. The reader may wish to consider which solution is
more efficient. Here, we will opt for the latter solution, and so the link between BidsList and
Bid in the original class diagram needs the label {ordered} near the Bid class symbol,
indicating that the list of bids is ordered (from highest to lowest).

We will assume that an item in the catalog is either available for bidding (then its auction is
open), or reserved (then its auction is temporarily closed, until the payment is processed). If the
highest bidder reneges and abandons the bid, then the item again becomes available. Otherwise, if
the payment is successful, the item is removed from the catalog. Therefore, for the preconditions,
all we need to check is that the item is not reserved:

context Controller::closeAuction(itemName) pre:

 !self.findItem(itemName).isReserved()

As for postconditions, we have to ensure that (1) the item is reserved and (2) under the name of
the highest bidder (given that there was at least one bidder):

context Controller::closeAuction(itemName) post:

 findItem(itemName).isReserved()

context Controller::closeAuction(itemName) post:

 if not

 findItem(itemName).getBidsList()->isEmpty()

 then

 findItem(itemName).getHeldBy().getName().equals(

 findItem(itemName).getBidsList()->first().
 getName()@pre

)

Notice that all of the above operations return a single object, except for getBidsList() which
returns a collection. In the latter case, we use the arrow symbol ->. Recall that BidsList

Ivan Marsic Rutgers University 560

maintains an {ordered} list of Bids, so the returned collection is a sequence, and the highest
bidder is accessed as the first item of the sequence.

Problem 3.9 — Solution

Problem 3.10 — Solution

Problem 3.11 — Solution

(a)

We identify the elements of the problem domain and show in the following context diagram:

(1) Patient

(3) Vital sign
sensors

(2) Hospital

(6) Battery

System-to-be

(5) Sensor
failure modes

(4) Normal ranges for vitals
(incl. resting vs. exercise)

(9) Communication system

(7) Battery-low threshold

(8) Motion sensor

The system-to-be is shown as composed of subsystems (shown as smaller boxes inside the
system’s box) that implement different requirements. There are nine sub-domains of the problem
domain. The key sub-domains are the patient (1) and the hospital (2). Information about normal
ranges for vital signs (4) and the description of failure modes (5) for sensors are expected to be
relatively complex. They need to be specified during the requirements analysis phase, with help
of domain experts. Therefore, they are shown as distinct parts of the problem domain. Although
the threshold for low battery power (7) is a single numeric value, such as 10 %, we expect that
special domain expertise is needed to estimate the remaining battery lifetime based on raw data,
such as voltages. Given that wireless communication link is relatively unreliable and the
monitoring device needs to transmit safety-critical information about patient’s state, we may also
need to explicitly consider the characteristics of the communication system (9).

The following table summarizes the system requirements, based on Problem 2.3 — Solution:
Requirement Problem domain Action required on problm dom.
REQ1: monitor and alert

about abnormal vitals
patient, specifications of
normal vitals, hospital

sensing, notifying

REQ2: monitor activity and
adjust safe ranges

patient, model of activity,
spec’s of normal vitals

sensing, modeling, editing

Solutions to Selected Problems 561

REQ3: verify sensors and
alert of failure

sensors, failure modes,
hospital

testing, notifying

REQ4: monitor battery and
alert of low power

battery, patient sensing, notifying

REQ5: edit vitals safe ranges spec’s of normal vitals editing

Problem frames:

REQ1 requires sensing or observing data from a problem domain (patient). The alert notification
is considered information display and can be done in many different ways: as a flashing light or a
blurting sound. Recall that in Problem 2.3 — Solution we assumed that the instruments include
the control hardware and software and our software-to-be will interact with the instruments via
APIs to obtain the readings. If this were not the case, to satisfy REQ1 we would also need a
commanded behavior frame. Such frame would allow other parts of our system to issue
commands to inflate the cuff for blood pressure measurements or activate other sensors during a
measurement cycle. For the sake of simplicity, we assume that such software is already provided
with the sensors. Therefore, the most appropriate problem frame for REQ1 is information display.

Here is the information display frame for REQ1:

a c
Information

machine

Display ~
Real world

c: PS! {Blood pressure, Heart rate,
Normal/safe ranges} [C3]

a: PS! {Systolic/Diastolic BP, Pulse count
Safe-range values} [C1]

b: VM! {AlertAbnormalVitals} [E2]

Alert ~
Abnormal

vitals

Vitals
monitoring

Vitals
monitoring

d: HD! {Displayed info} [Y4]

Hospital
display C

Display

b d
C

X

Causal domain

Lexical domain

C

X

Causal domain

Lexical domain

Real world

Safe
ranges

Patient
C

X REQ1

The above frame says that the requirement (in the ellipse) that the alert signals (d) are generated
when patient vitals (c) are abnormal will be implemented so that the monitoring software records
the sensory data (a) and sends commands (b) to the alerts display, when appropriate. The real
world consists of two independent domains: the patient (causal domain) and the table of
safe/normal vital signs (lexical domain). The latter may be stored in a computer database, but all
that matters here is that it is available for lookup when deciding about the measured vitals.

We need to include the comparison with safe ranges as part of our problem specification. In
addition, the safe ranges may be altered depending of whether the patient is exercising (REQ2) or
by a remote medical professional (REQ5). The most appropriate problem frame for both REQ2
and REQ5 is simple workpieces, with two different users: exercise monitoring software and
remote medical professional. Here is the simple workpieces frame for REQ2:

Ivan Marsic Rutgers University 562

a cEditing tool

Workpieces

Command
effects

c: SR! {Ranges correspond to activity level} [Y3]a: ES! {EditingOperations} [E1]

b: EM! {UserCommands} [E2]

Editing
software
Editing

software
Modified

safe ranges

Exercise
monitoring

subsystem .C

User

b b

Safe
ranges X

Safe
ranges X

REQ2

Notice that the workpieces domain of safe ranges is the same lexical domain as in the information
display frame for REQ1. In case of REQ2, the user issuing the editing commands is an exercise
monitoring subsystem, which unlike a human user is a causal domain. We model the exercise
monitoring subsystem as an information display frame:

a c

Real world

Display ~
Real world

c: P! {Not-exercising, Exercising, Cooling-off} [C3]a: P! {Motion data} [C1]

b: AM! {Commands} [E2]

Activity
monitoring

Activity
monitoring

Ranges ~
Patient activity

Ranges
editing

subsystem .C

Display

b d

Patient
C

REQ2

d: RE! {Adjusted ranges} [Y4]

Information
machine

The “display” domain for this frame is the range editing subsystem represented by the above
workpieces frame. The activity monitoring information machine uses motion sensors to detect
patient motion. If it detects that the patient if exercising, it issues a “display command”, which is
actually an editing command for the safe ranges editing software (the workpieces frame).

The frame concerns for the above simple workpieces frame include: overrun—the user (exercise
monitoring software or clinician) should not be able to enter wrong values for safe ranges;
completeness—the system should ensure that all required information for safe ranges is provided.

In our problem, frame concerns will mainly deal with defining what can be sensed from the
environment and how. For example, specifications of normal vital signs may include thresholds
that depend on person’s age, gender, chronic conditions, etc. Similarly, sensing a faulty sensor
may involve checking if the measurements are unusual, such as zero. If the activity sensor does

Solutions to Selected Problems 563

not indicate the slightest activity for an extended period of time, it may be because the sensor is
faulty. (Notice that simultaneous variations in the patient’s vital signs can be considered as an
indication of activity to verify the activity sensors.)

Running diagnostic tests (REQ3) is a required behavior frame:

Testing
software
Testing
software

Vitals
sensors

Testing
regime

a b

C

Control
machine

Controlled
domain

Required
behavior

b: VS! {NormalMode, TestMode} [C3]a: TS! {RunTest[i]} [C1]
VS! {TestResult[i]} [C2]

REQ3

Information display frame represents REQ4 and simple workpieces frame represents REQ5.
These are not described here but left to the reader as exercise.

(b)

First, we may represent the patient’s health condition with a following state diagram:

physiological-systems-weakened /

treatment-unsuccessful /

illness-contracted /

immune-response-successful /

Patient heath-condition state diagram:

treatment /treatment-successful /

Healthy Sick

Deteriorating

Recovering

Our system will model the patient’s health based on the measurements of patient’s vital signs.
The state diagram for measuring patient’s vital signs is as shown:

Ivan Marsic Rutgers University 564

vitals-out-of-range /
alert

vitals-in-range /

timer /
read-sensors

timer /
read-sensors

Observed vitals state diagram:

Normal Abnormal

Acquisition error

do: log error

unsuccessful-
sensor-readout /

Measuring

do: read BP
do: read HR

timer /
read-sensors

The “normal” state roughly corresponds to the “healthy” state and the “abnormal” state roughly
corresponds to the “sick” state. Our system cannot achieve an accurate correspondence based
only on measuring few vital signs. The “measured” state indicates the interval during which the
next set of measurements is acquired, while the outcome is unknown. This state is derived from
the problem description, which states that vital sign measurements cannot be obtained
instantaneously. We assume that the vitals measurement cycle will be continuously repeated,
regardless of the measured condition, such as “normal” or “abnormal.” We also assume that alerts
are sent out in a fire-and-forget manner—the system does not wait for someone at the hospital to
confirm that they received the alert.

An important question is, what happens if, after an abnormal condition, a normal condition is
measured? Should the system revoke a previous alert about the abnormal condition or should it
continue working silently? An isolated abnormal measurement may be due to the system
anomaly. This raises an issue of whether the alert to the remote hospital should be sent after
immediately recording a single abnormal condition, or after a certain number of abnormal
recordings over a given interval? Another issue is how many subsequent alerts should be sent?
Should the system keep sending out alerts until the abnormal state lasts? Such questions can be
answered only in consultation with the customer. These are important issues that probably would
be missed if it were not for this kind of system analysis.

We note also that unsuccessful data acquisition leads to “Acquisition error” state. Transition from
this state to other states is not defined by the requirements, so should be followed up on with the
customer for clarification.

Finally, we may wish to consider what happens if the communication link with the remote
hospital is down. The problem description does not mention such possibility, so it should be
followed up on with the customer.

The state diagram representing a sensor’s operational condition is as shown:

Solutions to Selected Problems 565

failure-detected /
alert

functional /

timer-expired /
run-tests

Sensor diagnostics state diagram:

Operational Faulty

Tested

The state “tested” represents the uncertain interval during which the instrument is diagnosed. We
assume that once a sensor is tested as “faulty,” the test is to be trusted and this is the terminal
state—the sensor cannot suddenly go back to an “operational” condition. The system must be
powered off for repair, rebooted and the sensor will start from the initial state.

Note that the above assumption may not always be true. For example, the sensor may be shortly
displaced or detached from the patient’s body and then fall back in place. Such scenarios must be
analyzed with a domain expert to decide a suitable domain model. We must also account for a
possibility that the sensor, although fully functional, became detached from the patient.

The state diagram for battery power is as shown:

Battery state diagram:

below-threshold /
alert

Operational Low

no-energy /

Drained

We assume that even when the battery power is sensed as below the threshold, this battery will
continue providing power for some time. Therefore, “low” is not considered a terminal state.
However, it is unclear if the device can continue functioning correctly during the low-power
battery state (before it becomes drained). Will the vitals measurements be accurate when battery
power is low? Should we just shut the device off or let it continue operating (possibly incorrectly)
until the battery is drained? This issue needs to be researched more thoroughly.

The patient’s activity state diagram is as shown:

Ivan Marsic Rutgers University 566

sustained-vigorous-motion /
adjust-safe-ranges

vigorous-motion /

Patient activity state diagram:

slowed-motion /

time-interval /
adjust-safe-ranges

Exercising

Cooling-off

Not-exercising

moderate-motion /

no-motion /

ActiveResting

We assume that regular activities, such as relaxed walking, do not significantly affect patient’s
vital signs compared to the resting state; only a vigorous exercise does. When the patient stops
exercising, the state diagram does not immediately enter the resting state. The intermediate state
“cooling-off” symbolizes that the safe ranges should not be reset abruptly for the resting state just
because the patient suddenly stopped exercising. This issue points to the need for a precise
definition of “sustained vigorous motion.” It is not appropriate to change the safe ranges
frequently for each swift movement or sudden moments of stillness.

(c)

Yes, as seen from the state diagrams in part (b) the system does need to behave differently for
reporting abnormal vital signs versus device failures. In case of a device failure, part or whole of
the measurement system will become unusable and should cease measuring the corresponding
vital signs (the terminal state in the sensor state diagram). Unlike this, even after detecting
abnormal vitals, the device should continue cycling through the measurements.

There are additional issues related to alert reporting. At first, it may appear that alerts about
abnormal vital signs have higher priority than alerts about sensor failures or any other alerts. If
the patient is exhibiting abnormal vitals, then the remote hospital may need to respond rapidly to
save the patient’s life. If a sensor is failing, this is not likely an urgent matter and can be
addressed by regular maintenance procedures. However, one has to wonder how meaningful an
abnormal-vitals alert is if at the same time sensors are diagnosed as faulty! One may even
conclude that sensor-failure alerts should have higher priority than abnormal-vitals alerts.

One may wish to go beyond what is asked in the initial problem statement and conceive features
such as alerting the patient about instrument failures (the problem statement requires only alerting
the hospital). Also, if vital signs are abnormal for a long time, or no activity is detected from the
patient, then we might add a feature to activate a sound alarm on the device to alert the patient or
people nearby (again, the problem statement requires only alerting the hospital).

In case of abnormal vitals, domain analysis should consider how to ensure that the alert is
attended to. In part (b) above we considered whether to send out alerts for each observed
abnormality or only after accumulating evidence of abnormality over an interval. If individual

Solutions to Selected Problems 567

alerts are sent, one may assume that recurring alerts will attract operator’s attention at the
hospital. On the other hand, if a single cumulative alert is sent, then the system must ensure that
the operator acknowledges the receipt of each such alert. When considering the quantity of alert
messages for various conditions, we should remember that this is a battery-powered device and
the need for battery conservation dictates that communication and computing tasks be prioritized.
In addition, the battery may die before ensuring that the operator is made aware of the alert,
which means that the hospital-based part of the system must ensure alert reception. This is
becoming a system design issue, rather than requirements analysis, so I leave it there.

Problem 3.12 — Solution

(a)

The following table lists the responsibilities identified from Problem 3.11 — Solution and names
the concept that will be assigned to carry on these responsibilities:

Responsibility Concept

Read out the patient’s blood pressure from a sensor Blood Pressure Reader
Read out the patient’s heart rate from a sensor Heart Rate Reader
Compare the vital signs to the safe ranges and detect if the vitals are outside Abnormality Detector
Hold description of the safe ranges for patient vital signs; measurements
outside these ranges indicate elevated risk to the patient; should be
automatically adjusted for patient’s activity

Vitals Safe Ranges

Accept user input for constraints on safe ranges Safe Range Entry
Read the patient’s activity indicators Activity Observer
Recognize the type of person’s activity Activity Classifier
Hold description of a given type of person’s activity Activity Model
Send an alert to a remote hospital Hospital Alerter
Hold information sent to the hospital about abnormal vitals or faulty sensors Hospital Alert
Run diagnostic tests on analog sensors Sensor Diagnostic
Interpret the results of diagnostic tests on analog sensors Failure Detector
Hold description of a type of sensor failure Sensor Failure Mode
Read the remaining batter power Battery Checker
Send an alert to the patient Patient Alerter
Hold information sent to the patient about low battery Patient Alert
Coordinate activity and delegate work to other concepts Controller

Further analysis may reveal that some of the above concepts may be combined into one. For
example, the functionality of Sensor Diagnostic and Failure Detector may turn out to be
overlapping. However, without further evidence I leave them as to separate concepts.

(b)

The attributes are listed within the context of the concept they belong to:

Blood Pressure Reader
 last Reading = last recorded value
 reading Duration = how long a data acquisition interval lasts

Ivan Marsic Rutgers University 568

 reading Frequency = the period for data acquisition

Heart Rate Reader
 last Reading = same as above
 reading Duration
 reading Frequency

Activity Observer
 collection Frequency = period for collecting activity observations

Activity Classifier
 is Exercising = indication of the need to adjust the vital signs safe ranges

Hospital Alerter
 contact Info = network address of the alert recipient

Hospital Alert
 patient Identifier = information about the patient
 cause = type of the alert

Battery Checker
 remaining Power
 low Threshold = threshold defining when the batter power is considered low

Patient Alert
 cause = type of the alert

(c)

A simplified drawing of the domain model is shown below.

HR
sensor

activity
sensor

BP
sensor

alerts
display

alerts
display

battery

BP&HR
sensors

triggers

triggers

sends

sends

Blood Pressure Reader «boundary»
(doing) - last Reading

- reading Duration
- reading Frequency

Heart Rate Reader «boundary»
(doing) - last Reading

- reading Duration
- reading Frequency

Abnormality Detector «entity»
(doing)

Vitals Safe Ranges «entity»
(knowing)

Safe Range Entry «boundary»
(knowing) - value

Activity Observer «boundary»
(doing) - collection Frequency

Activity Classifier «entity»
(doing) - is Exercising

Activity Model «entity»
(knowing)

tr
ig

ge
rs

adjusts

informs

informs

uses

informs

uses uses

informs

Hospital Alerter «boundary»
(doing) - contact Info

Hospital Alert «boundary»
(knowing) - patient Identifier

- cause

Sensor Diagnostic «boundary»
(doing)

Failure Detector «entity»
(doing)

Sensor Failure Mode «entity»
(knowing)

Battery Checker «boundary»
(doing) - remaining Power

- low Threshold

Patient Alerter «boundary»
(doing)

Patient Alert «boundary»
(knowing) - cause

in hospital

on patient

specifiescomputer
input

in hospital

To avoid clutter, the Controller concept is shown separately, in the following figure.

Solutions to Selected Problems 569

Controller

Blood Pressure Reader

Heart Rate Reader

Sensor Diagnostic

Activity Observer

Battery Checker

runs

We may also notice that the period lengths for observations made by our system are related as:

 BP Reader & HR Reader < Sensor Diagnostic < Activity Observer < Battery Checker

In other words, vital signs are recorded frequently and battery is checked least frequently. These
relationships also indicate the priority or relative importance of the observations.

(d)

The following list indicates the concept type, and in case of «boundary» concepts it indicates the
boundary device with which the concept is associated:

Blood Pressure Reader «boundary» BP sensor

Heart Rate Reader «boundary» HR sensor

Abnormality Detector «entity»

Vitals Safe Ranges «entity»

Safe Range Entry «boundary» computer input

Activity Observer «boundary» activity sensor

Activity Classifier «entity»

Activity Model «entity»

Hospital Alerter «boundary» alerts display

Hospital Alert «boundary» alerts display

Sensor Diagnostic «boundary» BP & HR sensors

Failure Detector «entity»

Sensor Failure Mode «entity»

Battery Checker «boundary» battery

Patient Alerter «boundary» alerts display

Patient Alert «boundary» alerts display

Controller «controller»

Ivan Marsic Rutgers University 570

Problem 3.13 — Solution

Problem 4.1 — Solution

Problem 4.2 — Solution

Problem 4.3 — Solution

(a) The solution is shown in Figure H-15.

(b) The solution is shown in Figure H-16.

(c) The cyclomatic complexity can be determined simply by counting the total number of closed
regions, as indicated in Figure H-16.

Notice in Figure H-16 (a) how nodes n4 and n5, which call subroutines, are split into two nodes
each: one representing the outgoing call and the other representing the return of control. The
resulting nodes are connected to the beginning/end of the called subroutine, which in our case is
Quicksort itself.

Solutions to Selected Problems 571

In Section 4.2.1 we encountered two slightly different formulas for calculating cyclomatic
complexity V(G) of a graph G. Using the original formula by McCabe [1974] in the case of
Figure H-16, we have

V(G) = 22 19 22 = 7

Notice that there are a total of 19 nodes in Quicksort and Partition because nodes n4 and n5 are
each split in two. Alternatively, [Henderson-Sellers & Tegarden, 1994] linearly-independent
cyclomatic complexity for the graph in Figure H-16 yields

VLI(G) = 22 19 2 1 = 6

which is what we obtain, as well, by a simple rule:

VLI(G) = number of closed regions 1 = 5 1 = 6

(Closed regions are labeled in Figure H-16.)

x p 1

x A[r]

j p

j r 1

A[j] x

i i 1

Exchange
A[i] A[j]

Exchange
A[i1] A[r]

Start

Start

p < r

End

Call
Quicksort

Call
Partition

Call
Quicksort

YES NO

Quicksort:

Partition:

YES NO

YES NO

j j 1

End(a) (b)

Figure H-15: Flowchart of the Quicksort algorithm (Problem 4.3).

Ivan Marsic Rutgers University 572

Problem 4.4 — Solution

Problem 5.1 — Solution

Problem 5.2 — Solution

Seller may want to be notified about the new bids; Buyer may want to be notified about closing
the auction for the item that he/she bid for.

Therefore, good choices for implementing the Subscriber interface are SellerInfo and BuyerInfo.

Conversely, good choices for implementing the Publisher interface are ItemInfo and BidsList.

ItemInfo publishes the event when the flag “reserved” becomes “true.” All the BuyerInfo objects
in the bidders list receive this event and send email notification to the respective bidders.

Conversely, BidsList publishes the event when a new Bid object is added to the list. The
SellerInfo object receives the event and sends email notification to the respective seller.

n1

n4

n9

n14

n12

n15

n11

n17

n10

n8

n13

n16

n7

n3

n2

n6

R1

R2

R3

R4

R5

n3

n6

n2

n5

n1

n4

n4

n5

n5

Quicksort:

Partition:

(a) (b)

e1

e2
e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e17

e19

e20

e16

e18

e21

e22

Figure H-16: Graph of the Quicksort algorithm. Nodes n4 and n5 in (a) are split in two
nodes each, and these nodes are connected to the called subroutine, which in this case is
Quicksort itself. If Partition subroutine remains separate, the total number of closed
regions is 5.

Solutions to Selected Problems 573

Event Publisher Subscriber

Item becomes “reserved”
(its auction is closed)

ItemInfo BuyerInfo

New Bid added to an item’s
list of bids

BidsList SellerInfo

Problem 5.3: Patient Monitoring — Solution

Problem 5.4 — Solution

Problem 5.5 — Solution

Problem 5.6: Elevator Control — Solution

To solve this problem, it is useful to consider the interaction diagram for the
system before the publisher-subscriber pattern is introduced, which is given in
the solution of Problem 3.7 (Figure H-14). From the figure, we can see that
ElevatorMain is suitable as a Publisher-type class, and
InformationPanel, CarControl, OutsideButton, and
InsideButton are suitable as Subscriber-type classes. Notice that
InformationPanel and CarControl need to know the floor at which
the elevator car arrived, which they obtain through arrivedAt(floorNum
: int). In contract, for OutsideButton and InsideButton, the caller
knows which floor is represented by which button and correspondingly calls
arrived()only on the appropriate objects. We could try having a single event corresponding to
the elevator car arrival at a floor, but there is a slight problem. Because the Publisher should be
agnostic about its Subscribers and should notify indiscriminately all Subscribers subscribed for a
particular event type, we will have the Publisher unnecessarily call the objects corresponding to
the buttons other than the ones where the elevator car arrived. The only way that I can think of to
avoid this is to introduce n events corresponding to the car arrival to floor i, where 1 i n and n
is the total number of floors. This does not appear as a more elegant solution, so we stay with the
solution where all button objects will be notified of the elevator car arrival to floor i, but only the
appropriate objects will turn off the button illumination.

2

B

P2

3

5

7

9

11

13

P1

L

1

4

6

8

10

12

14

3

2

B

P2

3

5

7

9

11

13

P1

L

1

4

6

8

10

12

14

2

B

P2

3

5

7

9

11

13

P1

L

1

4

6

8

10

12

14

3

Ivan Marsic Rutgers University 574

The interaction diagram is shown in Figure H-17. Notice that this diagram is almost identical to
the one in Figure H-14, except for the operation names. The reader should remind themselves of
advantages of the Publish-Subscribed design pattern described in Section 5.1.

In summary, the Publisher will generate three types of events:

arrivedAt(floorNum : int) informs a Subscriber that the elevator car arrived at floor
floorNum.

departed()informs a Subscriber that the car has departed from the current floor.

pressed(floorNum : int) informs a Subscriber that the physical button associated with
floor floorNum was pressed.

At first, it may appear that the DoorControl class is also a subscriber for arrivedAt()
events. However, it is not for the following reason. First, the door should be opened only when
the elevator car stopped moving. According to the problem description, the arrivedAt()
event will occur when the elevator car is within 10 cm of the rest position at the floor. That is, it

setIlluminate(
false)

dcf : DoorControl: CarControl: InfoPanel

arrivedAt(f : int)

start

: ElevatorMain

loop

obf : OutButton ibf : InButton

arrivedAt(f : int)

readFloorSensors()

readButtons()

adjustDisplay()

stopMotor()
arrivedAt(f : int)

openDoors()

startMotor()

setIlluminate(false)

arrivedAt(f : int)

opt car arrived at floor f

opt button(s) pushed

closeDoors()

car departed

operateDoors()

{30 sec.}

opt

Figure H-17. Partial interaction diagram for the elevator problem (Problem 5.6).

Solutions to Selected Problems 575

may still be moving. As shown in Figure H-17, the
class CarControl stops the motor, and only
when this is done, DoorControl should be asked
to open the doors. Acknowledging this fact, one
may still try to implement the communication
between CarControl and DoorControl using
the publish/subscribe mechanism. A potential
solution is shown in this figure:

I hope that the reader can appreciate that this would
be a much less elegant solution than the one in
Figure H-17. In addition, CarControl and
DoorControl would be the only
publishers/subscribers for each other, so there is no
benefit of using the publish/subscribe mechanism
in this case.

The above solution is appropriate for a single-
threaded case and I cannot think of another way to assign publisher and subscriber roles in a
single-threaded case. In case where multiple threads are implemented, the solution might look
quite different.

One issue that may be particularly confusing is whether OutsideButton and
InsideButton objects should actually be considered as Publishers, rather than Subscribers. In
the current scenario where the system is single threaded, it would be meaningless to have
OutsideButton and InsideButton objects as Publishers, because they would anyway be
called from the main loop (ElevatorMain) just to read the physical button status and pass it to
other objects. This would not be considered a design improvement.

However, if we had a different scenario, with multiple threads and if each OutsideButton and
InsideButton object were to run in its own thread, then it would make sense to have them as
Publishers, because they would directly read information from their associated physical buttons.

I have not considered carefully the merits of a multithreaded solution, but I have some concerns.
Depending on the number of floors and elevators, there could potentially be a large number of
threads required if each button were to run in a separate thread. This may appear as a
conceptually more elegant solution, but may result in a logistic nightmare of managing so many
threads. And the overall gain compared to a single-threaded solution might not be that great.

My intuition for a multi-threaded solution would be to have three threads only, one to read the
floor sensors and publish this information to other objects, another to read all the physical buttons
(inside and outside ones) and publish this information to other objects, and the third thread to do
everything else.

Problem 5.7 — Solution

dcf : DoorControl: CarControl

stopMotor()

openDoors()

startMotor()

arrivedAt(f : int)

subscribe for motor stopped

subscribe for door closed

motorStopped()

doorsClosed()

closeDoors()

Ivan Marsic Rutgers University 576

Problem 5.8 — Solution

Problem 5.9 — Solution

Before considering various design patterns, one should remember that merely using design
patterns by itself does not make design better. We know that design patterns may make
existing design more complex. However, they should be considered if using design patterns
would make the system to better withstand future changes or make the design easier to
understand. In other words, there should be a clear, easy-to-explain advantage achieved by
using design patterns.

When anticipating future extensions of this system, we should keep in mind that this is a
medical domain and reliability is critical. For the sake of reliability, it may be best to leave
the system as is and not add new features. A feature-laden system will be more prone to
defects and new features should be considered only if their usefulness is clear and significant.

 First we consider using the Publish-Subscribe design pattern. We know that Publish-Subscribe
helps reduce coupling between the objects by introducing indirect communication. It also
simplifies future extensions that depend on the events generated by the Publisher. It is hard to
imagine in our system what other features might depend on events such as “vital-sign-acquired”
or “vital-sign-abnormal.” Currently there would be a single subscriber for each event publisher
and we cannot anticipate that the need would arise for more subscribers to any of the system
events. Good design practice dictates that if something is hard to imagine, it should left out until
its necessity becomes clear.

There is one place where we might anticipate future extensions and that is the ability to send
alerts to multiple destinations. The existing design sends alerts only to the hospital. It is easy to
imagine an extension where alerts about patient’s health condition may be sent to family or
friends and even the patient himself may be notified about his abnormal vitals. In anticipation of
such future extensions, we would introduce a Publisher of alerts to which an arbitrary number of
Subscribers can seamlessly be subscribed. A key issue is whether to have each SensorReader
implement the PublisherOfAlerts interface. I am again reluctant to add such new responsibilities
to SensorReaders, so I would introduce a mediator between a SensorReader and Alerter. The
SensorReader would remain the same except that it would send alerts to a mediator. The mediator
would implement the PublisherOfAlerts interface and different Alerters would implement the
SubscriberForAlerts interface.

We now consider the other reason for introducing Publish-Subscribe: a potential coupling
reduction. We know that the existing Controller has relatively high coupling coefficient, because
it has many need-to-know responsibilities—see Problem 2.35 — Solution. However, before we
bring in the additional complexity with Publish-Subscribe, we may consider the following design:

Solutions to Selected Problems 577

wake-up

: AlerterA: SensorReaderA

[bad == TRUE]

: ClassifierA: Controller

bad := isAnomalous(data)

opt send(Alert)

check data

read data

increment
counter

loop [forever]

[counter % PERIOD_A == 0]opt

In this new design, the Controller has only one responsibility. It counts the period for each
sensing type and wakes up the corresponding Sensor Reader. We avoid using timers and the
Controller runs a “big loop” that keeps track of the periods for data checks. Each Sensor Reader
(Blood Pressure Reader, Heart Rate Reader, Activity Observer, Sensor Diagnostic, or Battery
Checker) acquires two new responsibilities:

- call a Classifier for its sensory data to detect anomalies

- send an alert to the Alerter in case of a data anomaly

In Problem 2.35 — Solution, we argued that no additional responsibilities should be assigned to
sensor readers. Here I would argue that the above two responsibilities are trivial and the resulting
coupling reduction for the Controller is significant. The key point is that a sensor reader is
uniquely associated with its classifier, so this is a “good” type of coupling. The reader just passes
the acquired data to the classifier, checks the result of isAnomalous(), and if true sends an
alert to the Alerter. This is a fixed and uniform sequence of actions and it is unlikely that more
responsibilities would ever be necessary.

Although this new design may be more elegant, we need to consider some practical issues. From
the problem statement (see Problem 2.3 at the end of Chapter 2), we know that the measurement
of each vital sign may last on the order of minutes. We should also determine how long each
diagnostic test might last. (Measuring and processing the data from the motion
sensor/accelerometer will likely be relatively fast. We mentioned earlier that ActivityClassifier
maintains time series data and continuously decides if the patient is exercising.) Then we need to
compare these parameters with the requirements (to be provided by the customer) and decide if
we need a more powerful hardware or a parallel/multithreaded solution to meet the real-time
monitoring requirement (see Problem 5.19 — Solution).

 In a sense, the existing design already uses the Command design pattern: the Controller
commands actions to other components of the system (such as SensorReader and Alerter, see the

Ivan Marsic Rutgers University 578

first sequence diagram above). We may formalize this arrangement by introducing a Command
interface and implementing it by different concrete commands.

 Another option is using the Decorator design pattern. Recall that Decorator is suitable where
there is one essential task and several optional tasks that may or may not occur together with the
primary task. The primary task is vital signs sensing and the other tasks are secondary although
not quite optional. In addition, these other tasks (exercise monitoring, diagnostic testing, battery
monitoring) do not need to “occur together with the primary task.” Quite contrary, diagnostic
testing of sensors must not occur together with vitals sensing! The class diagram using Decorator
might look something like this

ActivityObserv

+ readSensor()

ActivityObserv

+ readSensor()

HR_Reader

+ readSensor()

HR_Reader

+ readSensor()

BP_Reader

+ readSensor()

BP_Reader

+ readSensor()

ControllerController

«interface»
SensorReader

+ readSensor()

SensDiagnostc

+ readSensor()

nextReader Subject and
Decorator interface

RealSubjectsConcrete Decorators

Decorator helps anticipate adding more secondary tasks in the future. Note that measuring other
vital signs (such as blood oxygen saturation, body temperature, etc.) would fall under the primary
task. Example additional secondary tasks include: alerting the patient to take medications;
alerting the patient to exercise regularly, etc.

Another option is to think of the Classifier and Alerter classes as “decorators” to their
SensorReader class. Again, data classification and anomaly alerting are not optional tasks.
However, this line of thought may have some merit if we consider various advanced signal-
processing capabilities. For example, the system may optionally monitor trends in vital signs over
days or weeks. Or, the system may compare the patient’s vitals at night (during sleep) to those
during the day. In addition, vital sign “abnormality” may be defined as a pattern in time series
data, instead of the current simple checking of boundary values (safe ranges). Let us assume that
our customer chose not to pursue such extensions now.

Our conclusion from the above discussion is that using Decorator would not confer clear
advantages over the existing design. Therefore, at this time we opt against using it.

 We know from Problem 3.11 — Solution (b) that state diagrams can be defined for different
sensing tasks. Hence, one may consider using the State design pattern. However, all the state
diagrams from Problem 3.11 — Solution are very simple with essentially two states: “good data”
and “bad data.” The system has two “modes” of behavior: when patient is exercising versus
resting. The “state” will be maintained explicitly (attribute isExercising of
ActivityClassifier, see Problem 2.35 — Solution). We may consider extracting the state

Solutions to Selected Problems 579

information into a separate State class. However, it is not clear that such intervention would
visibly improve the existing design. Therefore, we decide against using the State design pattern.

 Finally, we consider using the Proxy design pattern. Using the Remote Proxy pattern would be
suitable for crossing the network barrier between the monitoring device and the remote hospital. I
will not explore the details of this option here. Instead, I will consider using the Protection Proxy
pattern for controlling the access to the data stored on the patient device.

Problem 5.10 — Solution

This is a small system that implements relatively simple business logic, and the main complexity
is in interacting with the database. Although this system is currently relatively small and
introducing patterns would offer relatively small advantages, we anticipate that the system will
grow in the number of supported features. Several potential extensions are discussed in the
solution of Problem 2.10(c) and Problem 2.11. Moreover, the store is unlikely to make a major
investment in RFID infrastructure only to use it for basic inventory management. Therefore, the
patterns that will be used for the new design described below are introduced primarily in the
anticipation of an evolving and growing system. The design patterns will make it easier to add
new functions and new user types. The performance is not considered a major issue, other than
that there is a need to introduce concurrency.

Because the Monitor’s activity should not hold other classes from doing their work, the Monitor
should be implemented in a separate thread, and I indicated this in the class diagram below. I will
leave the multithreading issue aside for now and focus only on the patterns that improve the
quality of software design. For concurrency, see Problem 5.20 — Solution.

By reviewing the existing interaction diagrams, we can notice that:
 All use cases include the complexity of database interaction, which may not be obvious

from the UML diagrams (it would be visible in the implementation code)
 Some use cases, particularly UC-2 and UC-6, already follow a very simple logic (directly

from the business rules from which they are derived) and it is likely that introducing any
pattern would only make their design worse.

However, as we go about improving the existing design, we should keep in mind the overall
benefit or drawback of proposed changes, rather than being focused on an individual use case. As
we will see, some of the proposed changes will make the design of some use cases more complex.
However, if such a change significantly improves the design of other use case(s) then we should
adopt it. Very rarely a design modification will uniformly contribute only positive results across
the entire system. Rather, the impact of a proposed change should be, on balance, positive, even if
some parts of design will slightly worsen. And, we should consider how the proposed change will
impact the future evolution of our software.

It is useful to start by drawing the class diagram of the existing system. It helps to see all the
classes and their functions in one place:

Ivan Marsic Rutgers University 580

database

controller

controller

mailer

database

ReaderIface

+ receive(evt : RFIDEvent)
– increment(prodCount : int)
– decrement(prodCount : int)

Messenger

+ send(msg : string)
– emailTo (userID : string, msg : string)

Monitor

Thread

. . .
+ sleep(time : long)

DBaseConn

+ getProductInfo(tagID : string) : ProductInfo
+ recordProductInfo(prodInfo : ProductInfo)
+ getPendingTasks(userID : string) : TaskInfo[]
+ getPendingTask(taskID : string) : TaskInfo
+ recordPendingTask(taskInfo : TaskInfo)
+ removePendingTask(taskID : string)
+ recordCompletedTask(taskInfo : TaskInfo)
+ recordStatistics(infoType: string, value : Object)

user interface

controller

Dispatcher

+ createTask(taskInfo: TaskInfo)
+ getPendingTasks(userID : string) : list
+ assignTask(taskID : string, userID : string)
+ closeTask(taskID)
+ sendReminder(taskInfo: TaskInfo)
+ sendSystemwideReminder(taskInfo: TaskInfo)
– checkUserType(userID : string)
– incrementNumOfAlertAttempts()

ProductInfo

– EPCcode_ : string
– name_ : string
– price_ : float
– count_ : long

TaskInfo

– type_ : string
– timeAssigned_ : long
– assignedTo_ : string

TaskInfo

– type_ : string
– timeAssigned_ : long
– assignedTo_ : stringquantity

tagID = productID

We notice that Dispatcher is essentially a controller class, named so better to reflect its
responsibilities. Interacting with the database is a nontrivial task and we look at associations to
DBaseConn to see if some can be removed. The Monitor’s essential task is periodic review of
pending tasks to determine if some are overdue. Because task information is stored in the
database, breaking the association between the Monitor and DBaseConn would probably make
for a more complex solution. One the other hand, it the association of the RFID ReaderInterface
and DBaseConn seems avoidable.

The ReaderInterface class is too involved in the other classes’ business—it is explicitly telling the
Dispatcher what to do (see the sequence diagram for UC-1). The ReaderInterface should be
concerned with obtaining input from RFID readers and neutrally delivering these messages to the
Controller (or, Dispatcher). It should be always available to process quickly the incoming events
from RFID readers. Therefore, the first intervention is to remove the association between the
ReaderInterface and DBaseConn. Instead, the ReaderInterface will be implemented as a publisher
of two types of events: itemAdded() and itemRemoved(). This publisher will accept
subscribers of the type TagEventSubscriber. (Note: If we wish to keep statistics of erroneous
messages from RFID readers, then we need to introduce one more event type. I leave this as an
exercise to the reader. However, notice that the Dispatcher will be able to handle the situations
where the tag ID is unrecognizable or product count is negative, see the sequence diagram for
UC-1.)

Notice that no class other than the Dispatcher should subscribe for ReaderInterface events,
because only a single class (in our case the Dispatcher) should implement the business rules about

Solutions to Selected Problems 581

what to do when an item count falls low. This class will tell others what to do when a particular
situation occurs. If several classes implemented the same business rule then, should the rule
change, all these classes would need to be modified. Such approach is highly prone to coding
errors or some instances may be missed.

Next, we notice that many methods in the Dispatcher let other classes tell the Dispatcher what to
do. This makes the coupling between the client class and the Dispatcher even stronger. Some of
these methods will be modified (and coupling strength reduced) by implementing the
TagEventSubscriber interface. The remaining strong coupling is between the Monitor and the
Dispatcher. The Monitor’s responsibility is to detect overdue tasks and notify others about it, but
not to tell them what to do. Therefore, we implement the Monitor as a publisher of two types of
events: taskOverdue() and assigneeUnresponsive().This publisher will accept
subscribers of the type TaskOverdueSubscriber.

One may wonder if it is worth introducing a Publish-Subscribe relationship between the
Messenger and other classes that use its services. I do not believe that this would improve the
design and in fact may make it even more complicated. It would not make much sense to have the
Messenger “subscribe” for “send” events. After all, how can the Messenger know which
“publishers” generate the “send” event?! The Messenger should not do anything else but email
the text messages that are prepared for it by its clients. The only thing that is important is that the
Messenger’s method send() returns quickly and does not hold the caller on hold until the email
is actually sent.

I leave it to the reader to draw the modified sequence diagrams. After this exercise, the reader
may notice that UC-1 is simpler, but UC-2 would become more complex, so a question may arise
if it is worth introducing Publish-Subscribe between the ReaderInterface and Dispatcher. I argue
that although the current gains may be minor, we should also consider the likelihood of evolving
and extending the inventory system. We anticipate that the inventory system as currently
designed provides only the basic functionality, and it is likely that it will need to be extended.
Therefore, implementing the ReaderInterface and Monitor as publishers will facilitate future
extensions of this system with more features.

Another complex class in the above diagram is DBaseConn. In the current design, it accepts
requests to query or modify different tables and prepares SQL statements on behalf of the clients.
Should DBaseConn become a subscriber for events published by the Dispatcher? I feel this would
be inappropriate, for many reasons. The Dispatcher is not really an originator of events in our
software-to-be—it is merely relaying events from the ReaderInterface and Monitor, slightly
modified. In addition, the coupling between the Dispatcher and DBaseConn does not really
involve any business logic (data processing rules)—it is just about storing or retrieving data from
the database. It is also not a good idea to have DBaseConn subscribe directly to the
ReaderInterface publisher and bypass the Dispatcher, because then the DBaseConn would be
given an additional responsibility of implementing the business logic for processing the events it
receives from its publishers (e.g., generating out-of-stock tasks). I believe that DBaseConn should
deal only with storing or retrieving data from the database and leave business decisions to other
classes. Therefore, I decide that there are no more reasonable opportunities to employ Publish-
Subscribe. This decision must be revisited at the time the design will be modified to handle the
concurrency issues.

Ivan Marsic Rutgers University 582

We notice that the class DBaseConn will eventually use the services of a
java.sql.Connection and java.sql.Statement (assuming that the code will be
programmed in Java, but other object-oriented languages offer similar database interfaces). We
may just wish discard the DBaseConn and let the clients (Dispatcher and Monitor) work directly
with the database interfaces. However, this approach would leave other classes polluted with SQL
code. Therefore, I decide to keep the DBaseConn, but with a simplified interface. We can reduce
the number of operations by passing the table name as a parameter. The new class looks like so:

public class DBaseConn {
 private static Connection con = null; // assigned in constructor

 public DBaseConn() {
 ...
 con = DriverManager.getConnection(...);
 }

 public static void storeProduct(String table, ProductInfo product)
 throws Exception {
 PreparedStatement stat =
 buildProductInsertionStatement(table, product);
 stat.execute();
 stat.close();
 }

 private static PreparedStatement buildProductInsertionStatement(
 String table, ProductInfo product
) throws SQLException {
 PreparedStatement ps = con.prepareStatement(
 "INSERT INTO " + table + " VALUES (?, ?, ?, ?);");
 ps.setString(1, product.EPCcode_);
 ps.setString(2, product.name_);
 ps.setFloat(3, product.price_);
 ps.setLong(4, product.count_);
 return ps;
 }

 // assumes that the "value" argument will retrieve a single record
 public static ProductInfo retrieveProduct(
 String table, String key, Object val
) throws Exception {
 PreparedStatement stat = buildQueryStatement(table, key, val);
 ResultSet res = stat.executeQuery();
 ProductInfo product = new ProductInfo();
 product.EPCcode_ = res.getString("EPCcode");
 product.name_ = res.getString("name");
 product.price_ = res.getFloat("price");
 product.count_ = res.getString("count");
 res.close();
 stat.close();
 return product;
 }

 private static PreparedStatement buildQueryStatement(
 String table, String key, Object val

Solutions to Selected Problems 583

) throws SQLException {
 PreparedStatement ps = con.prepareStatement(
 "SELECT * FROM " + table + " WHERE " + key " = ?;");
 if (param instanceof String) {
 ps.setString(1, (String)val);
 } else if (param instanceof Integer) {
 ps.setInt(1, (Integer)val. intValue());
 } else if (param instanceof Float) {
 ps.setFloat(1, (Float)val. floatValue());
 }
 ...
 } else {
 throw new SQLException("unknown data type for value");
 }
 return ps;
 }
 ... // other methods ...
}

The new class diagram looks like this:

mailer

databasedatabase

Dispatcher

+ itemAdded(tagID : string)
+ itemRemoved(tagID : string)
+ taskOverdue(taskInfo: TaskInfo)
+ assigneeUnresponsive(taskInfo: TaskInfo)
+ assignTask(taskID : string, userID : string)
+ closeTask(taskID)
– isOutOfStock(productID : string)
– processOutOfStock(productID : string)
– recordReminder(taskID : string)

controller

user interface

Messenger

+ send(msg : string)
– emailTo (userID : string, msg : string)

subscriber

Thread

«interface»
java.sql.Connection

«interface»
java.sql.Statement

subscriber

ReaderIface

+ receive(evt : RFIDEvent)

publisher

publisher
Monitor

«interface»
TaskOverdueSubscriber

+ taskOverdue(taskInfo: TaskInfo)
+ assigneeUnresponsive(tskInfo: TaskInfo)

«interface»
TagEventSubscriber

+ itemAdded(tagID : string)
+ itemRemoved(tagID : string)

«interface»
TagEventSubscriber

+ itemAdded(tagID : string)
+ itemRemoved(tagID : string)

DBaseConn

+ storeProduct(table : string, product : ProductInfo)
+ storeTask(table : string, task : TaskInfo)
+ storeStatistic(table : string, key : string, val : Object, count : int)
+ retrieveProduct(table : string, key : string, val : Object) : ProductInfo
+ retrieveTask(table : string, key : string, val : Object) : TaskInfo[]
+ delete(table : string, key : string)

It may appear that too many functions are still in the Dispatcher. One may wonder if perhaps the
Dispatcher should not implement both subscriber interfaces, but rather they should be
implemented by two different subscribers—one for RFID events and the other for task-neglect
events? Or, should the Monitor just take the necessary actions itself, without help of the
Dispatcher or another object? I believe having the Dispatcher combine both subscribers is not a

Ivan Marsic Rutgers University 584

problem. First, we cannot make a perfect separation between RFID and task related events,
because an RFID event may end up creating a restocking task. Second, Dispatcher’s functions are
at least coherent with one another. Second, the Dispatcher implements two subscriber interfaces,
so it is only loosely coupled with its clients (publishers).

Because of the above three interventions, the classes in the new class diagram are less coupled
(lower number of connections) and more cohesive (some classes have fewer responsibilities than
before, and none has more), compared to the previous design. Next, we look if there are
opportunities for additional improvements by applying more design patterns. Notice that the
above class diagram is not final and the additional interventions described below may require
updates in the class diagram.

The Strategy pattern does not seem to be suitable because there are no complex alternative
strategies implemented in our current inventory system.

The State pattern may seem relevant because the system does implement state tracking and
transitions (see Problem 3.5 — Solution). Because the shelf or task state is derived by simple
comparison of database information, implementing a State pattern to keep track of the current
state and decide the next state would not improve the design.

The Proxy pattern may be considered in its Protection Proxy version as a way to ensure that the
accesses to data are appropriate for the user’s access rights. Here is another example where we
should look across several use cases when considering the merits of introducing a pattern. Let us
consider UC-3 (ViewPendingWork) in isolation and assume that the system would remain frozen
and no new functions would be added. We observe that we are dealing with only two types of
users, and they do not require a variety of combinations of access rights. Then a simple Boolean
logic allows for a clean and simple design, as already present—a proxy-based solution would
appear only to add unnecessary complexity. However, the system should also ensure in UC-6
(ReplenishCompleted) that the user requesting a task closure has had this task assigned to him;
otherwise, the closure should be rejected. If protection proxies were used, then the proxy would
ensure that the user could access and close only those tasks fitting his or her access rights.
Therefore, when considered in the context of the entire system, the protection proxy may become
attractive.

In addition, one may argue that it is likely that this system will evolve to include many other
functions. In such case, we can foresee distinguishing more user types in the future, such as
different levels of management, cashiers, etc. For example, in the solution of Problem 2.10(c), we
mentioned a possibility to add another user category, “helpout,” for employees who wish to
volunteer and help. If “helpout” is introduced, both UC-3 and UC-6 will have to implement
additional logic to check database access rights. Generally, it is easier to experiment with
different policies if the access control is implemented using protection proxies. Then, a new
policy can be implemented simply by deploying a different proxy class.

See the example described in Section 5.2.4 about using the Protection Proxy pattern. If the
Protection Proxy pattern is introduced, the above class diagram for the new design needs to be
modified to include new proxies, DBConnManager and DBConnAssociate. The protection proxy
will be generated the first time the user accesses the database during the current session and will
be destroyed when the user logs out of the system.

Solutions to Selected Problems 585

If UC-3 allows the manager to view different statistics or employee profiles and requires complex
visualization, we may consider using a Virtual Proxy to speed up the loading of the initial screen
and avoid generating complex visualizations until the manager wishes to see them. Sending
emails is a relatively complex task, so we may consider introducing a Remote Proxy between the
Messenger and the mail server. However, The Messenger has a single responsibility, which is
sending emails, and given that modern programming languages have good libraries to support
communication with mail servers, introducing a further Proxy it is not necessary. In a sense, the
Messenger itself is a Proxy for the mail server.

The Command pattern helps to explicitly articulate processing requests and encapsulate any
preprocessing potentially needed before the method request is made. Upon closer examination,
we realize that java.sql.Statement is designed to implement the Command pattern: the
client prepares an SQL statement and passes it to the Statement’s method execute(). Other
opportunities to use the Command pattern may arise if the system were to support more complex
task management, such as revoking a pending task (this is not an undo of assign-task!) or
reassigning it to a different associate.

Using Command pattern from the ReaderInterface to Dispatcher would not be appropriate
because Command is a stronger coupling than Publish-Subscribe. The ReaderInterface must be
unencumbered to quickly process incoming RFID events.

n summary, the main changes from the original design are as follows: The sequence diagrams
for all use cases will be modified with the new methods of the updated DBaseConn class. In

addition, the sequence diagrams for UC-1 and UC-2 will significantly change to include Publish-
Subscribe, itemRemoved() for UC-1 and itemAdded() for UC-2. UC-3 will simplify by
removing the checking for the user type (the protection proxy will take care of retrieving the
appropriate list of pending tasks). UC-4 will remain almost unchanged (except for the database
access). UC-5 will significantly change to include Publish-Subscribe. UC-6 will remain almost
unchanged (except for the database access). Notice that the database proxy will return nil if user
tries to close a non-existing task, or a task that was assigned to someone else (unless the user is a
manager).

Problem 5.11 — Solution

Problem 5.12 — Solution

Problem 5.13 — Solution

Problem 5.14 — Solution

I

Ivan Marsic Rutgers University 586

Problem 5.15 — Solution

(a)

Substituting the yield() method call for wait() is correct but not efficient—this is so called
a busy-wait “spin loop,” which wastes an unbounded amount of CPU time spinning uselessly. On
the other hand, wait-based version rechecks conditions only when some other thread provides
notification that the object’s state has changed.

(b)

This is not correct. When an action is resumed, the waiting thread does not know if the condition
is actually met; it only knows that it has been woken up. Also, there may be several threads
waiting for the same condition, and only one will be able to proceed. So it must check again.

Check the reference [Sandén, 2004] for details.

Problem 5.16 — Solution

Parking lot occupancy monitoring.

I will show two different UML diagrams for the two threads. The treads execute independently,
and the only place they interact is when the shared object is locked/unlocked or in coordination
using wait() / notify().

If a thread finds the shared object already locked, it is blocked and waiting until the lock is
released. The lock transfer is performed by the underlying operating system, so it is not the
application developer’s responsibility.

Solutions to Selected Problems 587

The UML diagram for the EnterThread is shown in Figure H-18. Notice that the thread first
grabs the shared state, updates it, and releases it. Only then is the ticket issued and the pole is
lifted. This is so that the other thread (ExitThread) does not need to wait too long to access the
shared state, if needed.

If the occupancy becomes equal to capacity, the shared object will post the signal “parking
full,” e.g., it will turn on the red light. No new cars will be allowed into the lot. In this case the
method isFull() on SharedState returns true.

If the lot is already full, the thread calls wait() and gets suspended until the other thread calls
notify().

Conversely, the UML diagram for the ExitThread is shown in Figure H-19.

The two threads, as designed above, can interact safely and the two diagrams can be connected at
any point.

Car

: EnterThread : ExitThread

Car

: SharedState

requestEntry()

lock()

full := isFull()

alt full == false

[else]

occupancy++carEntered()

opt occupancy == capacity
signal: “parking full"

unlock()

issue ticket
& lift entrance pole

wait()

transfer lock

transfer lock

loop

Figure H-18. Enter thread of the parking lot system, Problem 5.16.

Ivan Marsic Rutgers University 588

Problem 5.17 — Solution

Problem 5.18 — Solution

Problem 5.19 — Solution

Before one thinks about making a design multithreaded, one should consider whether
multithreading is needed. Multithreading can improve system performance but may also make the
system design significantly more complex. We note that even if we decide against using
multithreading, potential concurrency issues must be identified and clearly addressed. For
example, recall that the safe ranges can be updated remotely by authorized hospital personnel.
The existing design is not clear about how potential concurrency issues between the local and
remote software components that use Vitals Safe Ranges are resolved. We observe that the
remote user would not edit the safe ranges in place, but would rather prepare the whole set of new
values and send it to replace the old values at once.

We observe that the draft design is relatively simple and multithreading would certainly not make
it simpler. As for the performance, we observe that all the observed variables vary relatively
slowly: most physiological signals experience change on the spans of seconds or even minutes.
So, at first it may appear that performance is not an issue. However, from the problem statement
(see Problem 2.3 at the end of Chapter 2), we know that the measurements cannot be taken

Car

: EnterThread : ExitThread

Car

: SharedState

requestExit()
lock()

occupancy

opt occupancy == capacity 1

remove signal “parking full"

process payment
& lift exit pole

transfer lock

carExited()

notify()

unlock()

Figure H-19. Exit thread of the parking lot system, Problem 5.16.

Solutions to Selected Problems 589

continuously and instantaneously—measuring a blood pressure or heart rate may take a minute
per each sample. Therefore, if a single thread visits different sensor readers, just reading a blood
pressure and heart rate sample may take 2 minutes! Meanwhile, all other tasks would be
waiting for their turn. Running diagnostic tests may also take significant amount of time, although
tests cannot be run at the same time while measurements are performed. The key point is that we
must consider the characteristics and needs of the real-world problem domain instead of just
limiting our discussion to abstract issues of concurrency and design elegance. Our problem
statement is not specific enough about how frequently measurements should be taken or any other
performance requirements. At this point I will assume that we opted for multithreading, but I
caution that a real implementation would require much more careful analysis of the merits of
introducing multithreading into our system.

An optimal solution is to read each sensor in a different thread. Each thread is responsible for
reading data, checking these data, and then (as necessary) sending an alert based on the data.
Given that data acquisition periods are different for different sensors (vital signs are recorded
frequently and battery is checked least frequently), each thread would set its own timer and, when
awakened, process its own sensor. There are a total of four sensors in the given design: blood
pressure, heart rate, motion, and battery power sensor. In addition, the diagnostic test could be run
in its own thread and communications with the hospital may run in a separate thread. Because
wireless communication is highly unreliable and messages may need to be retransmitted multiple
times, it is a good idea to separate the communication from measurement tasks. That makes a
total of six threads:
Thread ID Source Object (Publisher) Receiver (Subscriber) Server Thread
Thread 1 Blood Pressure Reader Abnormality Detector

[uses: sensor hardware]
[uses: Vitals Safe Ranges]

Hospital Alerter

Thread 2 Heart Rate Reader Abnormality Detector
[uses: sensor hardware]
[uses: Vitals Safe Ranges]

Hospital Alerter

Thread 3 Sensor Diagnostic Failure Detector
[uses: sensor hardware]

Hospital Alerter

Thread 4 Activity Observer Activity Classifier
[uses: Vitals Safe Ranges]

Thread 5 Hospital Alerter [uses: Vitals Safe Ranges]
Thread 6 Battery Checker Patient Alerter

Note that there is no need for the Controller—each thread acts as the Controller for its own set of
objects. Thread 6 could be the main thread that does all supporting tasks, because battery
checking is relatively infrequent and of low priority.

There are the following issues with a multithreaded solution:

 Vital sign readers will run independently (each in their own thread) and read the vital signs:
blood pressure and heart rate. If both vitals happen to be out-of-range, two alerts will be sent to
the hospital, which should preferably be avoided given the need to conserve the battery energy.
One option is to join() the vitals threads and send only one alert, if and when needed.

 A race condition (or deadlock, or livelock) may occur between the vitals readers (Threads 1
and 2) and the activity observer (Thread 4), because the activity observer may write new Vitals

Ivan Marsic Rutgers University 590

Safe Ranges while the vitals readers read the Vitals Safe Ranges. In addition, recall that the safe
ranges can be updated remotely by authorized hospital personnel. This is why the above table
shows that Thread 5 uses Vitals Safe Ranges. (Currently Thread 5 is assumed to correspond to the
Hospital Alerter class, but this name is not adequate because it does not capture the bidirectional
communication between the hospital and the monitoring device.) A potential race condition
should be avoided by exclusion synchronization among the threads. The activity observer should
be assigned highest priority, because vitals may be misinterpreted when the patient is exercising.

thrd1 : AbnormalDetect : VSafeRanges

acquire lock

thrd4 : ActivityClassif

release lock

acquire lock

[blocked]

transfer lock

region

ranges := getValues()

adjust(exercise-mode)

 A race condition may occur between the vitals readers (Threads 1 and 2) and the sensor
diagnostic (Thread 3), because the sensor diagnostic may attempt to test the sensor hardware
while the vitals readers try to acquire the sensor readings. This problem should be avoided by
exclusion synchronization among the threads.

 A race condition may occur between the threads that generate alerts for the hospital (Threads 1,
2, and 3) while two or more of them try to hand over a HospitalAlert message to the hospital
alerter (Thread 5) to communicate the message to the hospital. Note that the HospitalAlert thread
may take considerable time for reliable transmission of messages, because multiple
retransmissions and waiting for acknowledgements may be needed. A potential race condition
should be avoided by condition synchronization among the threads. We introduce a new object: a
queue for alerts. Note that it is unclear whether the queue should be prioritized so that abnormal-
vitals alerts should have greater priority over sensor-failure alerts. After all, how meaningful is an
abnormal-vitals alert if at the same time sensors are diagnosed as faulty?!

Solutions to Selected Problems 591

release lock

thrd3 : FailureDetectr : AlertQueue

acquire lock

thrd5 : HospitalAlerter

notify()

wait()

[blocked]

transfer lock

region

append(alert)

alert := retrieveAlert()

thrd1 : AbnormalDetect

acquire lock

[blocked]

send msg

[forever] loop

transfer lock

Problem 5.20 — Solution

Concurrency in the supermarket inventory management system.

Problem 5.21 — Solution

Problem 5.22 — Solution

Distributed Publisher-Subscriber design pattern using Java RMI.

Problem 5.23 — Solution

Security for an online grocery store. The key pairs used for secure communication in our system
are shown in Figure H-20. Due to the stated requirements, all information exchanges must be
confidential.

Ivan Marsic Rutgers University 592

(a)

There must be at least three public-private key pairs issued:
(i) Merchant’s pair: (

MK ,
MK)

(ii) Customer’s pair: (
CK ,

CK)
(iii) Bank’s pair: (

BK ,
BK)

Recall that every receiver must have his/her own private key and the corresponding public key
can be disclosed to multiple senders. Because every actor at some point receives information,
they all must be given their own key pair.

(b)

I assume that each actor generates his/her own key pair, that is, there is no special agency
dedicated for this purpose.

The Merchant issues its pair and sends
MK to both the Bank and Customer. It is reasonable to

send
MK only once to the Bank for the lifetime of the key pair, because it can be expected that

the Merchant and Bank will have regular message exchanges. Conversely, it is reasonable to send

MK to the customer once per shopping session, because the shopping sessions can be expected to

be very rare events.

Customer Merchant Bank

place order (“selected items")

enter credit card info (“payment amount“)

process payment (“card info")

enter selection (“items catalog“)

approve transaction (“card info“, “payment amount")

notify outcome (“result value“)

notify outcome (“result value“)

MK

MK

CK

CK

BK

BK

BK

MK

MK

CK

CK

Figure H-20. Key pairs needed for secure communication. See text for explanation.

Solutions to Selected Problems 593

The Customer issues his/her pair and sends
CK to the Merchant only. Because shopping session

likely is a rare event,
CK should be sent at the start of every shopping session.

The Bank sends its public key
BK to the Merchant, who keeps a copy and forwards a copy to the

Customer.
BK will be sent to the Merchant once for the lifetime of the key pair, but the Merchant

will forward it to the Customer every time the Customer is prompted for the credit card
information.

(c)

As shown in Figure H-20, every actor keeps their own private key
iK secret. Both the Bank and

Customer will have the Merchant’s public key
MK . Only the Merchant will have

CK , and both

the Merchant and customer will have
BK .

(d)

The key uses in encryption/decryption are shown in Figure H-20. A public key
iK is used for

encryption and a private key
iK is used for decryption.

There is an interesting observation to make about the transaction authorization procedure. Here,

the Customer encrypts their credit card information using
BK and sends to the Merchant who

cannot read it (because it does not have
BK). The Merchant needs to supply the information

about the payment amount, which can be appended to the Customer’s message or sent in a
separate message. It may be tempting to suggest that the Customer encrypts both their credit card
information and the payment amount, and the Merchant just relays this message. However, they
payment amount information must be encrypted by the Merchant, because the Customer may
spoof this information and submit smaller than the actual amount.

The actual process in reality is more complex, because there are many more actors involved and
they rarely operate as their own key-makers. The interested reader should consult [Ford & Baum,
2001]. A summary of the SET (Secure Electronic Transaction) system for ensuring the security of
financial transactions on the Internet can be found online at http://mall.jaring.my/faqs.html#set.

Problem 5.24 — Solution

Problem 6.1 — Solution

Ivan Marsic Rutgers University 594

Problem 6.2 — Solution

What we got in Listing 6-13 is equivalent to Listing 6-1; what we need to get should be
equivalent to Listing 6-7. For the sake of simplicity, I will assume that all elements that are left
unspecified are either arbitrary strings of characters (class name and semester) or integers (class
index and enrollment). Otherwise, the listing below would be much longer if I tried to model
them realistically, as well.

Listing H-1: XML Schema for class rosters.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
14a
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://any.website.net/classRoster"
 xmlns="http://any.website.net/classRoster"
 elementFormDefault="qualified">

 <xsd:element name="class-roster">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="class-name" type="xsd:string"/>
 <xsd:element name="index" type="xsd:integer"/>
 <xsd:element name="semester" type="xsd:string"/>
 <xsd:element name="enrollment" type="xsd:integer"/>
 <xsd:element ref="student"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="student">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="student-id">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}00\d{4}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name="name">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="first-name" type="xsd:string"/>
 <xsd:element name="last-name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="school-number">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

Solutions to Selected Problems 595

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

 <xsd:element name="graduation" type="xsd:gYear"/>
 <xsd:element name="grade" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="A"/>
 <xsd:enumeration value="B+"/>
 <xsd:enumeration value="B"/>
 <xsd:enumeration value="C+"/>
 <xsd:enumeration value="C"/>
 <xsd:enumeration value="D"/>
 <xsd:enumeration value="F"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>

 <xsd:attribute name="status" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="full-time"/>
 <xsd:enumeration value="part-time"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Problem 6.3 — Solution

596

References

1. A. J. Albrecht, “Measuring application development productivity,” Procedings of the
IBM Applications Development Symposium, pp. 83, Monterey, CA, October 1979.

2. J. Al Dallal, “Measuring the discriminative power of object-oriented class cohesion
metrics,” IEEE Transactions on Software Engineering, to appear, 2011.

3. B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl,
“The CCA core specification in a distributed memory SPMD framework,” Concurrency
and Computation: Practice and Experience, vol. 14, pp. 323-345, 2002.

4. E. B. Allen, and T. M. Khoshgoftaar, “Measuring coupling and cohesion: An
information-theory approach,” Proceedings of the Sixth IEEE International Software
Metrics Symposium, pp. 119-127, November 1999.

5. E. Armstrong, J. Ball, S. Bodoff, D. Bode Carson, I. Evans, D. Green, K. Haase, and E.
Jendrock, The J2EE™ 1.4 Tutorial: For Sun Java System Application Server Platform
Edition 8.2, Sun Microsystems, Inc., December 5, 2005. Online at:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

6. R. M. Baecker, “Sorting out sorting: A case study of software visualization for teaching
computer science,” in Stasko, J., Domingue, J., Brown, M., and Price, B. (Editors),
Software Visualization: Programming as a Multimedia Experience, pp. 369-381, The
MIT Press, Cambridge, MA, 1998. Online at: http://kmdi.utoronto.ca/rmb/papers/B7.pdf

7. C. H. Bennett, “On the nature and origin of complexity in discrete, homogeneous,
locally-interacting systems,” Foundations of Physics, vol. 16, pp. 585-592, 1986.

8. C. H. Bennett, “Information, dissipation, and the definition of organization,” in D. Pines
(Editor), Emerging Syntheses in Science, Addison-Wesley, Reading, MA, 1987.

9. C. H. Bennett, “How to define complexity in physics, and why,” in W. H. Zurek
(Editor), Complexity, Entropy, and the Physics of Information, SFI Studies in the Science
of Complexity, vol. VIII, pp. 137-148, Addison-Wesley, Redwood City, CA, 1990.

10. I. Ben-Shaul, O. Holder, and B. Lavva, “Dynamic adaptation and deployment of
distributed components in Hadas,” IEEE Transactions on Software Engineering, vol. 27,
no. 9, pp. 769-787, September 2001.

11. J. Bosak and T. Bray, “XML and the second-generation Web,” Scientific American,
pp.89-93, May 1999. Online at:
http://www.sciam.com/article.cfm?articleID=0008C786-91DB-1CD6-
B4A8809EC588EEDF&catID=2

References 597

12. R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, and
M. Yechuri, “A component based services architecture for building distributed
applications,” Proceedings of the Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC'00), pp. 51-, Pittsburgh, PA, August 2000.

13. L. C. Briand, J. W. Daly, and J. K. Wüst, “A unified framework for coupling
measurement in object-oriented systems,” IEEE Transactions on Software Engineering,
vol. 25, no. 1, pp. 91-121, January 1999.

14. L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software engineering
measurement,” IEEE Transactions on Software Engineering, vol. 22, no. 1, pp. 68-85,
January 1996.

15. F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary Edition, Addison-Wesley Inc., Reading, MA, 1995.

16. M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plášil, G. Pomberger, W. Pree, M. Stal,
and C. Szyperski, “What characterizes a (software) component?,” Software – Concepts
& Tools, vol. 19, pp. 49-56, 1998.

17. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons, Inc., New York, 1996.

18. K. L. Calvert and M. J. Donahoo, TCP/IP Sockets in Java: Practical Guide for
Programmers, Morgan Kaufmann Publishers, San Francisco, CA, 2002.

19. D. Caromel and J. Vayssière, “A security framework for reflective Java applications,”
Software—Practice & Experience (John Wiley & Sons, Inc.), vol. 33, no. 9, 821-846,
July 2003.

20. E. R. Carroll, “Estimating software based on use case points,” Proceedings of the 2005
ACM Conference on Object-Oriented, Programming, Systems, Languages, and
Applications (OOPSLA '05), pp. 257-265, San Diego, CA, October 2005.

21. R. Chellappa, P. J. Phillips, and D. Reynolds (Editors), Special Issue on Biometrics:
Algorithms and Applications of Fingerprint, Iris, Face, Gait, and Multimodal
Recognition, Proceedings of the IEEE, vol. 94, no. 11, November 2006.

22. G. Chen and B. K. Szymanski, “Object-oriented paradigm: Component-oriented
simulation architecture: Toward interoperability and interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501, Arlington, VA,
December 2001.

23. M. Cohn, User Stories Applied: For Agile Software Development, Addison-Wesley,
Boston, MA, 2004.

24. M. Cohn, “Estimating with use case points,” Methods & Tools, vol. 13, no. 3, pp. 3-13,
Fall 2005. Online at: http://www.methodsandtools.com/archive/archive.php?id=25

25. M. Cohn, Agile Estimating and Planning, Prentice-Hall PTR, Upper Saddle River, NJ,
2006.

Ivan Marsic Rutgers University 598

26. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development: The Fusion Method, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1994.

27. L. L. Constantine and L. A. D. Lockwood, Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design, Addison-Wesley Professional / ACM
Press, Reading, MA, 1999.

28. L. L. Constantine, G. J. Myers, and W. P. Stevens, “Structured design,” IBM Systems
Journal, vol. 13, no. 2, pp. 115-139, May 1974.

29. K. Cusing, “Why projects fail,” Computer Weekly, November 21, 2002.

30. M. A. Cusumano, “The changing software business: Moving from products to services,”
IEEE Computer, vol. 41, no. 1, pp. 20-27, January 2008.

31. G. Cybenko and B. Brewington, “The foundations of information push and pull,” In D.
O’Leary (Editor), Mathematics of Information, Springer-Verlag, 1998. Online at:
http://actcomm.dartmouth.edu/papers/cybenko:push.pdf

32. R. Davies and F. Pfenning, “A modal analysis of staged computation,” Journal of the
ACM (JACM), vol. 48, no. 3, pp. 555-604, May 2001.

33. A. Denning, Active X Controls Inside Out, Second Edition, Microsoft Press, Redmond,
Washington, 1997.

34. M. J. Donahoo and K. L. Calvert, Pocket Guide to TCP/IP Sockets (C Version), Morgan
Kaufmann Publishers, San Francisco, CA, 2001.

35. P. Dourish, “Using metalevel techniques in a flexible toolkit for CSCW applications,”
ACM Transactions on Computer-Human Interaction (TOCHI), vol. 5, no. 2, pp.109-155,
June 1998.

36. B. Eckel, Thinking in Java, Third Edition, Prentice Hall PTR, Upper Saddle River, NJ,
2003. Online at: http://www.mindview.net/Books

37. The Economist, “Security through viral propagation,” The Economist, pp. 7-8 of the
special section: Technology Quarterly, December 4, 2004. Online at:
http://www.economist.com./science/tq/displayStory.cfm?story_id=3423046

38. J. Eder, G. Kappel, and M. Schrefl, “Coupling and cohesion in object-oriented systems,”
Proceedings of the Conference on Information and Knowledge Management, Baltimore,
MA, 1992.

39. P. Th. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114-131, June 2003.

40. M. E. Fayad and D. C. Schmidt, “Object-oriented application frameworks,”
Communications of the ACM, vol. 40, no. 10, pp. 32-38, October 1997.

41. N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
Second Edition (Revised Printing), PWS Publishing Company (International Thomson
Publishing), Boston, MA, 1998.

References 599

42. R. P. Feynman, R. W. Allen, and T. Hey, Feynman Lectures on Computation, Perseus
Publishing, 2000.

43. W. Ford and M. S. Baum, Secure Electronic Commerce: Building the Infrastructure for
Digital Signatures and Encryption, Second Edition, Prentice Hall PTR, Upper Saddle
River, NJ, 2001.

44. M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, Inc., Reading,
MA, 1997.

45. M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Inc.,
Reading, MA, 2000.

46. M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,
Third Edition, Addison-Wesley, Inc., Reading, MA, 2004.

47. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley Longman, Inc., Reading, MA,
1995.
The pattern descriptions are available online, e.g.,
http://www.dofactory.com/Patterns/Patterns.aspx

48. M. Gell-Mann and C. Tsallis (Editors), Nonextensive Entropy: Interdisciplinary
Application, Oxford University Press, 2004.

49. M. Gladwell, The Tipping Point: How Little Things Can Make a Big Difference, Back
Bay Books / Little, Brown and Co., New York, NY, 2000.

50. E. G. Goodaire and M. M. Parmenter, Discrete Mathematics with Graph Theory, Third
Edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.

51. S. D. Guttenplan, The Languages of Logic: An Introduction to Formal Logic, Basil
Blackwell, 1986.

52. M. H. Halstead, Elements of Software Science, Elsevier North-Holland, New York, NY,
1977.

53. R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the MOOD set of object-
oriented software metrics,” IEEE Transactions on Software Engineering, vol. 24, no. 6,
pp. 491-496, June 1998.

54. A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah, and E. Jansen, “Gator Tech
smart house: A programmable pervasive space,” IEEE Computer, vol. 38, no. 3, pp 64-
74, March 2005.

55. B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity, Prentice-Hall
Inc., Upper Saddle River, NJ, 1996.

56. B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, “Coupling and cohesion:
Towards a valid suite of object-oriented metrics,” Object-Oriented Systems, vol. 3, no. 3,
143-158, 1996.

Ivan Marsic Rutgers University 600

57. B. Henderson-Sellers and D. Tegarden, “The theoretical extension of two versions of
cyclomatic complexity to multiple entry/exit modules,” Software Quality Journal, vol. 3,
no. 4, pp. 253-269, December 1994.

58. M. Henning, “The rise and fall of CORBA,” ACM Queue, vol. 4, no. 5, pp. 28-34, June
2006. Online at: http://acmqueue.com/rd.php?c.396

59. J. Henry and D. Gotterbarn, “Coupling and cohesion in object-oriented design and
coding,” Proceedings of the 1996 ACM 24th Annual Conference on Computer Science,
pp. 149, Philadelphia, PA, 1996.

60. J. C. Hou et al., J-Sim: Component-Based, Compositional Simulation Environment.
Online at: http://www.j-sim.org/

61. M. E. C. Hull, P. N. Nicholl, P. Houston, and N. Rooney, “Towards a visual approach
for component-based software development,” Software – Concepts & Tools, vol. 19, pp.
154-160, 2000.

62. D. Ince, Software Development: Fashioning the Baroque, Oxford University Press,
Oxford, UK, 1988.

63. M. Jackson, Software Requirements and Specifications: A Lexicon of Practice,
Principles and Prejudices, Addison-Wesley Professional, Reading, MA, 1995.

64. M. Jackson, Problem Frames: Analyzing and Structuring Software Development
Problems, Addison-Wesley Professional, Reading, MA, 2001.

65. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1999.

66. M. Johnson, The trick to controlling bean customization. JavaWorld, November 1997.
Online at: http://www.javaworld.com/javaworld/jw-11-1997/jw-11-beans.html

67. C. Jones, “Patterns of large software systems: Failure and success,” IEEE Computer,
vol. 28, no. 3, pp. 86-87, 1995.

68. P. Joshi and R. K. Joshi, “Quality analysis of object oriented cohesion metrics,”
Proceedings of the 7th International Conference on the Quality of Information and
Communications Technology (QUATIC 2010), pp. 319-324, Porto, Portugal,
September/October 2010.

69. R. Kanigel, The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency,
The MIT Press, Cambridge, MA, 2005.

70. J. Karlsson and K. Ryan, “A cost-value approach for prioritizing requirements,” IEEE
Software, vol. 14, no. 5, pp. 67-74, September/October 1997.

71. G. Karner, “Metrics for Objectory,” Diploma Thesis, University of Linköping, Sweden,
No. LiTH-IDA-Ex-9344:21. December 1993.

72. C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers,” ACM Computing
Surveys, vol. 37, no. 2, pp. 83-137, June 2005.

References 601

73. B. Kirwan and L. K. Ainsworth (Editors), A Guide to Task Analysis, CRC Press (Taylor
& Francis, Ltd.), Atlanta, GA, 1992.

74. B. A. Kitchenham, S. L. Pfleeger, and N. E. Fenton, “Towards a framework for software
measurement validation,” IEEE Transactions on Software Engineering, vol. 21, no. 12,
pp. 929-944, December 1995.

75. G. Krasner and S. Pope, “A cookbook for using the model-view-controller user interface
paradigm in Smalltalk-80,” Journal of Object-Oriented Programming, vol. 1, no. 3, pp.
26-49, August/September 1988.

76. B. Krishnamurthy and J. Rexford, Web Protocols and Practice: HTTP/1.1, Networking
Protocols, Caching, and Traffic Measurement, Addison-Wesley, Inc., Reading, MA,
2001.

77. S. Kusumoto, F. Matukawa, K. Inoue, S. Hanabusa, and Y. Maegawa, “Estimating effort
by use case points: Method, tool and case study,” Proceedings of the IEEE 10th
International Symposium on Software Metrics (METRICS’04), pp. 292-299, September
2004.

78. A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to
Software Specifications, John Wiley & Sons, Ltd., Chichester, England, 2009.

79. C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development, Third Edition, Pearson Education, Inc., Upper
Saddle River, NJ, 2005.

80. C. Larman and V.R. Basili, “Iterative and incremental developments: A brief history,”
IEEE Computer, vol. 36, no. 6, pp. 47-56, June 2003.

81. D. Lea, Concurrent Programming in Java, Second Edition, Addison-Wesley Longman,
Inc., Reading, MA, 2000.

82. D. Lee and W. W. Chu, “Comparative analysis of six XML schema languages,”
Department of Computer Science, University of California, Los Angeles, CA, June
2000. Online at: http://cobase-www.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html

83. D. H. Lorenz and J. Vlissides, “Pluggable reflection: Decoupling meta-interface and
implementation,” Proceedings of the 25th International Conference on Software
Engineering, Portland, OR, pp. 3, May 2003.

84. A. A. Lovelace, “Translator’s notes to an article on Babbage’s Analytical Engine,” In R.
Taylor (Editor), Scientific Memoirs, vol. 3, pp. 691-731, September 1843.

85. A. MacCormack, “Product-development practices that work: How Internet companies
build software,” MIT Sloan Management Review, pp. 75-84, Winter 2001. Reprint
number 4226.

86. J. Maeda (Editor), Creative Code: Aesthetics + Computation, Thames & Hudson,
London, UK, 2004.

87. P. Maes, “Concepts and experiments in computation reflection,” ACM SIGPLAN Notices
(OOPSLA ‘87 Proceedings), vol. 22, no. 12, pp. 147-155, December 1987.

Ivan Marsic Rutgers University 602

88. K. Malan and K. Halland, “Examples that can do harm in learning programming,”
Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA '04), Vancouver, BC,
Canada, pp. 83-87, October 2004.

89. R. Malan, R. Letsinger, and D. Coleman, Object-Oriented Development at Work: Fusion
in the Real World, Prentice-Hall PTR, Upper Saddle River, NJ, 1996.

90. A. Marcoux, C. Maurel, F. Migeon, and P. Sallé, “Generic operational decomposition
for concurrent systems: Semantics and reflection,” Progress in Computer Research,
Nova Science Publishers, Inc., pp. 225-242, 2001.

91. R. C. Martin, Agile Software Development, Principles, Patterns, and Practices, Prentice
Hall, Upper Saddle River, NJ, 2003.

92. H. Masuhara and A. Yonezawa, “Reflection in concurrent object-oriented languages,”
Formal Methods for Distributed Processing: A Survey of Object-Oriented Approaches,
Cambridge University Press, New York, NY, 2001.

93. J. McGovern, S. Tyagi, M. Stevens, and S. Mathew, Java Web Services Architecture,
Morgan Kaufmann Publishers, San Francisco, CA, 2003.

94. G. McGraw, Software Security: Building Security In, Addison-Wesley / Pearson
Education, Inc., Boston, MA, 2006.

95. J. McGrenere, R. M. Baecker, and K. S. Booth, “An evaluation of a multiple interface
design solution for bloated software,” Proc. ACM CHI 2002, ACM CHI Letters, vol. 4,
no. 1, pp. 164-170, 2002.

96. W. E. McUmber and B. H. C. Cheng, “A general framework for formalizing UML with
formal languages,” Proceedings of the IEEE/ACM International Conference on Software
Engineering (ICSE’01), Toronto, Canada, pp.433-442, May 2001.

97. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, LLC, Boca Raton, FL, 1997. Whole text available for
download online at: http://www.cacr.math.uwaterloo.ca/hac/

98. B. Meyer, “The dependent delegate dilemma,” in M. Broy, J. Grünbauer, D. Harel, and
T. Hoare (Eds.), Engineering Theories of Software Intensive Systems—NATO Science
Series II. Mathematics, Physics and Chemistry vol. 195, pp. 105-118, Springer, 2005.

99. G. A. Miller, “The magical number 7 plus or minus two: Some limits on our capacity for
processing information,” Psychological Review, vol. 63, pp. 81-97, 1957.

100. A. Mitchell and J. F. Power, “Using object-level run-time metrics to study coupling
between objects,” Proceedings of the 2005 ACM Symposium on Applied Computing
(SAC '05), Santa Fe, NM, March 2005.

101. P. Mohagheghi, B. Anda, and R. Conradi, “Effort estimation of use cases for
incremental large-scale software development,” Proceedings of the 27th IEEE/ACM
International Conference on Software Engineering (ICSE’05), pp. 303-311, St Louis,
MO, 2005.

References 603

102. M. C. Mozer, “The Adaptive House,” Department of Computer Science, University of
Colorado, Boulder, CO. Web page last visited in December 2004.
Online at: http://www.cs.colorado.edu/~mozer/house/

103. P. Mulet, J. Malenfant, and P. Cointe, “Towards a methodology for explicit composition
of metaobjects,” ACM SIGPLAN Notices, vol. 30, no. 10, pp. 316-330, October 1995.

104. G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models: Bridging the gap
between source and high-level models,” ACM SIGSOFT Software Engineering Notes,
vol. 20, no. 4, pp. 18-28, October 1995.

105. J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional
requirements: A process-oriented approach,” IEEE Transactions on Software
Engineering, vol. 23, no. 3/4, pp. 127-155, 1998.

106. S. Nageswaran, “Test effort estimation using use case points,” Cognizant Technology
Solutions Quality Week 2001, San Francisco, CA, June 2001. Online at:
http://www.cognizant.com/html/content/cogcommunity/Test_Effort_Estimation.pdf

107. A. Newell and H. A. Simon, “GPS: A program that simulates human thought,” In H.
Billings (Editor), Lernende Automaten, Munich: R. Oldenbourg KG, pp. 109-124, 1961.
Reprinted in: E. A. Feigenbaum, J. Feldman, and P. Armer (Editors), Computers and
Thought, Menlo Park: AAAI Press; Cambridge: MIT Press, pp. 279-293, 1995.

108. A. Newell and H. A. Simon, Human Problem Solving, Prentice-Hall, Englewood Cliffs,
NJ, 1972.

109. S. Ogawa and F. T. Piller, “Reducing the risks of new product development,” MIT Sloan
Management Review, pp. 65-71, Winter 2006. Reprint number 47214.

110. R. Osherove, The Art Of Unit Testing: With Examples in .NET, Manning Publications
Co., Greenwich, CT, 2009.

111. T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'04), Boston, MA, pp. 86-96, July 2004.

112. D. O’Sullivan and T. Igoe, Physical Computing: Sensing and Controlling the Physical
World with Computers, Thomson Course Technology PTR, Boston, MA, 2004.
See also Tom Igoe’s webpage on Physical Computing at: http://tigoe.net/pcomp/index.shtml

113. D. L. Parnas, “On the criteria to be used in decomposing systems,” Communications of
the ACM, vol. 15, no. 12, pp. 1053-1058, December 1972.

114. H. Petroski, The Evolution of Useful Things: How Everyday Artifacts—From Forks and
Pins to Paper Clips and Zippers—Came to Be as They Are. Alfred A. Knopf, Inc., New
York, NY, 1992.

115. J. Raskin, “Comments are more important than code,” ACM Queue, vol. 3, no. 2, pp. 64-
ff, March 2005.

116. J. Raskin, The Humane Interface: New Directions for Designing Interactive Systems,
ACM Press and Addison-Wesley, Reading, MA, 2000.

Ivan Marsic Rutgers University 604

117. M. Richmond and J. Noble, “Reflections on remote reflection,” Australian Computer
Science Communications, vol. 23, no. 1, pp. 163-170, January-February 2001.

118. K. H. Rosen, Discrete Mathematics and Its Applications, Sixth Edition, McGraw-Hill,
New York, NY, 2007.

119. B. Sandén, “Coping with Java threads,” IEEE Computer, vol. 37, no. 4, pp. 20-27, April
2004.

120. M. Satyanarayanan and D. Narayanan, “Multi-fidelity algorithms for interactive mobile
applications,” Wireless Networks, vol. 7, no. 6, pp. 601-607, November 2001.

121. G. Schneider and J. P. Winters, Applying Use Cases: A Practical Guide, Second Edition,
Addison-Wesley Professional, Reading, MA, 2001.

122. L. M. Seiter, J. Palsberg, and K. J. Lieberherr, “Evolution of object behavior using
context relations,” ACM SIGSOFT Software Engineering Notes, vol. 21, no. 6, pp. 46-
57, November 1996.

123. B. C. Smith, “Reflection and semantics in LISP,” Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Salt Lake
City, UT, pp. 23-35, 1984.

124. B. C. Smith, Reflection and Semantics in a Procedural Language, Ph. D. thesis, MIT/-
LCS/TR-272, Cambridge, Massachusetts, January 1982. Available at:
http://www.lcs.mit.edu/publications/specpub.php?id=840

125. I. Sommerville, Software Engineering, Seventh Edition, Addison-Wesley Publ. Ltd.,
Edinburgh Gate, England, 2004.

126. J. T. Stasko, J. B. Domingue, M. H. Brown, and B. A. Price (Editors), Software
Visualization: Programming as a Multimedia Experience, The MIT Press, Cambridge,
MA, 1998.

127. W. R. Stevens, B. Fenner, and A. M. Rudoff, Unix Network Programming, Vol. 1: The
Sockets Networking API, Third Edition, Addison-Wesley (Pearson Education, Inc.),
Boston, MA, 2004.

128. G. T. Sullivan, “Aspect-oriented programming using reflection and metaobject
protocols,” Communications of the ACM, vol. 44, no. 10, pp. 95-97, October 2001.

129. Sun Microsystems, Inc., JavaBeans API specification. Mountain View, CA, Available
at: http://www.javasoft.com/beans/

130. Sun Microsystems, Inc., JavaServer Pages. Mountain View, CA. Available at:
http://java.sun.com/products/jsp/index.html

131. Sun Microsystems, Inc., The Java Tutorial: A Practical Guide for Programmers, ©
1995-2005 Sun Microsystems, Inc., Last update: April 15, 2005. Online at:
http://java.sun.com/docs/books/tutorial/index.html

132. B. K. Szymanski and G. Chen, “A component model for discrete event simulation,” in
R.Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski (Editors), Proceedings
of the 4th International Conference Parallel Processing and Applied Mathematics

References 605

(PPAM 2001), pp. 580-594, Naleczow, Poland, September 2001. Revised Papers
appeared in Lecture Notes in Computer Science 2328, Springer-Verlag, 2002.

133. R. N. Taylor, N. Medvidović, and E. M. Dashofy, Software Architecture: Foundations,
Theory, and Practice, John Wiley & Sons, Inc., Hoboken, NJ, 2010.

134. M. W. Tobias, Locks, Safes and Security: An International Police Reference, Second
Edition, Charles C. Thomas Publ. Ltd., Springfield, IL, 2000.

135. H.-Y. Tyan, A. Sobeih, and J. C. Hou, “Towards composable and extensible network
simulation,” Proceedings of the 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005), CD-ROM/Abstracts Proceedings, Denver, CO, April 2005.

136. K. J. Vicente, Cognitive Work Analysis: Toward Safe, Productive, and Healthy
Computer-Based Work, Lawrence Erlbaum Associates, Publishers, Mahwah, NJ, 1999.

137. M. Völter, M. Kircher, and U. Zdun, Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware, John Wiley & Sons, Ltd.,
Chichester, England, 2005.

138. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, A Note on Distributed Computing.
Technical Report SMLI TR-94-29, Sun Microsystems Laboratories Inc., Mountain
View, CA, November 1994. Available at: http://research.sun.com/techrep/1994/abstract-
29.html
Also in: Lecture Notes In Computer Science; Vol. 1222: Selected Presentations and
Invited Papers Second International Workshop on Mobile Object Systems—Towards the
Programmable Internet, pp. 49-64, Springer-Verlag Publ., 1996.

139. R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, and D. Wynn, Jr., “The
business of open source,” Communications of the ACM, vol. 51, no. 4, pp. 41-46, April
2008.

140. E. J. Weyuker, “Evaluating software complexity measures,” IEEE Transactions on
Software Engineering, vol. 14, no. 9, pp. 1357-1365, September 1988.

141. R. J. Whiddett, Concurrent Programming for Software Engineers, Chichester, West
Sussex: Ellis Horwood; New York: Halsted Press, 1987.

142. R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities, and
Collaborations, Addison-Wesley, Boston, MA, 2003.

143. A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for the Java system,”
USENIX Computing Systems, vol. 9, no. 4, Fall 1996.

144. J. Woodcock and M. Loomes, Software Engineering Mathematics: Formal Methods
Demistifyed, Pitman, 1988.

606

Acronyms and Abbreviations

Note: WhatIs.com provides definitions, computer terms, tech glossaries, and acronyms at: http://whatis.techtarget.com/

A2A — Application-to-Application

AES — Advanced Encryption Standard

AI — Artificial Intelligence

AOP — Aspect-Oriented Programming

API — Application Programming Interface

AWT — Abstract Widget Toolkit (Java package)

AXIS — Apache eXtensible Interaction System

B2B — Business-to-Business

BOM — Business Object Model

BPEL4WS — Business Process Execution Language
for Web Services

CA — Certification Authority

CBDI — Component Based Development and
Integration

CDATA — Character Data

CORBA — Common Object Request Broker
Architecture

COTS — Commercial Off-the-shelf

CPU — Central Processing Unit

CRC — Candidates, Responsibilities, Collaborators
cards

CRM — Customer Relationship Management

CRUD — Create, Read, Update, Delete

CSV — Comma Separated Value

CTS — Clear To Send

DCOM — Distributed Component Object Model

DOM — Document Object Model

DTD — Document Type Definition

EJB — Enterprise JavaBean

FSM — Finite State Machine

FTP — File Transfer Protocol

FURPS+ — Functional Usability Reliability
Performance Supportability + ancillary

GPS — General Problem Solver; Global Positioning
System

GRASP — General Responsibility Assignment
Software Patterns

GUI — Graphical User Interface

HTML — HyperText Markup Language

HTTP — HyperText Transport Protocol

HTTPS — Hypertext Transfer Protocol over Secure
Socket Layer

IDE — Integrated Development Environment

IDL — Interface Definition Language

IEEE — Institute of Electrical and Electronics
Engineers

IP — Internet Protocol

IPv4 — Internet Protocol version 4

IT — Information Technology

JAR — Java Archive

JDBC — Java Database Connectivity

JDK — Java Development Kit

JRE — Java Runtime Environment

JSP — Java Server Page

JVM — Java Virtual Machine

LAN — Local Area Network

MDA — Model Driven Architecture

MIME — Multipurpose Internet Mail Extensions

MVC — Model View Controller (software design
pattern)

OASIS — Organization for the Advancement of
Structured Information Standards

OCL — Object Constraint Language

OMG — Object Management Group

OO — Object Orientation; Object-Oriented

OOA — Object-Oriented Analysis

OOD — Object-Oriented Design

ORB — Object Request Broker

OWL — Web Ontology Language

PAN — Personal Area Network

PC — Personal Computer

PCDATA — Parsed Character Data

PDA — Personal Digital Assistant

QName — Qualified Name (in XML)

QoS — Quality of Service

P2P — Peer-to-Peer

PI — Processing Instruction (XML markup)

PKI — Public Key Infrastructure

RDD — Responsibility-Driven Design

RDF — Resource Description Framework

Acronyms and Abbreviations 607

RFC — Request For Comments; Remote Function Call

RFID — Radio Frequency Identification

RMI — Remote Method Invocation (Java package)

RPC — Remote Procedure Call

RSS — Really Simple Syndication

RTS — Request To Send

RTSJ — Real-Time Specification for Java

RUP — Rational Unified Process

SE — Software Engineering

SGML — Standard Generalized Markup Language

SMTP — Simple Mail Transfer Protocol

SOA — Service Oriented Architecture

SOAP — Simple Object Access Protocol; Service
Oriented Architecture Protocol; Significantly
Overloaded Acronym Phenomenon

SSL — Secure Socket Layer

SuD — System under Discussion

TCP — Transport Control Protocol

TDD — Test-Driven Development

TLA — Temporal Logic of Actions

UAT — User Acceptance Test

UDDI — Universal Description, Discovery, and
Integration

UDP — User Datagram Protocol

UML — Unified Modeling Language

URI — Unified Resource Identifier

URL — Unified Resource Locator

URN — Unified Resource Name

UUID — Universal Unique Identifier

VLSI — Very Large Scale Integration

W3C — World Wide Web Consortium

WAP — Wireless Access Protocol

WEP — Wired Equivalent Privacy

WG — Working Group

Wi-Fi — Wireless Fidelity (synonym for IEEE 802.11)

WML — Wireless Markup Language

WS — Web Service

WSDL — Web Services Description Language

WWW — World Wide Web

XMI — XML Metadata Interchange

XML — eXtensible Markup Language

XP — eXtreme Programming

XPath — XML Path

XSL — eXtensible Stylesheet Language

XSLT — eXtensible Stylesheet Language Transform

608

Index

Symbols
 (and) …

 (exists) …

 (for all) …

 (if and only if) …

 (implies) …

 (not) …

 (or) …

Java Classes
ArrayList [java.util.*] …

AttributeList [org.xml.sax.*] …

BufferedReader [java.io.*] …

Class [java.lang.*] …

Constructor [java.lang.reflect.*] …

DocumentHandler [org.xml.sax.*] …

Field [java.lang.reflect.*] …

HashMap [java.util.*] …

Hashtable [java.util.*] …

InputStream [java.io.*] …

InputStreamReader [java.io.*] …

IOException [java.io.*] …

Iterator [java.util.*] …

Method [java.lang.reflect.*] …

OutputStreamWriter [java.io.*] …

Parser [org.xml.sax.*] …

PrintWriter [java.io.*] …

Serializable [java.io.*] …

SerialPort [javax.comm.*] …

ServerSocket [java.net.*] …

Socket [java.net.*] …

TooManyListenersException [java.util.*] …

Vector [java.util.*] …

XML Keywords
ANY [XML/DTD] …

ATTLIST [XML/DTD] …

CDATA [XML/DTD] …

DOCTYPE [XML/DTD] …

ELEMENT [XML/DTD] …

FIXED [XML/DTD] …

IMPLIED [XML/DTD] …

PCDATA [XML/DTD] …

REQUIRED [XML/DTD] …

A
Absolute scale. See Scales

Abstraction …

Abuse case ...

Acceptance test ...

Access control …

Access designation ...

Accessor. See Getter method

Activity diagram …

Actor …

Offstage …

Primary …

Supporting …

Adaptive house …

Aggregation …

Agile method …

Agile planning …

Algorithm …

Analysis …

Applet …

Application …

Architectural style …

Architecture, software …

Artifact …

Artificial intelligence …

Aspect-Oriented Programming …

Association …

Attribute …

Authentication …

Index

609

Autonomic computing …

B
Bean. See Java Beans

Binding …

Biometrics …

Black box …

Black box testing …

Boundary, system …

Broker pattern. See Design patterns

Brooks, Frederick P., Jr. …

Bug …

C
Chunking …

Ciphertext …

Class …

Abstract …

Base …

Derived …

Inner …

Class diagram …

Client object …

Code …

Cohesion …

Command pattern. See Design patterns

Comment …

Communication diagram …

Complexity …

Cyclomatic …

Halstead’s method …

McCabe …

Size-based metrics …

Component …

Component diagram …

Composite …

Composition …

Concept …

Conceptual modeling …

Conclusion …

Concurrent programming …

Conjunction …

Constraint …

Constructor …

Content model …

Context diagram …

Contract …

Contradiction …

Controller. See Design patterns

Coordination …

Coupling …

Correctness …

Cost estimation …

Critical region …

Cross-cutting concern …

Cryptography …

Cryptosystem …

Public-key …

Symmetric …

D
Data structure …

Data-driven design …

Decryption …

Defect …

Delegation …

Delegation event model …

De Morgan’s laws …

Dependency …

Design …

Design patterns

Behavioral …

Broker …

Command …

Decorator …

GRASP …

Observer …

Proxy …

Publish-Subscribe …

State ...

Structural …

Diffie-Hellman algorithm …

Disjunction …

Distributed computing …

Divide-and-conquer. See Problem solving

Document, XML …

Documentation …

DOM …

Domain layer …

Domain model …

Domain object …

E
Effort estimation …

Embedded processor …

Emergent property, system …

Ivan Marsic Rutgers University 610

Encapsulation …

Encryption …

Equivalence …

Error …

Estimation. See Project estimation

Ethnography …

Event …

Keyboard focus …

Event-driven application …

Exception …

Existential quantification …

Expert rule …

Extension point …

Extreme programming …

F
Failure …

Fault …

Fault tolerance …

Feature, system …

Feynman, Richard P. …

Fingerprint reader …

Finite state machine …

Fixture (in testing) …

Formal specification …

Frame …

Framework …

Functional requirement …

FURPS+, system requirements …

G
Generalization …

Getter method ...

Goal specification …

Graph theory …

Graphical user interface …

GRASP pattern. See Design patterns

H
Handle …

Heuristics …

HTML …

HTTP …

Human working memory …

Hypothesis …

I
Implementation …

Implication …

Indirection …

Inheritance …

Input device …

Instance, class …

Integration testing …

Interaction diagram …

Interface, software …

Interval scale. See Scales

Interview, requirements elicitation …

Introspection …

Instruction …

Iterative lifecycle …

J
Jackson, Michael …

Java, programming language …

Java Beans …

JUnit …

K
Kanban ...

Keyboard …

Keyword …

Kleene operators …

L
Latency …

Layer …

Layered architecture …

Layout …

Lifecycle, software …

Lifeline …

Link …

Listener …

Logic …

M
Maintenance …

Markup language …

Marshalling …

Menu …

Message …

Messaging …

Metadata …

Metaphor …

Method …

Middleware …

Index

611

Miller, George A. …

Minimum Description Length problem …

Model …

Model Driven Architecture …

Modular design …

Multithreaded application …

Mutator. See Setter method

Mutual exclusion (mutex) …

N
Namespace, XML …

Naming service …

Navigability arrow …

Negation …

Network

Local Area Network (LAN) …

Wireless …

Network programming …

Node …

Nominal scale. See Scales

Non-functional requirement …

O
Object, software …

Object Request Broker (ORB). See Broker pattern

Observer pattern. See Design patterns

OMG (Object Management Group) …

Ontology …

OOA (Object-oriented analysis) …

OOD (Object-oriented design) …

Operation …

Operator, logical …

Ordinal scale. See Scales

P
Package …

Package diagram …

Parnas, David L. …

Parsing …

Pattern. See Design patterns

Pen, as input device …

Performance …

Persistence …

Petri nets …

Plaintext …

Polymorphism …

Port …

Postcondition …

Precondition …

Predicate logic …

Premise …

Problem frame …

Problem solving …

Process …

Processing instruction, XML …

Productivity factor …

Program …

Project estimation …

Project management …

Property …

Access …

Editor …

Propositional logic …

Protocol …

Prototype …

Proxy pattern. See Design patterns

Public-key cryptosystem. See Cryptosystem

Publisher-subscriber pattern. See Design patterns

Pull vs. push …

Q
Qualified name (QName) …

Quantifier …

Query …

Queue …

Quote tag, XML …

R
Ratio scale. See Scales

Reactive application. See Event-driven application

Real-time specification for Java (RTSJ) …

Refactoring …

Reference …

Reflection …

Registry, naming …

Reifying …

Relationship, class …

Is-a …

Part-of …

Uses-a …

Remote Method Invocation (RMI) …

Remote object …

Requirement …

Requirements elicitation. See Requirements gathering

Requirements engineering …

Requirements gathering …

Ivan Marsic Rutgers University 612

Requirements specification …

Responsibility …

Responsibility-driven design …

Reuse …

Reversible actions …

RFID …

Risk analysis …

Role …

RS-232. See Serial port

Rule-based expert system …

S
Safety, thread …

Scale types …

Absolute …

Interval …

Nominal …

Ordinal …

Ratio …

Schema, XML …

Scope, name …

Scrum ...

Security …

Security testing ...

Semantics …

Sensor …

Separation of concerns …

Sequence diagram …

Serial port …

Server object …

Service …

Service-Oriented Architecture (SOA) …

Servlet, Java …

Setter method ...

SGML (Standard Generalized Markup Language) …

Skeleton …

SOAP …

Socket, network …

Software development process …

Software engineering …

Software lifecycle …

Stakeholder …

State, object …

State machine diagram …

State variable …

Stereotype …

Story points. See User story points

Stub …

Symbol, UML …

System …

Behavior …

Boundary …

State …

System sequence diagram …

System under discussion (SuD) …

System use case …

T
Tablet …

Tautology …

Test case ...

Test-driven development (TDD) …

Testing …

All-edges coverage …

All-nodes coverage …

All-paths coverage …

Black-box …

Coverage-based …

Test driver …

Test stub …

White-box …

Thread …

Synchronization …

Tiered architecture …

TLA+ specification language …

Tool …

Toolkit …

Transition diagram …

Translation …

Transformation …

Inverse …

Trapdoors function …

Traversal, graph …

Tree data structure …

Typecasting …

U
UML, See Unified Modeling Language

Undo/redo …

Unified Modeling Language (UML) …

Unified Process …

Unit testing …

Universal quantification …

UP. See Unified Process

Usage scenario …

Use case …

Index

613

Alternate scenario …

Detailed description …

Instance …

Main success scenario …

Schema …

Use case diagram …

Use case points …

User …

User story …

User story points …

V
Validation …

Verification …

Velocity …

Version control …

Visibility …

Vision statement …

Visual modeling …

W
Wait set, threads …

Waterfall methodology …

Web method …

Web service …

Web Services Definition Language (WSDL) …

White box testing …

Wicked problem …

Window …

Wizard-of-Oz experiment …

X
XLink …

XML …

XPath …

XSLT …

Y

Z
Z specification language …

	v2.p1-SE.pdf
	v2.p1b-SE
	v2.p2-SE
	v2.p3-SE
	v2.p4-SE

