. Object Oriented Modeling

CSE333:Software Engineering
Abdus Sattar

Assistant Professor
Department of Computer Science and Engineering
Daffodil International University
Email: abdus.cse@diu.edu.bd

), Datfodi/

niversity

mailto:abdus.cse@diu.edu.bd

earning Goals

Understand what object-oriented systems analysis and design i1s and
appreciate its usefulness.

Comprehend the concepts of unified modeling language (UML), the
standard approach for modeling a system in the object-oriented world.

Apply the steps used in UML to break down the system Into a use case
model and then a class model.

Diagram systems with the UML toolset so they can be described and
properly designed.

Document and communicate the newly modeled object-oriented system to
users and other analysts.

UML Diagram Types

UML Diagram Types UML (Unified Modeling Language)

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Component
Diagrams

Object Diagrams

Behavioral Diagrams

State Machine Communication
Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction

Timing Diagrams : 2
overview Diagrams

Diagram Types

O A class diagram represents a static view of
the system. It describes the attributes and
operations of classes.

O Class diagrams are the most widely used
modeling diagram for object-oriented
systems because they can be directly
mapped with object-oriented languages.

m User, Customer, Administrator, Order,
OrderDetails are classes. Each class consist
of attributes and methods. Attributes
describe the properties while methods
describe the behaviors or operations.

User

-registerDate: date

-u=erd: strimg
-password. strimg

=L oguri)

<] ™

AN

Customer

Adrministrator

-rarme strng
-address: strirmg
emall: strimg
-customerid: stnmng

— 2T '5.'.r||'.|:_:

-MEnme . strmg

+=register])

+purchase()

+updateFroducts()

—customerMName Sinng
~customeerid SIrimg

+placeOrdeaer()

OrderDeaetails

—arderld: strurg
“productld: string
“proeductMName: string
—guErmt [:_.' iIrme
~umnri_ost double

-total: double

+calculate Total()

Diagram Types(Cont..)

O Another structural diagram iIs an object
diagram. It is similar to a class diagram, but it
focuses on objects.

O The basic concepts of object diagram are
similar to a class diagram. These diagrams help
to understand object behavior and their
relationships at a particular moment.

O The sl1, s2, and s3 are student objects, and they
enroll to c1 course object. The I1 lecturer object
teaches the course cl. The lecturer object 12
teaches the special course c2. The Student s3
enrolls to c1 course as well as c2 special course.
This diagram illustrates how a set of objects
relates to each other.

I1: Lecturer
s1: Student
+teaches
+enrolls
- ¢cl: Course
s2: Student «enrolls At A
+enrolls
s3: Student +enrolls

12: Lecturer

+teaches

c2: Special Course

Essential elements Class

Diag ram

m Class Name
m Attributes
m Operations

Class Names

= = T

- 0 The name of the class is the only required tag

In the graphical representation of a class. It
always appears in the top-most compartment.

attributes

operations

Cl‘as.,s Attribute

[o L e e I B R SR BT S S BV SR MY T 'Y N i

Q0 An attribute is a named property of a class
that describes the object being modeled.

0 In the class diagram, attributes appear in the
second compartment just below the name-
compartment.

Person

Wl i i

TS o

QO Attributes are usually listed in the form:
attributeName : Type

0 A derived attribute Is one that can be
computed from other attributes, but
doesn’t actually exist. For example, a
Person’s age can be computed from
his birth date. A derived attribute is
designated by a preceding /" as in:

Person

[age : Date

Class Attributes (Cont’d)

Person

mAttributes can be:
+ public
protected
- private
/ derived

10

Class Operations

Person

name : String
address : Address
birthdate : Date

SSN - 1d

0 Operations describe the class behavior and
appear in the third compartment.

11

Relationships

2 In UML, object interconnections ¢
(logical or physical), are
modeled as relationships.
Link

a There are three kinds of |
relationships in UML.:

» Dependencies Composition
« Generalizations Association
= Associations

T Aggregation

12

Dependency Relationships

O A dependency indicates a semantic/notational
relationship between two or more elements.

0 CourseSchedule has dependency on Course

13

L
/\
e

G_e_nera_liz_ation Rel_atio_nshiﬁps

O A generalization connects a
subclass to its superclass.

Q It denotes an Inheritance of
attributes and behavior from the
superclass to the subclass and
Indicates a specialization in the
subclass of the more general
superclass.

14

Generalization Relationships (Cont’d)

I~ B AT AT - S S S G S S S S S S S S 2 O |

O UML permits a class to inherit from multiple super-
classes, although some programming languages
(e.g., Java) do not permit multiple inheritance.

.
—

15

Association Relationships

m If two classes in a model need to communicate with
each other, there must be link between them.

m An association denotes that link.

16

Association Relationships (Cont’d)

= = o T

m We can indicate the multiplicity of an association by adding
multiplicity adornments to the line denoting the association.

m The example indicates that a Student has one or more
Instructors:

| Sudent | T lnstutor |

17

Association Relationships (Cont’d)

m The example indicates that every Instructor has one
or more

m Students:

| Sudent [| Tostructor |

Association Relationships (Cont’d)

m \We can also indicate the behavior of an object in an
association

(.e., the role of an object) using role names.

teaches learns from
1..* 1. _

Association Relationships (Cont’d)

T o

m \We can also name the association.

.* 1. _

Association Relationships (Cont’d)

m \We can specify dual associations.

member of

l..*

president of 1..%*

21

Association Relationships (Cont’d)

m Associations can also be objects themselves, called
link classes or an association classes.

22

Relationships (Aggregation)

m Aggregation is a special type of association that models a whole- part
relationship between aggregate and its parts.

College <> Student

= For example, the class college is made up of one or more student. In
aggregation, the contained classes are never totally dependent on the
lifecycle of the container.

= Here, the college class will remain even if the student is not availableé

3

Relationships (Composition)

m Compositions are denoted by a filled-diamond adornment on the association.

College ‘

The composition is a special type of aggregation which denotes strong ownership
between two classes when one class is a part of another class.

For example, if college is composed of classes student. The college could contain
many students, while each student belongs to only one college. So, if college is not

functioning all the students also removed.

Student

24

Interfaces

m An interface is a named set of operations
that specifies the behavior of objects
without showing their inner structure.

m It can be rendered in the model by a one-
or two-compartment rectangle, with the
stereotype <<interface>> above the
interface name.

25

Interface Services

m Interfaces do not get
instantiated. They have no
attributes or state. Rather, they
specify the services offered by
a related class.

26

Enumeration

m An enumeration is a user-
defined data type that consists
of a name and an ordered list of
enumeration literals.

27

Exceptions

Exceptions can be modeled
just like any other class.

Notice the <<exception>>
stereotype n the name
compartment.

28

ODbject Diagrams

= Model the instances of things described by a class.

= Each object diagram shows a set of objects and their
Interrelationships at a point in time.

= Used to model a snapshot of the application.

= Each object has an optional name and set of classes it is an
Instance of, also values for attributes of these classes.

Jaelson:Instructor :Student

BillClinton

Monica:Student COUre '“
Someone : desc

29

Multi objects

O A multi object is a set of objects, with an undefined
number of elements

p2:Instructor

cl:Course \ c3:Course

cZ:Course

: Student —‘ :Studen t;‘

..

Multiobjects

Supply Handling SupplyOrder Supplies

e

Restaurant
example:
Initial classes

Rastaurant Menu Order

Bill

Restaurant
example:
Initial
classes

Supply I—.Ia-n_q:rling

CroaditSupply)
DabitSuppdy ()
PlaceOrder |)
FProducalzhack |)

Hastsosrar

SaleStat |]

| Descrapancy ()}

— |

SupplyOrdar

Producael:hack |)

K>—
[E=T T -] "h._ﬂ-ﬂuﬁultl:m
| [Eerorn Hﬂl‘;lﬂ
Itarm MNMurmbar
Frice
Supplics Lisod
|
| | ﬁl_ e
Chrcler
T s
FProducaBi§ill {) |
Cuantity

Sup-plyltam |
Iterm Parme
Linit Prica
-
. L
Cusartiily

Example of UML
Class Diagram

ATMs system Is very simple as
customers need to press some
buttons to receive cash. However,
there are multiple security layers
that any ATM system needs to pass.
This helps to prevent fraud and
provide cash or need details to
banking customers

ATM

+identifies()
+iransactions()

+location
+managedby

Account Transaction

ATHM Transactions

Bank
+code
+address o
+manages()
+maintains()
Customer
+name
+address
+dab
+card number
+pin
+verifyPassword()
Account
Has |1
+number "
1,2 +balance
1
+deposit()
+withdraw()
createTransaction()

T

Current Account

+ACCOUNL no. 1
+balance

Savings-Checking

Saving Account

+withdraw()

d 1

+ACCOURL No.
+balance

+transaction id
+date

+type
+amaunt
+post balance

+modifies()

Department Course Texthook
—departmentName has a —courseNumber 1 1.4 | _|SBN
—departmentChair is for a —courseDescription —author
+addDepartment() —numberQfCredits —title
| +viewDepartment() —departmentNumber —editipn
+addCourse() —publisher
+changeCourse() —Tequired
A class +findCourse() +addText()
- +changeText()
di agram +findText()
, , +removeText()
for course I;a?i consists I;faart consists
- of of
offerings o o
Assignment Exam
—assignmentNumber —examNumber
—assignmentDescription —examName
—assignmentPoints —examPoints
—assignmentDueDate —examVersion
+addAssignment() +addExam()
+changeAssignment() +changeExam()
+viewAssignment() +findExam()

class Online Shopping)

Class Diagram: et Uaer Gustomer

login_id: String {id} 0.1 1 | id: String {id)

Online Shopping | |m=seesis [e paress

email: String
1 Payment
e Rl I «enumeration» 1 0.7 1 id: string {id}
UserState paid: Date
Account tatal: Real
25:;:;9 details: String
Blocked 1 id: String {id} 1 i :
Banned — @ billing_address: Address {ordered, unigue}
is_closed: Boolean
open: Date >
closed: Date 1 * {ordered,
0.1 1 unigque}
Order
Shopping Cart
number: String {id}
created: Date ordered: Date 1
1 shipped: Date
ship_to: Address
status: OrderStatus
total: Real
Lineltem 1
* {ordered, unique} | quantity: Integer * fordered, unique}
price: Price -
line_item lime_item wenumerations
* OrderStatus
Mew
1 Hold
Shipped
Product Delivered
Closed
id: String {id}

name: string
supplier: Supplier

@ uml-diagrams.org

Class Diagram: Order Process

Customer

-name : String

Order

-date : Date
-status : String

-address

+calcSubTotal()
+calcTax()
+calcTotal()
+calcTotalWeight()

"'0'1

OrderDetail

-guantity
line itern | -taxStatus : String

1

P4

Payment

-amount : float

[

Cash

-cashTendered : float

Item

1..* | +calcSubTotal()
+calcWeight()
+calcTax()

Check

-name : String
-banklD : String

+authorized()

]

Credit

-name : String
-type :© String
-expDate

+authorized()

-shipping'Weight
-description : String

+getPriceForCuantity()
+getTax()
+inStock)

36

Ship & Cargo Object Model

General cargo Bulk cargo

+ Wolume: double
+ Area: double
+ Weight double

+ Density: double

.

Cargo type

+ Unit of measurement. Unit of measurement

|

Cargo space utilization coefficients

| __|+ related to volume: double
+ related to area: double

Cargo space description

Groups of propellers (argo handling +serve | Parameters of cargo handling

+ Diameter. double Euipment %" 1+ Loading rate: double
+ Blade area ratio: double + Unloading rate: double
+ Pitch ratio; double 0.7
+ Thrust coefficient Kt Function
+ Torgue coefficient Kg: Function
+ Shaft power at propeller: double Vessel iy 4
il + Cargo capacity: double

1,4 | +provide movement + GRT: double

- + Length Detween perp.: double
» 4+ Midship beam: double +is able to contain
el + Total shaft power: double
Loading conditions + Vessel type: List

+ Towing resistance: Function -
+ Displacement: double T stor Cargo space \f 1
+ Walerline length: double N |Po—
+ Waterline breadth: double 5 Cargo space
+ Midship draft: double Vessel cargo + Volume: double aa:.:;}'m
+ cebreaking capability: double space 1+ Awa: foat
+

"
+ Combined placement. boolean

37

References

Software Engineering A practitioner’s Approach by
Roger S. Pressman, 7th edition, McGraw Hill, 2010.
Software Engineering by lan Sommerville, 9th edition,
Addison-Wesley, 2011

Systems Analysis and Design, Kendall and Kendall, Fifth
Edition

