
Week-4-Lesson-1

Understanding Requirements, Use Case and

Use case Description

Abdus Sattar

Assistant Professor

Department of Computer Science and Engineering

Daffodil International University

Email: abdus.cse@diu.edu.bd

mailto:abdus.cse@diu.edu.bd

Topics Covered

Requirements Engineering

Requirements analysis

Elements of Requirements Engineering

Classification of Requirements

 Functional Requirements

Non-Functional Requirements

Use Case Diagram

Use Case Description
2

Requirements Engineering

Requirements Engineering

• Requirements are statements of what the system

must do, how it must behave, the properties it

must exhibit, the qualities it must possess, and the

constraints that the system and its development

must satisfy.

Requirements analysis

• specifies software’s operational characteristics

• indicates software's interface with other system

elements

• establishes constraints that software must meet

3

Requirements Engineering

4

1. Inception—ask a set of questions that establish …

 basic understanding of the problem

 the people who want a solution

 the nature of the solution that is desired, and

 the effectiveness of preliminary communication and

collaboration between the customer and the developer

2. Elicitation—elicit requirements from all stakeholders

3. Elaboration—create an analysis model that identifies data,

function and behavioral requirements

4. Negotiation—agree on a deliverable system that is

realistic for developers and customers

Requirements Engineering

5

5. Specification—can be any one (or more) of the following:

• A written document

• A set of models

• A formal mathematical

• A collection of user scenarios (use-cases)

• A prototype

6. Validation—a review mechanism that looks for

• errors in content or interpretation

• areas where clarification may be required

• missing information

• inconsistencies (a major problem when large products or
systems are engineered)

• conflicting or unrealistic (unachievable) requirements.

7. Requirements management

Classification of Requirements

6

Classification of requirements

7

 Business requirements. These include high-level statements of

goals, objectives, and needs.

 Stakeholder requirements. The needs of discrete stakeholder

groups are also specified to define what they expect from a

particular solution.

 Solution requirements. Solution requirements describe the

characteristics that a product must have to meet the needs of the

stakeholders and the business itself.

 Nonfunctional requirements describe the general characteristics

of a system. They are also known as quality attributes.

 Functional requirements describe how a product must behave,

what its features and functions.

 Transition requirements. An additional group of requirements

defines what is needed from an organization to successfully move

from its current state to its desired state with the new product.

Functional Requirements

8

 Functional requirements describe system behavior under specific

conditions and include the product features and functions

which web & app developers must add to the solution. Such

requirements should be precise both for the development team

and stakeholders.

 The list of examples of functional requirements includes:

 Business Rules

 Transaction corrections, adjustments, and cancellations

 Administrative functions

 Authentication

 Authorization levels

 Audit Tracking

 External Interfaces

 Certification Requirements

 Reporting Requirements

 Historical Data

Example of Functional Requirements

9

Here, are some examples of non-functional requirement:

1. The software automatically validates customers against the

ABC Contact Management System

2. The Sales system should allow users to record customers

sales

3. The background color for all windows in the application

will be blue and have a hexadecimal RGB color value of

0x0000FF.

4. Only Managerial level employees have the right to view

revenue data.

5. The software system should be integrated with banking API

6. The software system should pass Section 508 accessibility

requirement.

https://www.section508.gov/

Non-Functional Requirements

10

 A non-functional requirement defines the quality attribute of a software

system. They represent a set of standards used to judge the specific

operation of a system. Example, how fast does the website load?

 Some typical non-functional requirements are:

 Performance – for example Response Time, Throughput,

Utilization, Static Volumetric

 Capacity

 Availability

 Reliability

 Recoverability

 Maintainability

 Serviceability

 Security

 Regulatory

 Manageability

 Environmental

 Data Integrity

 Usability

Example of Non-Functional Requirements

11

Here, are some examples of non-functional requirement:
1. Users must change the initially assigned login password

immediately after the first successful login. Moreover, the initial

should never be reused.

2. Employees never allowed to update their salary information. Such

attempt should be reported to the security administrator.

3. Every unsuccessful attempt by a user to access an item of data

shall be recorded on an audit trail.

4. A website should be capable enough to handle 20 million users

with affecting its performance

5. The software should be portable. So moving from one OS to other

OS does not create any problem.

6. Privacy of information, the export of restricted technologies,

intellectual property rights, etc. should be audited.

Elements of the analysis model

12

 Elements of the analysis model

 Scenario-based elements

 Functional—processing narratives for software

functions

 Use-case—descriptions of the interaction

between an “actor” and the system

 Class-based elements

 Implied by scenarios

 Behavioral elements

 State diagram

 Flow-oriented elements

 Data flow diagram

13

Elements of Requirements Analysis

Use-Cases

14

Use cases describe the interaction between the system and

external users that leads to achieving particular goals.

Each use case includes three main elements:

 Actors. These are the users outside the system that

interact with the system.

 System. The system is described by functional

requirements that define an intended behavior of the

product.

 Goals. The purposes of the interaction between the users

and the system are outlined as goals.

There are two formats to represent use cases:

 Use case specification/description

 Use case diagram

Use-Cases Elements

15

Use-Cases Elements

16

17

Use Cases Elements

Use-Cases Generalization

18

 The child use case inherits the behavior

meaning of the parent use case

 The Child may add to or override the behavior

of its parent.

Use-Cases Diagram

19

20

Home Heating System

21

Home Heating System

Use Case Description

Use case: Power Up

Actors: Home Owner (initiator)

Type: Primary and essential

Description: The Home Owner turns the power on.

Perform Adjust Temp. If the temperature in all rooms is

above the desired temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: Perform Adjust Temp

22

Home Heating System

Use case: Adjust Temp

Actors: System (initiator)

Type: Secondary and essential

Description: Check the temperature in each room. For each room:

Below target: Perform Temp Low

Above target: Perform Temp High

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: Temp Low, Temp High

23

Home Heating System

Use case: Temp Low

Actors: System (initiator)

Type: Secondary and essential

Description: Open room valve, start pump if not started.

If water temp falls below threshold,

open fuel value and ignite burner.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: None

24

Use Case Scenario

Homework assignment and collection are an integral part of any

educational system. Today, this task is performed manually. What we want

the homework assignment distribution and collection system to do is to

automate this process.

The system will be used by the Instructor/Teacher to distribute the

homework assignments, review the students’ solutions, distribute

suggested solution, and distribute student grades on each assignment.

This system will also help the students by automatically distributing the

assignments to the students, provide a facility where the students can

submit their solutions, remind the students when an assignment is almost

due, remind the students when an assignment is overdue.

Home Assignment distribution and Collection

System(HACS)

25

Home Assignment distribution and Collection System

Use Case Diagram

26

HACS Use Cases Description

Use case: Distribute Assignments

Actors: Instructor (initiator)

Type: Primary and essential

Description: The Instructor completes an assignment and

submits it to the system. The instructor will also submit the

due date and the class the assignment is assigned for.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: Configure HACS must be done before any user

(Instructor or Student) can use HACS

27

28

A user can request a quiz for the system. The system picks a

set of questions from its database, and compose them

together to make a quiz. It rates the user’s answers, and

gives hints if the user requests it.

In addition to users, we also have tutors who provide

questions and hints. And also examinations who must certify

questions to make sure they are not too trivial, and that they

are sensual.

Make a use case diagram to model this system. Work out

some of your use cases. Since we don’t have real stake

holders here, you are free to fill in details you think is

sensual for this example.

Example: Use Case Scenario

29

Use Case Diagram

30

Use Case Description

31

References:
1. Software Engineering A practitioner’s Approach by Roger S.

Pressman, 7th edition, McGraw Hill, 2010.

2. Software Engineering by Ian Sommerville, 9th edition,

Addison-Wesley, 2011

3. FUNCTIONAL VS NON-FUNCTIONAL

REQUIREMENTS: MAIN DIFFERENCES & EXAMPLES

https://theappsolutions.com/blog/development/functional-vs-non-

functional-requirements/

https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

