3D Graphics

« Goal: To produce 2D images of a mathematically
described 3D environment
* Issues:

— Describing the environment: Modeling (mostly later)
— Computing the image: Rendering



Graphics Toolkits

 Graphics toolkits typically take care of the details
of producing images from geometry

* Input:
— Where the objects are located and what they look like
— Where the camera is and how it behaves
— Parameters for controlling the rendering

« Qutput: Pixel data in a framebuffer
— Data can be put on the screen
— Data can be read back for processing (part of toolkit)



OpenGL

OpenGL is an open standard graphics toolkit
— Derived from SGI’s GL toolkit

Provides a range of functions for modelling,
rendering and manipulating the framebuffer

Why use 1t? Portable, hardware supported, simple
and easy to program (really!)

Alternatives: Direct3D, Java3D - more complex
and less well supported respectively



In the Coming Weeks...

« We will look at the math and algorithms on which
OpenGL is built

« We will look at how to access those algorithms in
OpenGL




Coordinate Systems

« The use of coordinate systems is fundamental to
computer graphics

« Coordinate systems are used to describe the
locations of points in space

« Multiple coordinate systems make graphics
algorithms easier to understand and implement



Coordinate Systems (2)

 Different coordinate systems represent the
same point in different ways
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« Some operations are easier in one coordinate

system than in another



Transformations

 Transformations convert points between
coordinate systems
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Transformations
(Alternate Interpretation)

e Transformations modify an object’s shape and
location in one coordinate system
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2D Affine Transformations

« An affine transformation i1s one that can be written
In the form: ,
X'=a,X+a,y+hb
y' = a,Xx+a,y+ by

or

X, a'XX axy X bX

Y] [y Y by




Why Affine Transformations?

o Affine transformations are linear

— Transforming all the individual points on a line gives
the same set of points as transforming the endpoints and
joining them

— Interpolation is the same in either space: Find the
halfway point in one space, and transform it. Will get
the same result if the endpoints are transformed and
then find the halfway point



Composition of Affine Transforms

 Any affine transformation can be composed as a
sequence of simple transformations:
— Translation
— Scaling
— Rotation
— Shear
— Reflection



2D Translation

« M bject -~ - - - 4 L -
oves an objec 1 0




2D Scaling

» Resizes an object in each dimension
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2D Rotation

 Rotate counter-clockwise about the origin by an
angle 6 A
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X-AXIS Shear

« Shear along x axis (What is the matrix for y axis

shear?) x' 1 sh [ x 0
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Reflect About X AXIS

X' 1 0 |x| (O
1Y 0 -1jy| |0

« What Is the matrix for reflect about Y axis?



Rotating About An Arbitrary Point

« \What happens when you apply a rotation
transformation to an object that is not at the origin?

 Solution:
— Translate the center of rotation to the origin

— Rotate the object
— Translate back to the original location



Rotating About An Arbitrary Point
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Scaling an Object not at the Origin

« What also happens if you apply the scaling
transformation to an object not at the origin?

« Based on the rotating about a point composition,
what should you do to resize an object about its
own center?



Back to Rotation About a Pt

Say R is the rotation matrix to apply, and p is the
point about which to rotate

Translation to Origin: X' =X—p

Rotation: X" =Rx'=R(x—p)=Rx—-Rp
Translate back: x” =x"+ p=Rx—-Rp+p
The translation component of the composite

transformation involves the rotation matrix. What
a mess!



Homogeneous Coordinates

Use three numbers to represent a point
(X,y)=(wx,wy,w) for any constant w=0
Typically, (x,y) becomes (x,y,1)
Translation can now be done with matrix

multiplication!
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Basic Tran

e Translation:

 Scaling:
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Homogeneous Transform Advantages

« Unified view of transformation as matrix
multiplication

— Easier In hardware and software

« To compose transformations, simply multiply
matrices

— Order matters: AB is generally not the same as BA
 Allows for non-affine transformations:

— Perspective projections!
— Bends, tapers, many others



3D Transformations watt Section 1.1

« Homogeneous coordinates: (X,y,z)=(Wx,wy,wz,w)

« Transformations are now represented as 4x4
matrices

 Typical graphics packages allow for specification
of translation, rotation, scaling and arbitrary

matrices

— OpenGL.: glTranslate[fd], glRotate[fd], glScale[fd],
glMultMatrix[fd]



3D Translation
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3D Rotation

 Rotation in 3D is about an axis in 3D space
passing through the origin

« Using a matrix representation, any matrix with an
orthonormal top-left 3x3 sub-matrix iIs a rotation
— Rows are mutually orthogonal (O dot product)
— Determinant is 1

— Implies columns are also orthogonal, and that the
transpose is equal to the inverse




3D Rotation
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Problems with Rotation Matrices

« Specifying a rotation really only requires 3
numbers
— AXIS IS a unit vector, so requires 2 numbers
— Angle to rotate is third number

 Rotation matrix has a large amount of redundancy

— Orthonormal constraints reduce degrees of freedom
back down to 3

— Keeping a matrix orthonormal is difficult when
transformations are combined



Alternative Representations

Specify the axis and the angle (OpenGL method)
— Hard to compose multiple rotations

Specify the axis, scaled by the angle
— Only 3 numbers, but hard to compose

Euler angles: Specify how much to rotate about X,
then how much about Y, then how much about Z

— Hard to think about, and hard to compose
Quaternions



Quaternions

4-vector related to axis and angle, unit magnitude

— Rotation about axis (n,,n,,n,) by angle &-
(n,cos(6/2),n, cos(6/2),n, cos(0/2),sin(6/2))

Easy to compose

Easy to go to/from rotation matrix

See Watt section 17.2.4 and start of 17.2.5



Other Rotation Issues

 Rotation Is about an axis at the origin

— Use the same trick as in 2D: Translate to origin, rotate,
and translate back again

e Rotation IS not commutative
— Rotation order matters
— Experiment to convince yourself of this



Transformation Tidbits

 Scale, shear etc extend naturally from 2D to 3D
 Rotation and Translation are the rigid-body
transformations:

— Do not change lengths or angles, so a body does not
deform when transformed



Thanks



