
Scan-Conversion

• Scan-Converting

• a Point,

• a Line,

• a Circle,

• an Ellipse,

• Arcs and Sectors

• a Rectangle

• a Character

Topics

• A mathematical point (x, y)

• where x and y are real numbers within an image

area,

• needs to be scan-converted to a pixel at location

(x’, y’).

• This may be done by making

• x’ to be the integer part of x and

• y’ the integer part of y.

• In other words,

• x’ = Floor(x) and y’ = Floor(y),

• the function Floor() returns the largest integer

• that is less than or equal to the argument.

Scan-Converting a Point

• All points that satisfy

 x’<= x <=x’+1 and

 y’ <= y <=y’+1 are mapped to pixel (x’, y’).

For example,

• point p1 (1.7, 0.8) is represented by pixel (1, 0).

• point p2 (2.3, 1.9) is represented by pixel (2, 1).

• point p3 (3.7, 4.9) is represented by pixel (3, 4).

• point p4 (7.6, 8.9) is represented by pixel (7, 8).

Scan-Converting a Point

• A line in computer graphics typically

• refers to a line segment,

• which is a portion of a straight line

• that extends indefinitely in opposite directions.

• It is defined by its two endpoints and

• the line equation y = mx + b,

• where m is called the slope and

• b the y intercept of the line.

• Two endpoints are described by P1(x1, y1) and P2(x2, y2).

• The line equation describes the coordinates of all points

the lie between the two endpoints.

Scan-Converting a Line

• The slope-intercept equation is not suitable for vertical

lines.

• Horizontal, vertical, and diagonal (|m|=1) lines can and

often should, be handled as special cases without going

through the following scan-conversion algorithms.

• A line connects two points.

• It is a basic element in graphics.

• To draw a line, you need two points between which you

can draw a line.

• In the following three algorithms,

• we refer the one point of line as (x0,y0) and

• the second point of line as (x1, y1).

Scan-Converting a Line

Algorithms are:

• DDA (Digital Differential Analyzer) Algorithm

• Bresenham’s Line Algorithm

• Mid-Point Algorithm

Scan-Converting a Line

Digital Differential Analyzer(DDA) algorithm is the simple line

generation algorithm which is explained step by step here.

Step 1: Get the input of two end points (x0, y0) and (x1, y1).

Step 2: Calculate the difference between two end points.

 dx = x1 - x0

 dy = y1 - y0

Step 3: Based on the calculated difference in Step 2, you need to

identify the number of steps to put pixel. If dx > dy, then you need

more steps in x coordinate; otherwise in y coordinate.

 if (dx > dy)

 Steps = absolute(dx);

 else

 Steps = absolute(dy);

DDA(Digital Differential Analyzer) Algorithm

Step 4: Calculate the increment in x coordinate and y coordinate.

 Xincrem ent = dx / (float) steps;

 Yincrem ent = dy / (float) steps;

Step 5: Put the pixel by successfully incrementing x and y

coordinates accordingly and complete the drawing of the line.

 for(int v=0; v < Steps; v++)

 {

 x = x + Xincrem ent;

 y = y + Yincrem ent;

 putpixel(x,y);

 }

DDA(Digital Differential Analyzer) Algorithm

 The Bresenham algorithm is another incremental scan

conversion algorithm.

 The big advantage of this algorithm is that, it uses only

integer calculations.

Moving across the x axis in unit intervals and at each step

choose between two different y coordinates.

Step 1: Input the two end-points of line, storing the left

end-point in (x0, y0).

Step 2: Plot the point (x0, y0).

Step 3: Calculate the constants dx, dy, 2dy, and 2dy– 2dx

and get the first value for the decision parameter as −

 p0 = 2dy − dx

Bresenham’s Line Algorithm

Step 4: At each Xk along the line, starting at k = 0, perform

the following test −

If pk < 0, the next point to plot is (xk + 1, yk) and

 pk+1 = pk + 2dy

Otherwise, pk+1 = pk + 2dy − 2dx

Step 5: Repeat step 4 dx– 1 times.

For m > 1, find out whether you need to increment x while

incrementing y each time.

After solving, the equation for decision parameter Pk will

be very similar, just the x and y in the equation gets

interchanged.

Bresenham’s Line Algorithm

In short,

Bresenham’s algorithm for scan-converting a line from P1(x1, y1) to P2(x2, y2) with

x1’<x2’ and o<m<1 can be stated as follows:

 int x = x1, y =y1;

 int dx = x2 - x1, dy = y2 - y1, dT = 2(dy - dx), dS = 2dy;

 int d = 2dy – dx;

 setPixel(x,y);

 while(x<x2)

 {

 x++;

 if(d<0)

 d = d + dS;

 else

 {

 y++;

 d = d + dT;

 }

 setPixel(x, y);

 }

Bresenham’s Line Algorithm

• First initialize decision variable d and set pixel P1.

• During each iteration of the while loop,

• we increment x to the next horizontal position,

• then use the current value of d

• to select the bottom or top (increment y) pixel and update d,

and at the end set the chosen pixel.

• As for lines that have other m values

• we can make use of the fact that they can be mirrored

• either horizontally, vertically, or diagonally

• into this 00 to 450 angle range.

• For example,

• a line from (x1’, y1’) to (x2’, y2’) with -1<= m <0

• has a horizontally mirrored counterpart

• from (x1’, -y1’) to (x2’, -y2’) with 0<= m < 1.

Bresenham’s Line Algorithm: Description

• We can simply use the algorithm

• to scan-convert this counterpart,

• but negate the y coordinate at the end of each iteration

• to set the right pixel for the line.

• For a line whose slope is in the 450 to 900 range,

• we can obtain its mirrored counterpart

• by exchanging the x and y coordinates of its endpoints.

• We can then scan-convert this counterpart

• but we must exchange x and y in the call to setPixel.

Bresenham’s Line Algorithm: Description

• A circle is a symmetrical figure.

• Any circle-generating algorithm

• can take advantage of the circle’s symmetry

• to plot eight points for each value

• that the algorithm calculates.

• Eight-way symmetry is used to reflecting each calculated point

• around each 450 axis.

• For example, if point 1 were calculated

• with a circle algorithm,

• seven more points could be found by reflection.

Scan-Converting a Circle

• The reflection is accomplished by reversing the x, y coordinates as

in point 2,

• reversing the x, y coordinates and reflecting about the y axis as

in point 3,

• reflecting about the y axis as in point 4,

• switching the signs of x and y as in point 5,

• reversing the x, y coordinates and reflecting about the x axis as

in point 6,

• reversing the x, y coordinates and reflecting about the y axis as

in point 7, and

• reflecting about the x axis as in point 8.

Scan-Converting a Circle

To summarize,

 p1= (x, y) p5 = (-x, -y)

 p2= (y, x) p6 = (-y, -x)

 p3= (-y, x) p7 = (y, -x)

 p4= (-x, y) p8 = (x, -y)

Scan-Converting a Circle …

To summarize,

 p1= (8, 2) p5 = (-8, -2)

 p2= (2, 8) p6 = (-2, -8)

 p3= (-2, 8) p7 = (2, -8)

 p4= (-8, 2) p8 = (8, -2)

• There are two standard methods of mathematically defining a

circle centered at the origin.

• Polynomial Method

• Trigonometric Method

• The first method defines a circle with the second-order polynomial

equation:

 y2 = r2 – x2,

 where x = the x coordinate,

 y = the y coordinate and

 r = the circle radius.

Defining a Circle

• With this method, each x coordinate in the sector,

• from 900 to 450, is found by stepping

• x from 0 to r/(√2), and

• each y coordinate is found by evaluating √(r2-x2) for each step

of x.

• This is a very inefficient method, however,

• because for each point both x and r must be squared and

• subtracted from each other,

• then the square root of the result must be found.

Defining a Circle

• The second method of defining a circle makes use of trigonometric

functions:

 x = r cos and

 y = r sin

 where = current angle

 r = circle radius

 x = x coordinate

 y = y coordinate

• By this method, is stepped from 0 to π/4, and

• each value of x and y is calculated.

• However, computation of the values of sin and

• cos is even more time-consuming

• than the calculations required by the first method.

Defining a Circle

Mathematical Problems

Problem 01:

Solved Problems

Problem 02:

Solved Problems

Problem 03:

Solved Problems

Problem 04:

Solved Problems

Problem 05:

Solved Problems

Problem 06:

Solved Problems

Problem 07:

Solved Problems

Problem 08:

Solved Problems

Problem 09:

Solved Problems

Problem 10:

Solved Problems

Problem 11:

Solved Problems

Problem 12:

Solved Problems

Problem 13:

Solved Problems

Solved Problems

Problem 14:

Solved Problems

Problem 15:

Solved Problems

Thanks

Thanks

