
3D Graphics 

• Goal: To produce 2D images of a mathematically 

described 3D environment 

• Issues: 

– Describing the environment: Modeling (mostly later) 

– Computing the image: Rendering 



Graphics Toolkits 

• Graphics toolkits typically take care of the details 
of producing images from geometry 

• Input: 

– Where the objects are located and what they look like 

– Where the camera is and how it behaves 

– Parameters for controlling the rendering 

• Output: Pixel data in a framebuffer 

– Data can be put on the screen 

– Data can be read back for processing (part of toolkit) 



OpenGL 

• OpenGL is an open standard graphics toolkit 

– Derived from SGI’s GL toolkit 

• Provides a range of functions for modelling, 

rendering and manipulating the framebuffer 

• Why use it? Portable, hardware supported, simple 

and easy to program (really!) 

• Alternatives: Direct3D, Java3D - more complex 

and less well supported respectively 



In the Coming Weeks… 

• We will look at the math and algorithms on which 

OpenGL is built 

• We will look at how to access those algorithms in 

OpenGL 



Coordinate Systems 

• The use of coordinate systems is fundamental to 

computer graphics 

• Coordinate systems are used to describe the 

locations of points in space 

• Multiple coordinate systems make graphics 

algorithms easier to understand and implement 



Coordinate Systems (2) 

• Different coordinate systems represent the 

same point in different ways 

 

 

 

 

• Some operations are easier in one coordinate 

system than in another 
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Transformations 

• Transformations convert points between 

coordinate systems 
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Transformations 

(Alternate Interpretation) 

• Transformations modify an object’s shape and 

location in one coordinate system 
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2D Affine Transformations 

• An affine transformation is one that can be written 

in the form: 
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Why Affine Transformations? 

• Affine transformations are linear 

– Transforming all the individual points on a line gives 

the same set of points as transforming the endpoints and 

joining them 

– Interpolation is the same in either space: Find the 

halfway point in one space, and transform it. Will get 

the same result if the endpoints are transformed and 

then find the halfway point 



Composition of Affine Transforms 

• Any affine transformation can be composed as a 

sequence of simple transformations: 

– Translation 

– Scaling 

– Rotation 

– Shear 

– Reflection 



2D Translation 

• Moves an object 
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2D Scaling 

• Resizes an object in each dimension 
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2D Rotation 

• Rotate counter-clockwise about the origin by an 

angle  
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X-Axis Shear 

• Shear along x axis (What is the matrix for y axis 

shear?) 
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Reflect About X Axis 

• What is the matrix for reflect about Y axis? 
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Rotating About An Arbitrary Point 

• What happens when you apply a rotation 

transformation to an object that is not at the origin? 

• Solution: 

– Translate the center of rotation to the origin 

– Rotate the object 

– Translate back to the original location 



Rotating About An Arbitrary Point 
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Scaling an Object not at the Origin 

• What also happens if you apply the scaling 

transformation to an object not at the origin? 

• Based on the rotating about a point composition, 

what should you do to resize an object about its 

own center? 

 



Back to Rotation About a Pt 

• Say R is the rotation matrix to apply, and p is the 

point about which to rotate 

• Translation to Origin: 

• Rotation: 

• Translate back: 

• The translation component of the composite 

transformation involves the rotation matrix. What 

a mess! 
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Homogeneous Coordinates 

• Use three numbers to represent a point 

• (x,y)=(wx,wy,w) for any constant w0 

• Typically, (x,y) becomes (x,y,1) 

• Translation can now be done with matrix 

multiplication! 
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Basic Transformations 

• Translation:                     Rotation: 

 

 

• Scaling: 
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Homogeneous Transform Advantages 

• Unified view of transformation as matrix 
multiplication 

– Easier in hardware and software 

• To compose transformations, simply multiply 
matrices 

– Order matters: AB is generally not the same as BA 

• Allows for non-affine transformations: 

– Perspective projections! 

– Bends, tapers, many others 



3D Transformations Watt Section 1.1 

• Homogeneous coordinates: (x,y,z)=(wx,wy,wz,w) 

• Transformations are now represented as 4x4 

matrices 

• Typical graphics packages allow for specification 

of translation, rotation, scaling and arbitrary 

matrices 

– OpenGL: glTranslate[fd], glRotate[fd], glScale[fd], 

glMultMatrix[fd] 



3D Translation 
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3D Rotation 

• Rotation in 3D is about an axis in 3D space 

passing through the origin 

• Using a matrix representation, any matrix with an 

orthonormal top-left 3x3 sub-matrix is a rotation 

– Rows are mutually orthogonal (0 dot product) 

– Determinant is 1 

– Implies columns are also orthogonal, and that the 

transpose is equal to the inverse 



3D Rotation 
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Problems with Rotation Matrices 

• Specifying a rotation really only requires 3 

numbers 

– Axis is a unit vector, so requires 2 numbers 

– Angle to rotate is third number 

• Rotation matrix has a large amount of redundancy 

– Orthonormal constraints reduce degrees of freedom 

back down to 3 

– Keeping a matrix orthonormal is difficult when 

transformations are combined 



Alternative Representations 

• Specify the axis and the angle (OpenGL method) 

– Hard to compose multiple rotations 

• Specify the axis, scaled by the angle 

– Only 3 numbers, but hard to compose 

• Euler angles: Specify how much to rotate about X, 

then how much about Y, then how much about Z 

– Hard to think about, and hard to compose 

• Quaternions 



Quaternions 

• 4-vector related to axis and angle, unit magnitude 

– Rotation about axis (nx,ny,nz) by angle : 

 

• Easy to compose 

• Easy to go to/from rotation matrix 

• See Watt section 17.2.4 and start of 17.2.5 

        2/sin,2/cos,2/cos,2/cos  zyx nnn



Other Rotation Issues 

• Rotation is about an axis at the origin 

– Use the same trick as in 2D: Translate to origin, rotate, 

and translate back again 

• Rotation is not commutative 

– Rotation order matters 

– Experiment to convince yourself of this 



Transformation Tidbits 

• Scale, shear etc extend naturally from 2D to 3D 

• Rotation and Translation are the rigid-body 

transformations: 

– Do not change lengths or angles, so a body does not 

deform when transformed 



Thanks 


