Contents

In today's lecture we'll have a look at: – Bresenham's line drawing algorithm

The Bresenham Line Algorithm

- The Bresenham algorithm is another **incremental scan conversion algorithm**.
- The big advantage of this algorithm is that it uses only **integer calculations**.

- Jack Bresenham worked for 27 years at IBM before entering Academia.
- Bresenham developed his famous algorithms at IBM in the early 1960s.

The Big Idea

Move across the x axis in unit intervals and at each step choose between two different y coordinates

For example,

- from position (2, 3) we have to choose between (3, 3) and (3, 4)
- We would like the point that is closer to the original line

Deriving The Bresenham Line Algorithm

At sample position x_k+1 the vertical separations from the mathematical line are labelled d_{upper} and d_{lower}

The y coordinate on the mathematical line at x_k+1 is:

$$y = m(x_k + 1) + b$$

So, d_{upper} and d_{lower} are given as follows:

and:

$$d_{lower} = y - y_k$$
$$= m(x_k + 1) + b - y_k$$

$$d_{upper} = (y_k + 1) - y$$

= $y_k + 1 - m(x_k + 1) - b$

We can use these to make a simple decision about which pixel is closer to the mathematical line.

This simple decision is based on the difference between the two pixel positions:

$$d_{lower} - d_{upper} = 2m(x_k + 1) - 2y_k + 2b - 1$$

Let's substitute *m* with $\Delta y/\Delta x$ where Δx and Δy are the differences between the end-points:

$$\Delta x(d_{lower} - d_{upper}) = \Delta x(2\frac{\Delta y}{\Delta x}(x_k + 1) - 2y_k + 2b - 1)$$
$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + 2\Delta y + \Delta x(2b - 1)$$
$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

So, a decision parameter p_k for the *k*th step along a line is given by:

$$p_{k} = \Delta x (d_{lower} - d_{upper})$$
$$= 2\Delta y \cdot x_{k} - 2\Delta x \cdot y_{k} + c$$

- The sign of the **decision parameter** p_k is the same as that of $d_{lower} d_{upper}$
- If *p_k* is negative, then we choose the lower pixel, otherwise we choose the upper pixel.

Remember that, coordinate changes occur along the *x* axis in unit steps so we can do everything with integer calculations.

At step k+1 the decision parameter is given as:

Subtracting p_k from this we get:

$$p_{k+1} = 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c$$

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$

But, x_{k+1} is the same as x_k+1 so:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$$

where $y_{k+1} - y_k$ is either 0 or 1 depending on the sign of p_k

The first decision parameter \mathbf{p}_0 is evaluated at $(\mathbf{x}_0, \mathbf{y}_0)$ is given as:

$$p_0 = 2\Delta y - \Delta x$$

The Bresenham Line Algorithm

Bresenham's Line Drawing Algorithm (for |m| < 1.0)

Step 1: Input the two line end-points, storing the left end-point in (x_0, y_0)

- **Step 2:** Plot the point (x_0, y_0)
- **Step 3:** Calculate the constants Δx , Δy , $2\Delta y$, and $(2\Delta y 2\Delta x)$ and get the first value for the decision parameter as:

$$p_0 = 2\Delta y - \Delta x$$

Step 4: At each x_k along the line, starting at k = 0, perform the following test. If $p_k < 0$, the next point to plot is (x_k+1, y_k) and:

 $p_{k+1} = p_k + 2\Delta y$

The Bresenham Line Algorithm (cont...)

Otherwise, the next point to plot is (x_k+1, y_k+1) and:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

Step 5: Repeat **Step 4** ($\Delta x - 1$) times

Attention!

- The algorithm and derivation above assumes slopes are less than 1.
- For other slopes we need to adjust the algorithm slightly.

Bresenham Line Algorithm: Example

Let's have a go at this

Let's plot the line from (20, 10) to (30, 18)

First off calculate all of the constants:

$$-\Delta x: 10$$
$$-\Delta y: 8$$

$$-2\Delta y - 2\Delta x$$
: -4

Calculate the initial decision parameter p_0 :

$$-p0 = 2\Delta y - \Delta x = 6$$

Bresenham Line Algorithm: Example (cont...)

Bresenham Line Algorithm: Exercise

Go through the **Step 1** to **Step 5** of the Bresenham line drawing algorithm for a line going from (21,12) to (29,16)

Bresenham Exercise (cont...)

Bresenham Line Algorithm: Summary Advantages and Problems

The Bresenham line algorithm has the following **advantages**:

- A fast incremental algorithm
- Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the following **problems**:

- Accumulation of round-off errors can make the pixelated line drift away from what was intended
- The rounding operations and floating point arithmetic involved are time consuming