
3D Graphics

• Goal: To produce 2D images of a mathematically

described 3D environment

• Issues:

– Describing the environment: Modeling (mostly later)

– Computing the image: Rendering

Graphics Toolkits

• Graphics toolkits typically take care of the details
of producing images from geometry

• Input:

– Where the objects are located and what they look like

– Where the camera is and how it behaves

– Parameters for controlling the rendering

• Output: Pixel data in a framebuffer

– Data can be put on the screen

– Data can be read back for processing (part of toolkit)

OpenGL

• OpenGL is an open standard graphics toolkit

– Derived from SGI’s GL toolkit

• Provides a range of functions for modelling,

rendering and manipulating the framebuffer

• Why use it? Portable, hardware supported, simple

and easy to program (really!)

• Alternatives: Direct3D, Java3D - more complex

and less well supported respectively

In the Coming Weeks…

• We will look at the math and algorithms on which

OpenGL is built

• We will look at how to access those algorithms in

OpenGL

Coordinate Systems

• The use of coordinate systems is fundamental to

computer graphics

• Coordinate systems are used to describe the

locations of points in space

• Multiple coordinate systems make graphics

algorithms easier to understand and implement

Coordinate Systems (2)

• Different coordinate systems represent the

same point in different ways

• Some operations are easier in one coordinate

system than in another

x

y
(2,3)

u

v

x

y
(1,2)

u

v

Transformations

• Transformations convert points between

coordinate systems

x

y
(2,3) v

x

y
(1,2)

u

v

u

u=x-1

v=y-1

x=u+1

y=v+1

Transformations

(Alternate Interpretation)

• Transformations modify an object’s shape and

location in one coordinate system

x

y
(2,3)

(1,2)

x

y
x’=x-1

y’=y-1

x=x’+1

y=y’+1

2D Affine Transformations

• An affine transformation is one that can be written

in the form:

y

x

yyyx

xyxx

yyyyx

xxyxx

b

b

y

x

aa

aa

y

x

byaxay

byaxax

or

Why Affine Transformations?

• Affine transformations are linear

– Transforming all the individual points on a line gives

the same set of points as transforming the endpoints and

joining them

– Interpolation is the same in either space: Find the

halfway point in one space, and transform it. Will get

the same result if the endpoints are transformed and

then find the halfway point

Composition of Affine Transforms

• Any affine transformation can be composed as a

sequence of simple transformations:

– Translation

– Scaling

– Rotation

– Shear

– Reflection

2D Translation

• Moves an object

y

x

b

b

y

x

y

x

10

01

x

y

x

y

bx

by

2D Scaling

• Resizes an object in each dimension

x

y

0

0

0

0

y

x

s

s

y

x

y

x

x
y

x

y

sxx

syy

2D Rotation

• Rotate counter-clockwise about the origin by an

angle

0

0

cossin

sincos

y

x

y

x

x

y

x

y

X-Axis Shear

• Shear along x axis (What is the matrix for y axis

shear?)

0

0

10

1

y

xsh

y

x x

x

y

x

y

Reflect About X Axis

• What is the matrix for reflect about Y axis?

0

0

10

01

y

x

y

x

x x

Rotating About An Arbitrary Point

• What happens when you apply a rotation

transformation to an object that is not at the origin?

• Solution:

– Translate the center of rotation to the origin

– Rotate the object

– Translate back to the original location

Rotating About An Arbitrary Point

x

y

x

y

x

y

x

y

Scaling an Object not at the Origin

• What also happens if you apply the scaling

transformation to an object not at the origin?

• Based on the rotating about a point composition,

what should you do to resize an object about its

own center?

Back to Rotation About a Pt

• Say R is the rotation matrix to apply, and p is the

point about which to rotate

• Translation to Origin:

• Rotation:

• Translate back:

• The translation component of the composite

transformation involves the rotation matrix. What

a mess!

pxx

RpRxpxRxRx)(

pRpRxpxx

Homogeneous Coordinates

• Use three numbers to represent a point

• (x,y)=(wx,wy,w) for any constant w0

• Typically, (x,y) becomes (x,y,1)

• Translation can now be done with matrix

multiplication!

11001

y

x

baa

baa

y

x

yyyyx

xxyxx

Basic Transformations

• Translation: Rotation:

• Scaling:

100

10

01

y

x

b

b

100

00

00

y

x

s

s

100

0cossin

0sincos

Homogeneous Transform Advantages

• Unified view of transformation as matrix
multiplication

– Easier in hardware and software

• To compose transformations, simply multiply
matrices

– Order matters: AB is generally not the same as BA

• Allows for non-affine transformations:

– Perspective projections!

– Bends, tapers, many others

3D Transformations Watt Section 1.1

• Homogeneous coordinates: (x,y,z)=(wx,wy,wz,w)

• Transformations are now represented as 4x4

matrices

• Typical graphics packages allow for specification

of translation, rotation, scaling and arbitrary

matrices

– OpenGL: glTranslate[fd], glRotate[fd], glScale[fd],

glMultMatrix[fd]

3D Translation

11000

100

010

001

1

z

y

x

t

t

t

z

y

x

z

y

x

3D Rotation

• Rotation in 3D is about an axis in 3D space

passing through the origin

• Using a matrix representation, any matrix with an

orthonormal top-left 3x3 sub-matrix is a rotation

– Rows are mutually orthogonal (0 dot product)

– Determinant is 1

– Implies columns are also orthogonal, and that the

transpose is equal to the inverse

3D Rotation

0

:examplefor and

11000

0

0

0

1

yzxzyyxyyxxx

zzzyzx

yzyyyx

xzxyxx

rrrrrr

z

y

x

rrr

rrr

rrr

z

y

x

Problems with Rotation Matrices

• Specifying a rotation really only requires 3

numbers

– Axis is a unit vector, so requires 2 numbers

– Angle to rotate is third number

• Rotation matrix has a large amount of redundancy

– Orthonormal constraints reduce degrees of freedom

back down to 3

– Keeping a matrix orthonormal is difficult when

transformations are combined

Alternative Representations

• Specify the axis and the angle (OpenGL method)

– Hard to compose multiple rotations

• Specify the axis, scaled by the angle

– Only 3 numbers, but hard to compose

• Euler angles: Specify how much to rotate about X,

then how much about Y, then how much about Z

– Hard to think about, and hard to compose

• Quaternions

Quaternions

• 4-vector related to axis and angle, unit magnitude

– Rotation about axis (nx,ny,nz) by angle :

• Easy to compose

• Easy to go to/from rotation matrix

• See Watt section 17.2.4 and start of 17.2.5

 2/sin,2/cos,2/cos,2/cos zyx nnn

Other Rotation Issues

• Rotation is about an axis at the origin

– Use the same trick as in 2D: Translate to origin, rotate,

and translate back again

• Rotation is not commutative

– Rotation order matters

– Experiment to convince yourself of this

Transformation Tidbits

• Scale, shear etc extend naturally from 2D to 3D

• Rotation and Translation are the rigid-body

transformations:

– Do not change lengths or angles, so a body does not

deform when transformed

Thanks

