Scan-Conversion

Topics
Scan-Converting
a Point,
a Line,
a Circle,
an Ellipse,
Arcs and Sectors
a Rectangle
a Character



Scan-Converting a Point

« A mathematical point (X, y)
« where x and y are real numbers within an image
area,
 needs to be scan-converted to a pixel at location
(X7, y7).
« This may be done by making
* X’ to be the integer part of x and
* vy’ the integer part of .
* In other words,
* x’=Floor(x) and y’ = Floor(y),
* the function Floor() returns the largest integer
* that is less than or equal to the argument.



Scan-Converting a Point
 All points that satisfy

x'<= x <=x’+1 and
y’ <= y <=y’+1 are mapped to pixel (x’, y’).

For example,

noint
noint
noint

noint

0, (1.7,0.8) Isre
0, (2.3, 1.9) Isre
D, (3.7,4.9) Is re

0, (7.6, 8.9) Isre

presented
presented
presented

presentec

Yy
Yy
Yy

0y

pixel (1, 0).
nixel (2, 1).
nixel (3, 4).

nixel (7, 8).



Scan-Converting a Line

A line In computer graphics typically

* refers to a line segment,

 which is a portion of a straight line

* that extends indefinitely in opposite directions.
It is defined by its two endpoints and

* the line equationy = mx + Db,

« where m is called the slope and

* b the y intercept of the line.
Two endpoints are described by P,(X,, Y;) and P,(X,, V,).
"he line equation describes the coordinates of all points
the lie between the two endpoints.




Scan-Converting a Line

The slope-intercept equation Is not suitable for vertical
lines.
Horizontal, vertical, and diagonal (jm|=1) lines can and
often should, be handled as special cases without going
through the following scan-conversion algorithms.
A line connects two points.
It is a basic element in graphics.
To draw a line, you need two points between which you
can draw a line.
In the following three algorithms,

» we refer the one point of line as (X,,y,) and

» the second point of line as (x4, y,).



Scan-Converting a Line

Algorithms are:
« DDA (Digital Differential Analyzer) Algorithm
* Bresenham’s Line Algorithm
« Mid-Point Algorithm



DDA(Digital Differential Analyzer) Algorithm

Digital Differential Analyzer(DDA) algorithm is the simple line
generation algorithm which is explained step by step here.

Step 1: Get the input of two end points (X,, Y,) and (X, y;)-
Step 2: Calculate the difference between two end points.
dx =X, - X,
dy =y, - Yo
Step 3: Based on the calculated difference in Step 2, you need to
Identify the number of steps to put pixel. If dx > dy, then you need
more steps in x coordinate; otherwise in y coordinate.
If (dx > dy)
Steps = absolute(dx);
else
Steps = absolute(dy);



DDA(Digital Differential Analyzer) Algorithm

Step 4: Calculate the increment in x coordinate and y coordinate.
Xincrem ent = dx / (float) steps;
Yincrem ent = dy / (float) steps;
Step 5: Put the pixel by successfully incrementing x and y
coordinates accordingly and complete the drawing of the line.
for(int v=0; v < Steps; v++)
{
X = X + Xincrem ent;
y =y + Yincrem ent;

putpixel(X,y);



Bresenham’s Line Algorithm
» The Bresenham algorithm is another incremental scan
conversion algorithm.
» The big advantage of this algorithm is that, it uses only
Integer calculations.
= Moving across the x axis in unit intervals and at each step
choose between two different y coordinates.

Step 1: Input the two end-points of line, storing the left
end-point in (x0, y0).
Step 2: Plot the point (x0, y0).
Step 3: Calculate the constants dx, dy, 2dy, and 2dy— 2dx
and get the first value for the decision parameter as —

PO = 2dy — dx




Bresenham’s Line Algorithm

Step 4. At each Xk along the line, starting at k = 0, perform
the following test —
If pk < 0, the next point to plot is (xk + 1, yk) and
pk+1 = pk + 2dy
Otherwise, pk+1=pk+ 2dy — 2dx

Step 5: Repeat step 4 dx— 1 times.

For m > 1, find out whether you need to increment x while
Incrementing y each time.

After solving, the equation for decision parameter Pk will
be very similar, just the x and y In the equation gets
Interchanged.



Bresenham’s Line Algorithm

In short,
Bresenham’s algorithm for scan-converting a line from P,(Xy, y,) to P,(X,, y,) with

X1’<X,” and o<m<I can be stated as follows:
INt X =Xy, Y=Yy
Intdx =X, - X, dy =y, -y, dT = 2(dy - dx), dS = 2dy;

intd = 2dy — dx;
setPixel(x,y);
while(x<x,)
{
X++;
if(d<0)
d=d+dS;
else
{
y++;
d=d+dT;
b

setPixel(x, y);



Bresenham’s Line Algorithm: Description

First initialize decision variable d and set pixel P;.
During each iteration of the while loop,
* Wwe Increment x to the next horizontal position,
* then use the current value of d
* to select the bottom or top (increment y) pixel and update d,
and at the end set the chosen pixel.
As for lines that have other m values
« we can make use of the fact that they can be mirrored
« either horizontally, vertically, or diagonally
« into this 0° to 45° angle range.
For example,
* aline from (X,’,y;’) to (x,’, y,”) with -1<=m <0
 has a horizontally mirrored counterpart
« from (x;’, -y;’) to (x,’°, -Y,’) with 0<=m < 1.



Bresenham’s Line Algorithm: Description

* We can simply use the algorithm
* to scan-convert this counterpart,
 but negate the y coordinate at the end of each iteration
* to set the right pixel for the line.
 For a line whose slope is in the 459 to 90° range,
e We can obtain its mirrored counterpart
* by exchanging the x and y coordinates of its endpoints.
« \We can then scan-convert this counterpart
 but we must exchange x and y in the call to setPixel.



Scan-Converting a Circle

A circle is a symmetrical figure.
Any circle-generating algorithm
* can take advantage of the circle’s symmetry
* to plot eight points for each value
« that the algorithm calculates.
Eight-way symmetry is used to reflecting each calculated point
 around each 450 axis.

For example, if point 1 were calculated
 with a circle algorithm,
 seven more points could be found by reflection.



Scan-Converting a Circle

 The reflection is accomplished by reversing the X, y coordinates as
In point 2,

reversing the x, y coordinates and reflecting about the y axis as
In point 3,

reflecting about the y axis as in point 4,

switching the signs of x and y as in point 5,

reversing the x, y coordinates and reflecting about the x axis as
In point 6,

reversing the x, y coordinates and reflecting about the y axis as
In point 7, and

reflecting about the x axis as in point 8.



Scan-Converting a Circle ...

To summarize,
P=(X,Y)
p2: (y1 X)
p3: ('y’ X)
p4: ('X1 y)

To summarize,
p.=(8, 2)
P,= (2, 8)
Ps= (-2, 8)
P,= (-8, 2)

Ps = (-X, -y)
Pe = ('y’ 'X)
P7 = (y’ 'X)
Ps = (X, -Y)

Ps = (-8, -2)
Ps = (-2, -8)
p;=(2,-8)
pg = (8, -2)

Fig. 34  Eight-way symmetry of a carcle,



Defining a Circle

There are two standard methods of mathematically defining a
circle centered at the origin.

« Polynomial Method

« Trigonometric Method

The first method defines a circle with the second-order polynomial
equation:
y2 =12 - %2,
where X = the x coordinate,
y = the y coordinate and
r = the circle radius.



Defining a Circle

 With this method, each x coordinate in the sector,
« from 90° to 459, is found by stepping
e x from 0 to r/(\2), and
« cach y coordinate is found by evaluating \(r2-x2) for each step
of Xx.

« This Is a very inefficient method, however,
 because for each point both x and r must be squared and
 subtracted from each other,
* then the square root of the result must be found.



Defining a Circle

The second method of defining a circle makes use of trigonometric
functions:
X =rcos 0 and
y=rsino
where 0 = current angle
r = circle radius
X = X coordinate
y =Yy coordinate

By this method, 0 is stepped from 0 to /4, and
 each value of x and y is calculated.

However, computation of the values of sin 6 and
* COs O IS even more time-consuming

« than the calculations required by the first method.



Mathematical Problems



Solved Problems

Problem 01.:
3.1  The endpoints of a grven line are (0, 0) and (6, |18), Compute each value of y a5 x steps fram 0 1o 6 and plot the

resubts,

SOLUTION

An equation for the line was not given. Therefore, the equation of the line must be found. The equation of
the line (¥ = mix + b) 5 found as follows. First the slope is found:

ﬁ. _— —
I'I'1=—'!'-='|IrI JII=IH: I:I=E=3

Mext, the ¥ mbercept & 15 found by pluggmg v, and x; into the equation y = Jx + b 0 = }{0) + & Therefore,
& =10, so the equation for the line 15 ¥ = 1x (see Fig. 3-32)



Solved Problems
Problem 02:

3.2  What steps are required to plot a ling whose slope is between F and 45° using the slope—intercept
equation?

SOLUTION
Compute dy: dv = 5, — x,.

1.

1. Compute dy: dy = ¥ — ¥y

1, Compute m: m = dy/dx.

4, Compute b; b=y, —m x x,.

5. Bet (x, ¥) equal to the lower lefi-hand endpoint and set x, egual fo the largest value of x. If dx < 0, then
X=Xy, ¥ = i Xy = %;. I dx > 0, then x = x;, y =y, and 5y = x5.

6. Test w determine whether the entire hne has been drawn. If x = x_, stop.

7. Plot a point at the current (1. ¥) coordinates,

B Increment = x=x+ 1.

9. Compute the next value of v from the aquation v = mx + b,

10, G 1o gtep 6.



Solved Problems
Problem 03:

3.3  Use pseudo-code to describe the steps that are required to plot a line whose slope 15 between 45°
and —45° (i.e., |m| = 1) using the slope—intercept equation.

SOLUTION ymsrs

E B F 38w

Presume vy « Jy for the teo emdpounts (xy, v b #nd (g, w5 )

B oa e b= D]
=

nt £ = X, ¥ = Fy; " :
float xp, m o= (¥ — )/ (% —x), b = yy — oy
sEtPioelix, vk
whale (¥ < 1) |
LA L°

X = Ly — b | S

=
o

xX= ﬂ'Eﬂ'{IJ' 4 0.3k
setPedix, v
|

Fi= T.3%



3.6

Solved Problems
Problem 04:

What steps are required to plot a line whose slope is between 0° and 45° using Bresenham's
method !

SOLUTION
. Compate the iniial valees:

de = ¥y — X fncy, = Ny — idx)
dy =¥ = W d = Inc) - dx
M) = 2dy

2. Set (x.v) equal 1o the lower left-hand endpoint and x,, cqual to the larpest valae of x. If dy < 0, then
X=Xy, V=V, By = Xy I dx = 0, thén x =%, ¥ = ¥, Xy = 53

J. Plot a point &t the cuarrent {1, ) coondinabes.

4. Test 1o see whether the entire hne has been drawn, If x = x_;, slop.

5. Compute the location of the mext pixel, If d < 0, then d = & + fmc,, l!'d'z-l'il.lhl:nu:f:d+i'nr!, and
then y= v+ 1,

6. Incremeit x oy =1+ |

7. Plot a point at the current (x, ¥) coondinaies.

8. Go o step 4.



Solved Problems
Problem 05:

3.7  Indicate which raster locations would be chosen by Bresenham’s algonthm when scan-converting a
line from pixel coordinate {1, 1} to pixel coondinate (8, 5).

SOLUTION
First, the starting walues must be found. In this case
=3y =x;,=8=1=7 dy=m—p=5-1=4
Therefore:

My =My=2=4=28
bicy =Ndv —da) =2 = (4 - Th= —h
deng —di=1-T=]

The following table indicates the values compuded by the algorithm (see also Fig. 3-33)

¥
L] =
d X ¥V =
T =
| | 1
| 4 ficy = =35 2 2 B
—8 + e, =3 3 2 ' o
"I--]'m:?=—"|- i 3 il ffar o0
=3 4 Ingy =5 3 3 |
5 4 ey = =1 4 4 ' 0o
—1 +Ine, = 7 4 - 00
T+ fuc. = 1 & 5 =0
R L



Solved Problems
Problem 06:

310 What steps are required 1o generate a circle using the polynomial method?
SOLUTION
1. Sét the matial varables: » = circle radiiag; (h, k) = coordinates of the circle center; © = () § = step fze;
Yord = rlu"-..l"f
2. Test to determane whether the entire circle has heen scan-converted. If x = x_,, stop.
3. Compute the value of the v coordinate, where y = /rf = x%,
4. Plot the cight points. found by symmetry with respect o the cemter (b, &), at the current (x, ¥) coordinates:

Plobx + &, v+ k) Plob{ =x + &k, =y + k)
Ploal ¥ + h, x + k) Plat{ =y + k, =x + k)
Plod(—y+ h. x + k) Ploo 3 + A, —x 4+ &)
Phod{—x = h, v+ k) Plab(x + &, =y 4 k)

5 Increment i x=1x+1.
6 Go to sep 2,



Solved Problems
Problem 07:

3.11 What steps are required to scan-convert a circle using the trigonometric method?
SOLUTION

1. 5t the mtal vanables: r = cicle mdims; (b &) = coordinates of the circle center; § = step size;
g = ®/4 mdians = 45°; # = 0,

2.  Test to determine whether the entire circle has been scan-comverted. [F # = &, stop.

3. Compase the value of the x and v coordinates:

4. Plot the cight points, found by symmetry with respect 1o the center (4, k), 3t the current (x, 1) coondinates:

Flob(x <+ h, v 4 k) Plobt{=x + &, =y + k)
Ploo y+h.x+ k) Plot—y + &, —x + k)
Plot{—y + h, x + &) Plat{y + &, —x 1+ k)
Plotf—x+ h. v+ k)  Plotlz+ b, v+ k)

Increment & & = 0 44,
Go o step 2.

L



Solved Problems

Problem 08:
3,12 What steps are required to scan-convert a circle using Bresenhams algorithm?
SOLUTION

1. Set the imitial values of the variables: (h, k) = coordinates of circle center; x = I ¥ = cirele mdius »; and
d=3=1r

2.  Test to determine whether the entire circle has been scan-converted. If x = y, slop.

1. Plod the eight points, found by symenetry with respect o the center (b, &), 8t the corrent {z, v) coordinates:

Plot(x + h, ¥ + k) Plot{ -x 4+ h, =y 4+ k}
FPloWy + h, x + k) Plot{—y + &k, —x + £}
Plot{ —y + k. x + k) Plot v + k. —x + k)
Plot{ —x + h. ¥ + k) Flablzs + &, —y + k)

4, Compuate the location of the next pixel. If d =0, then d =d $+dr 4+ band x =x 4+ 1. If d = 0, then
d=d4+Hx=yl+ 10, x=x+ ], amd p=y= 1.

5. (oo step 2.



Solved Problems

Problem 09:

3.20 What steps are required to generate an ¢llipse using the polynomial method?
SOLUTION

Set the initial variables: @ = length of major axis; b = length of minor axis; (4, k) = coondinates of
ellipse cenfer, x = I § = step size; X, = &

Test to determine whether the entire ellipse has been scan-comverted. If x = x,, stop.

Compute the value of the v coardinate;

I'_
y=byl-5

Plot the four podnts, found by symametry, & ibe carrent (x, ¥) coordinates:

Plotix 4 &, v 4 k) Plot{ =x <+ &, =y + k]
Plod{—x+ h, v + k) Plab(x + &, —v + k)

Increment x r = x + .
Go w0 sep 2.



Solved Problems
Problem 10:

3.21  What steps are required to scan-convert an ellipse using the mgonometric method?
SOLUTION

1. Set the mital vanables: o = length of major axis, & = length of minor axis: (A, &) = coordinaes of
ellipse center; § = counter step swe; Oy = /2 & =

2. Test 1o determing whether the entire ellipse has been scan-converted. If @ = . stop,

3. Compute the vahies of the x and v coordinates:

¥ =acosill)  p=bhsmilf)
4. Plot the four points, found by ayveumetry, afl the current {x, v) comndinates:

Plot(x + &, v + k) Plot(—x + &, =y + k)
Flob —x + &, ¥ + k) Phoa(x + &k, —y + k)

£ Incrememt - A=8+1
6 Go w step 2,



Solved Problems
Problem 11:

Y24 What sieps are required to scan-convert an arc using the trigonometric method?
SOLUTION

1. Sei the initial variables: o = major axis; b = minor axis; (h, &) = coordinates of arc center; | = slep size;
f# = slaring angle: /| — ending angle.
2, Test to desermine whether the entive arc has been scan-comveried. [T & > 8, stop.

1. Compuie the values of the 1 and v coordinates:

X = goosif) + k v=asm{t) + &k

Plot the péais gt the currend (x, v) conndmeates: Plod(x, ¥)
. Increment 8; 0 = @+,
b, Go o siep 2.

(Moie: for the arc of & circle @ = b = circle mdius #)



Solved Problems
Problem 12:

3,25 'What steps are required to generate an arc of a circle using the polynomial method?
SOLUTION
. Set the initial variables: r = radius; (&, £} = coordinates of arc cender; x = x coordinate of stan of arc;
%y = x coordimate of end of arc; | = counter step size.
2. Teat o determine whether the entire arc has been scan-converted, If x = x,, stop.
3. Compute the valuve of the ¥ coondinate:

1 |

y= AR

B

4. Plot at the current (x, ¥) coondinaies:
Plot(x + h, ¥ + k)

5. Increment x0ox = x40
6. Go to step 2,



Solved Problems
Problem 13:

3.3 The coordinates of the vertsces of a polygon are shoamn m Fig. 3-39. (a) Wnie the initial edge hist for
the polygon. (&) State which edges will be active on scan lines ¥y =6, 7, 8, 9, and 10,

-
wWods W @ e B O D W

T 1T 17T 1 17T T 1T T T 1

LY Ey W
L I N N N
i, i - E,
B . Y L W
£ .

- f'._-h-
Ex il »
[ N N N N N N
¥ Ey v

= hE

L 1 L 1 ] 1 1 L L L
| - 3 4 3 &6 7 K g b x

SOLUTION

(@) Column x contains the x coordinate of the cormesponding edge’s lower endpoint. Honzonotal edges are oot
inciuded.

Edpe Fenin Vv X 1/m

E, 4 7 9 0
E, 4 7 2 0
E, 7 9 3 0
E, 7 9 4 0




Solved Problems

(&) Anedge becomes active when the scan hne vihee v aquals the $Gg8's ¥y, vahes, The edie remains active
until the scan fine value v goes beyond the edge’s v, value, Therefore, the actve edges for v =6, 7, §,
0, and 10 appears as follows,

|ﬂl.|.]-'=El| E;- anid Ea.

A y=T, ve=y., forboth edges £; and £; 50 they remain active, Alse ot y = 7, edges £, and £
become active.
Aty =8 E, and £ sre removed from the edpe bst. £ and E; remain active.
Ay =9, the active edges remain the satme, Al v = 10, edges £, and E; are removed from the edge list
and the edge hst becomes empty,



Solved Problems
Problem 14:

333 Wnie a peeudo-code procedure for generating the Koch curve K (after the one in the text fo
generating C,).
SOLUTION

Koch-curve (fost x, v, len, alpha; nd )
{
if (=) {
ken = len'3;
Koch-corvelx, ¥, ben, alpha, 5 — 1)
x = ¥ + len"cos{alpha);
¥ = ¥ + len™sin(alpha};
koch-curvelr, v, len, abpha — 60, 7 — 1)
x = 14 len*cos{alpha — 60);
¥ = ¥ 4 lem*sin{akpha = 60}
Koch-curvelx, v. len, alpha + 60, 5 — 1}
¥ =x 4 len*cos{alphs + &07;
¥ =y + len*sin{alpha + 60);
Koch-curvelx, ¥, len, alpha, s — 1);
| else
lime(x. v, x + len*cos(alpha), ¥ + ben®sinialpha)):



Solved Problems
Problem 15:

334  Presume that the following statement produces a filled miangle with vertices at (xy, ¥, ), (x,, y,), and
{-"'::w-."-':]"

tmangledy;, ¥). ¥z, V2. 53, )

Wie a psendo-code procedure lor generating the Swerpmskn gasket 5, (afler the procedure m the wext for
generating C_ ).

SOLUTION

S-Crasket {float x,, ¥, x3, ¥;, Xy, ¥y; 0k ")
i
foat xyz, ¥izs T130 ¥130 T30 P
if {m = 0} |
Xz = (% + x5 )02;
Yiz = + RN
Xy = &) + w2
Fii =':.J"| +.FJ]|'IE:-
i = U + 52
¥ = vy + w2
S-Urasken(x;, ¥y, Xya0 Frze Zp3e e 8 — 1)
S-Crasket(x)z, Vize %20 Foo X330 Py ® = 1)
S-(rasken(x)y, Vg, X113 Yoo B3 My B = 1
b oelse
} triangie(x), vy, Iy, Pa. Ty Py



Thanks



3.7 REGION FILLING

Region filling is the process of “colonng in™ a definite image area or region. Regions may be defined
at the pixel or geometmc level. At the prxel level, we describe a region erther in terms of the bounding
pixels that outhine it or as the totality of pixels that comprise it (see Fig, 3-17). In the first case the region is
called boundary-defined and the collection of algonthms used for filling such a region are collectively
called boundary-fill algonthms, The other type of region is called an intenor-defined region and the
accompanying algorithms are called flood-fill algorithms., At the peometnic level a region is defined or
enclosed by such abstract contounng élements as connéctéd lmes and curves. For example, a polygonal
regron, or & flled polygon, is defined by a closed polyline, which s a polyvline {1.e., a series of sequentially
connected lnes) that has the end of the last hne connected to the begimnmg of the first hne.

Boundary -delfned region Interior-delined regaorn

LN B NN NN o0 CO0ODO

e e L N 000000

L] L Co0o00COO0O00O0
L * e e 000000

*e 0P » 00000000

» L o OO0 0000

L N N N N 00 o000

() i)



4-Connected v, B-Connected

An interesting point here is that, while a geometrically defined contour clearly separates the intenor
of a repion from the extenor, ambiguity may anse when an ocuthine consists of discrete pixels in the
Image space. There are two ways in which pixels are considered connected to cach other to form a
*contimuous” boundary. One method 15 called 4-connected, where a pixel may have up to four neighbors
Isee Fip. 3-18(a)]; the other is called S8-comnected, where a pixel may have up o eight neighbors [see

L (£ (<)
Fig. 3-18  4-comnecied ve, S-copnected paxels,



A Boundary-fill Algorithm

This s a recursive algorithm that begins with a starting pixel, called a seed, inzide the region. The
alporithm checks to see if this pixel is a boundary pixel or has already been filled. I the answer is no, it fills
the pixel and makes a recursive call to nsell using each and every neighbormg pixel as a new seed. I the
answer is yes, the algonthm simply retums to its caller.

This algonthm works ¢legantly on an arbitranty shaped region by chasing and filling all non-boundary
pixecls that are connected to the seed, either directly or indirectly through a chamn of neighboring relations.
However, a straightforward implementation can take time and memory o execute due to the potentially
high number of recursive callz, especially when the size of the région is relatively large.

A Flood-fll Algorithm

This algorithm also begins with a seed (staring pixel) inside the region. It checks o see if the pixel has
the regron's original color. If the answer 15 yes, it fills the pixel with a new color and uses each of the pixels
neighbors as a new seed i a recursive call. If the answer 15 no, it returns to the caller.

This method shares great similanties in its operating prnciple with the boundary-fll algorithm. It is
particularly usefil when the region 1o be filled has no uniformly colored boundary, On the other hand, a



A Scap-line Algorithm

In contrast to the boundary-fill and Aood-fill algorithms that fill regions defined at the pixel level in the
image space, this algorithm handles polygonal regions that are geometrically defined by the coordinates of
their vertices (along with the edges that connect the vertices). Although such regrons can be filled by first
scan-converting the edges to get the boundary preels and then applying a boundary-fill algorithm to finish
the job, the follewing is 2 much more efficient approach that makes use of the information regarding edges
that are available during scan conversion to facilitate the filling of interior pi:luls

We n:]:lr:'il:;nt a polygonal region i terms of a sequence of vertces ¥, Fy, . that are connected
byedges £, E;, E . (5ee Fig. 3-19). We assume that each vertex |, has alrﬁdy hﬁm scan-converted o
inmeger ¢mrdmah¢-s {,:, },]

F iret meam Firee

Fig. 3=19 Scap-oonverhng a pobygonal regon.



Table 3-1 An edge hst
x conrdmaie of
Falye ¥min - vertex with v = ¥y L /mi
E ¥ ¥2=1 K | /my
E- ¥ ¥ X |
£y ¥y yg=1 Xy | imy
'Eﬁ Ya ¥ Xy I.I'H:I,,
E; ¥ ¥y Xy 1 /iy
Ey ¥y ¥y Xy /iy




38 SCAN-CONVERTING A CHARACTER

Characters such as letters and digits are the building blocks of an image’s texmal contents. They can be
presented in a vanety of styles and sizes. The overall design style of a set of characters is referred (o as is
typeface or font. Commonly used fonts include Aral, Century Schoolbook, Courier, and Times New
Roman. In additon, fonts can vary in appearance: bold, iralic, and bold and italic. Character size is
typically measured in height in inches, points (approximately < inch), and picas {12 points).

Bitmap Font

There are two basic approaches to character representation. The first is called a mster or bitmap font,
where each character s represented by the on pixels in a bilevel pixel grid pattern called a bitmap (see Fig.
3=20). This approach is simple and effective since characters are defined in already-scan-converted form.
Putting a character imto an image basically entails a direct mapping or copying of its bitmap to a specific

]
=
-
o
-
i
-
am
-
=l
-

ig. 3-20 Bitmap font (a) Biald i) Hmlic
Fig. 3=21 Generating vanations in appearance.



(utline Foni

The second character representation method is called a vector or outline font, where graphical
primitives such as lines and arcs are used to define the outline of each character (see Fig. 3-22). Although
an outline definition tends o be less compact than a bitmap definition and requires relatively time-
CONSUMINE SCan-Conversion operations, it can be used to produce characters of varying size, appearance,
and even onentation. For example, the outline definition in Fig. 3-22 can be resized through a scaling
transformation, made into italic through a sheanng transformation, and turned around with respect to a
reference point through a rotation transformation (see Chap. 4).

These transformed pnmitives can be scan-comverted directly into characters m the form of filled
regions in the target imiage area. Or they can be used to create the equivalent bitmaps that are then used to

)

Fig. 3-212 Oniline fomd

1.9 ANTI-ALIASING

San conversion is csscnlially a systcnsatic appioach 1o mapping objects that are Jeflved o contimous
space o thewr discrete approximation. The vanous forms of distorton that result from this operation are
collectively referred to as the aliasing effects of scan conversion.



Staircase

A common example of alissing effects ts the staircase or jagped appearance we see when scan-
converting a primitive such as a line or a circle. We also see the stair steps or "“jagmes™ along the border of
a filled region.

Unequal Brightness

Another artifcet thet is less noticcable is the oncgual brghmess of lines of different onentation. A
slanted line appears dimmer than a horzontal or vertical bne, although all are presented at the same
intensity level. The reason for this problem can be explained using Fig. 3-23, where the pixels on the
horizontal line are placed one unit apart, whereas those on the diagonal line are approximately 1.414 units
apart. This difference in density produces the perceived difference in brightness.

¥

¥

o
o

Q
o

o

nﬂ;+l+_ﬂuﬂﬂnn

Fig. 3-23















Thanks



