
62 Chapter 2 Operating-System Structures

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system,we do not distinguish between
user programs and system programs.

2.3 System Calls

System callsprovide an interface to the servicesmade available by anoperating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly) may have to be written using assembly-language
instructions.
Before we discuss how an operating system makes system calls available,

let’s first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the programwill need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending on
the operating-system design. One approach is for the program to ask the user
for the names. In an interactive system, this approachwill require a sequence of
system calls, first to write a prompting message on the screen and then to read
from the keyboard the characters that define the twofiles. Onmouse-based and
icon-based systems, a menu of file names is usually displayed in a window.
The user can then use the mouse to select the source name, and a window
can be opened for the destination name to be specified. This sequence requires
many I/O system calls.
Once the two file names have been obtained, the program must open the

input file and create the output file. Each of these operations requires another
system call. Possible error conditions for each operation can require additional
system calls. When the program tries to open the input file, for example, it may
find that there is no file of that name or that the file is protected against access.
In these cases, the program should print a message on the console (another
sequence of system calls) and then terminate abnormally (another system call).
If the input file exists, then we must create a new output file. We may find that
there is already an output file with the same name. This situation may cause
the program to abort (a system call), or wemay delete the existing file (another
system call) and create a new one (yet another system call). Another option,
in an interactive system, is to ask the user (via a sequence of system calls to
output the prompting message and to read the response from the terminal)
whether to replace the existing file or to abort the program.
When both files are set up, we enter a loop that reads from the input file

(a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (for example, no more disk space).

2.3 System Calls 63

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more system
calls), and finally terminate normally (the final system call). This system-call
sequence is shown in Figure 2.5.
As you can see, even simple programs may make heavy use of the

operating system. Frequently, systems execute thousands of system calls
per second. Most programmers never see this level of detail, however.
Typically, application developers designprograms according to an application
programming interface (API). The API specifies a set of functions that are
available to an application programmer, including the parameters that are
passed to each function and the return values the programmer can expect.
Three of the most common APIs available to application programmers are
theWindows API for Windows systems, the POSIX API for POSIX-based systems
(which includevirtually all versions ofUNIX, Linux, andMacOSX), and the Java
API for programs that run on the Java virtual machine. A programmer accesses
an API via a library of code provided by the operating system. In the case of
UNIX and Linux for programs written in the C language, the library is called
libc. Note that—unless specified—the system-call names used throughout
this text are generic examples. Each operating system has its own name for
each system call.
Behind the scenes, the functions that make up an API typically invoke the

actual system calls on behalf of the application programmer. For example, the
Windows function CreateProcess() (which unsurprisingly is used to create
a new process) actually invokes the NTCreateProcess() system call in the
Windows kernel.
Why would an application programmer prefer programming according to

an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit concerns program portability. An application program-

source file destination file

Example System Call Sequence
Acquire input file name
 Write prompt to screen
 Accept input
Acquire output file name
 Write prompt to screen
 Accept input
Open the input file
 if file doesn't exist, abort
Create output file
 if file exists, abort
Loop
 Read from input file
 Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

Figure 2.5 Example of how system calls are used.

64 Chapter 2 Operating-System Structures

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

return
value

function
name

parameters

Aprogram that uses the read() functionmust include the unistd.hheader
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read() are as follows:

• int fd—the file descriptor to be read
• void *buf—a buffer where the data will be read into
• size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read() returns −1.

mer designing a program using an API can expect her program to compile and
run on any system that supports the same API (although, in reality, architectural
differences often make this more difficult than it may appear). Furthermore,
actual system calls can often be more detailed and difficult to work with than
theAPI available to an application programmer.Nevertheless, there often exists
a strong correlation between a function in the API and its associated system call
within the kernel. In fact, many of the POSIX and Windows APIs are similar to
the native system calls provided by the UNIX, Linux, and Windows operating
systems.
For most programming languages, the run-time support system (a set of

functions built into libraries included with a compiler) provides a system-
call interface that serves as the link to system calls made available by the
operating system. The system-call interface intercepts function calls in the API
and invokes the necessary system calls within the operating system. Typically,
a number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface

2.3 System Calls 65

Implementation
of open ()
system call

open ()

user
mode

return

user application

system call interface
kernel
mode

i

open ()

Figure 2.6 The handling of a user application invoking the open() system call.

then invokes the intended system call in the operating-system kernel and
returns the status of the system call and any return values.
The caller need know nothing about how the system call is implemented

or what it does during execution. Rather, the caller need only obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the run-time
support library. The relationship between an API, the system-call interface,
and the operating system is shown in Figure 2.6, which illustrates how the
operating system handles a user application invoking the open() system call.
System calls occur in different ways, depending on the computer in use.

Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.
Three generalmethods are used topassparameters to the operating system.

The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). This
is the approach taken by Linux and Solaris. Parameters also can be placed,
or pushed, onto the stack by the program and popped off the stack by the
operating system. Some operating systems prefer the block or stack method
because those approaches do not limit the number or length of parameters
being passed.

