

Daffodil International University Department of Computer Science and Engineering Faculty of Science & Information Technology Final Exam Examination, fall 2020 @ DIU Blended Learning Center Course Code: CSE323 (Eve), Course Title: Operating Systems Level: 3 Term: 2 Section: O-2 Eve Instructor: JAP Modality: Open Book Exam Date: Saturday 24 December, 2020 Time: 06:30-10:30PM Four hours (4:00) to support online open/case study based assessment Marks: 40.0

1. a. Draw a resource allocation graph according to the following resource Determine if there is a deadlock. If yes, indicate the processes and re involved and add one resource which could fix the deadlock. If not, argue v is the case, and provide a feasible sequence of processes to show completion	matrix. 6.0 esources why this n.

	Allo	cation	1		Need				Available				
	R0	R1	R2	R3	R0	R1	R2	R3	R0	R1	R2	R3	
P1	0	0	0	1	2	0	0	0	2	0	0	1	
P2	0	1	1	0	0	1	0	1					
P3	0	1	0	0	0	0	1	1					
P4	1	0	1	0	0	1	0	0					
P5	1	0	0	0	0	0	0	1					

b. Suppose a system uses Bankers algorithm to avoid deadlock. Consider there are seven processes in the system. They need four types of resources: A, B, C, and D. They have some resources and need more resources to complete their task. The system has 3 instances of A, 2 instances of B, 0 instances of C and 4 instances of D free resources. In the Allocation and Max matrix the value resources of the process will be the last four digits of your own DIU ID.

For example, if a student named John has ID 191-15-45678, then the value for A is 5, B is 6, C is 7 and D is 8 for process P2.

	Proce		Allocation				Maximum					
	5565	А	B	С	D	Α	В	С	D			
	P1	2	2	2	0	5	4	5	2			
	P2											
	P3	3	4	0	1	6	5	0	4			
	P4	0		2	2	5	5	4	3			
	P5 P6	<u>5</u> Д	4	1	1	4	<u> </u>	4	<u>5</u> Д			
	P7	3	2	3	3	3	4	5	3			
	I. Fi II. Fi III. Si P 1) sy an pi	ind out the ages. uppose two 1 for (2, 1) resource ystem is so nd resource roblem.	wo reques 2, 0 and 1 ees. Can afe? If ye rces invo	tof the Ne lue of ins sts from t) resource these rec es, show t lved and	tances of tances of wo proce es and an quests be he safe so add req	ch proces different esses com other req e granted equence. I uired res	s. resource e. One re uest from immedi immedi If not, inc ources w	equest from P4 for (5 ately ens licate the hich cou	nitial m process 5, 3, 3 and suring the processes ld fix the			
ι.	Suppose 1 having a s 80k, 120k serve all t your answ	IMB mer size of 12 c, 180k, a he reques ver.	nory is pa 28KB. Th nd 60k. I sts by imp	artitioned e list of re Do you thi Dementin	into som equest oro nk it is p g the me	e fixed si lers is: 50 ossible fo mory allo	zed block 0k, 150k, or an oper cation alg	cs each bl 90k, 130l rating syst gorithms?	ock k, 70k, tem to 9 Justify			
).	Now supp partitions process is best solut	oose you : 100k, 20 between ion in thi	have give 00k, 80k, 1 and 3. s case? E	en the sam and 110k Which m xplain wit	e reques Also co emory al th proof.	t order wi onsider the location a	th 4 varia e number lgorithm	able sized of turns f will prov	memory for each ide the			
l.	Consider 1 2 3 1 5 1 7	the follow	wing refe	rence strin 7 3 5 8 5	ng and fr 1 2 8 9	ame:						

	 Do you think LRU is better than an Optimal algorithm while finding page faults in operating systems? Explain your answer with proper justification. Now implement the better algorithm for the above scenario and find out page faults and page hits. 	
b.	Suppose a disk drive has 2500 tracks (0-2499) and the disk queue having I/O requests in the following order as follows:	4.0
	90, 890, 2400, 700, 2100, 1700, 800, 300, 150, 200, 50, 550, 250 and 2000 Current position of the Read Write head is 500 and assume that previous request was the first three digits of your id [Sample: Id 192-15-34567 ; previous request 192].	
	For minimizing seek distance which disk scheduling algorithm will you use? Why? Explain your answer. Now calculate the seek distance for your chosen algorithm.	
C.	What have you learned from this course? Is this course helpful to you? Give a brief description of it	5.0

Best of Luck ©