# Overview of Computer Graphics **Topics**

# **Solved Problems**

2.1 What is the resolution of an image?

# SOLUTION

The number of pixels (i.e., picture elements) per unit length (e.g., inch) in the horizontal as well as vertical direction.

2.2 Compute the size of a 640 x 480 image at 240 pixels per inch.

# SOLUTION

640/240 by 480/240 or 23 by 2 inches.

2.3 Compute the resolution of a  $2 \times 2$  inch image that has  $512 \times 512$  pixels.

# SOLUTION

512/2 or 256 pixels per inch.

2.4 What is an image's aspect ratio?

# SOLUTION

The ratio of its width to its height, measured in unit length or number of pixels.

2.5 If an image has a height of 2 inches and an aspect ratio of 1.5, what is its width?

#### SOLUTION

width =  $1.5 \times \text{height} = 1.5 \times 2 = 3$  inches.

2.6 If we want to resize a 1024 × 768 image to one that is 640 pixels wide with the same aspect ratio, what would be the height of the resized image?

## SOLUTION

height = 
$$640 \times 768/1024 = 480$$
.

2.7 If we want to cut a 512 × 512 sub-image out from the center of an 800 × 600 image, what are the coordinates of the pixel in the large image that is at the lower left corner of the small image?

## SOLUTION

$$[(800 - 512)/2, (600 - 512)/2] = (144, 44).$$

2.8 Sometimes the pixel at the upper left corner of an image is considered to be at the origin of the pixel coordinate system (a left-handed system). How to convert the coordinates of a pixel at (x, y) in this coordinate system into its coordinates (x', y') in the lower-left-corner-as-origin coordinate system (a right-handed system)?

#### SOLUTION

(x', y') = (x, m - y - 1) where m is the number of pixels in the vertical direction.

2.9 Find the CMY coordinates of a color at (0.2, 1, 0.5) in the RGB space.

# SOLUTION

$$(1-0.2, 1-1, 1-0.5) = (0.8, 0, 0.5).$$

2.10 Find the RGB coordinates of a color at (0.15, 0.75, 0) in the CMY space.

## SOLUTION

$$(1-0.15, 1-0.75, 1-0) = (0.85, 0.25, 1).$$

2.11 If we use direct coding of RGB values with 2 bits per primary color, how many possible colors do we have for each pixel?

## SOLUTION

$$2^2 \times 2^2 \times 2^2 = 4 \times 4 \times 4 = 64$$

2.12 If we use direct coding of RGB values with 10 bits per primary color, how many possible colors do we have for each pixel?

## SOLUTION

$$2^{10} \times 2^{10} \times 2^{10} = 1024^3 = 1073,741,824 > 1$$
 billion.

2.13 The direct coding method is flexible in that it allows the allocation of a different number of bits to each primary color. If we use 5 bits each for red and blue and 6 bits for green for a total of 16 bits per pixel, how many possible simultaneous colors do we have?

## SOLUTION

$$2^5 \times 2^5 \times 2^6 = 2^{16} = 65,536$$

2.14 If we use 12-bit pixel values in a lookup table representation, how many entries does the lookup table have?

## SOLUTION

$$2^{12} = 4096$$
.

2.15 If we use 2-byte pixel values in a 24-bit lookup table representation, how many bytes does the lookup table occupy?

#### SOLUTION

$$2^{16} \times 24/8 = 65,536 \times 3 = 196,608.$$

2.16 True or false: fluorescence is the term used to describe the light given off by a phosphor after it has been exposed to an electron beam. Explain your answer.

#### SOLUTION

False, Phosphorescence is the correct term. Fluorescence refers to the light given off by a phosphor while it is being exposed to an electron beam.

2.17 What is persistence?

#### SOLUTION

The duration of phosphorescence exhibited by a phosphor.

2.18 What is the function of the control electrode in a CRT?

#### SOLUTION

Regulate the intensity of the electron beam.

2.19 Name the two methods by which an electron beam can be bent?

### SOLUTION

Electrostatic deflection and magnetic deflection.

