
7. Object Oriented Modeling

1

Abdus Sattar
Assistant Professor

Department of Computer Science and Engineering
Daffodil International University
Email: abdus.cse@diu.edu.bd

CSE333:Software Engineering

mailto:abdus.cse@diu.edu.bd

Learning Goals

2

 Understand what object-oriented systems analysis and design is and

appreciate its usefulness.

 Comprehend the concepts of unified modeling language (UML), the

standard approach for modeling a system in the object-oriented world.

 Apply the steps used in UML to break down the system into a use case

model and then a class model.

 Diagram systems with the UML toolset so they can be described and

properly designed.

 Document and communicate the newly modeled object-oriented system to

users and other analysts.

UML Diagram Types

3

UML (Unified Modeling Language)

Diagram Types

4

 A class diagram represents a static view of

the system. It describes the attributes and

operations of classes.

 Class diagrams are the most widely used

modeling diagram for object-oriented

systems because they can be directly

mapped with object-oriented languages.

 User, Customer, Administrator, Order,

OrderDetails are classes. Each class consist

of attributes and methods. Attributes

describe the properties while methods

describe the behaviors or operations.

Diagram Types(Cont..)

5

 Another structural diagram is an object

diagram. It is similar to a class diagram, but it

focuses on objects.

 The basic concepts of object diagram are

similar to a class diagram. These diagrams help

to understand object behavior and their

relationships at a particular moment.

 The s1, s2, and s3 are student objects, and they

enroll to c1 course object. The l1 lecturer object

teaches the course c1. The lecturer object l2

teaches the special course c2. The Student s3

enrolls to c1 course as well as c2 special course.

This diagram illustrates how a set of objects

relates to each other.

Essential elements Class

Diagram

6

 Class Name

 Attributes

 Operations

Class Names

7

 The name of the class is the only required tag

in the graphical representation of a class. It

always appears in the top-most compartment.

Class Attributes

8

 An attribute is a named property of a class

that describes the object being modeled.

 In the class diagram, attributes appear in the

second compartment just below the name-

compartment.

Class Attributes (Cont’d)

9

 Attributes are usually listed in the form:

attributeName : Type

 A derived attribute is one that can be

computed from other attributes, but

doesn’t actually exist. For example, a

Person’s age can be computed from

his birth date. A derived attribute is

designated by a preceding ‘/’ as in:

/ age : Date

Class Attributes (Cont’d)

10

Attributes can be:

+ public

protected

- private

/ derived

Class Operations

11

 Operations describe the class behavior and

appear in the third compartment.

Relationships

12

 In UML, object interconnections

(logical or physical), are

modeled as relationships.

There are three kinds of

relationships in UML:

 Dependencies

 Generalizations

 Associations

Dependency Relationships

13

 A dependency indicates a semantic/notational

relationship between two or more elements.

 CourseSchedule has dependency on Course

Generalization Relationships

14

 A generalization connects a

subclass to its superclass.

 It denotes an inheritance of

attributes and behavior from the

superclass to the subclass and

indicates a specialization in the

subclass of the more general

superclass.

Generalization Relationships (Cont’d)

15

 UML permits a class to inherit from multiple super-

classes, although some programming languages

(e.g., Java) do not permit multiple inheritance.

Association Relationships

16

 If two classes in a model need to communicate with

each other, there must be link between them.

 An association denotes that link.

Association Relationships (Cont’d)

17

 We can indicate the multiplicity of an association by adding

multiplicity adornments to the line denoting the association.

 The example indicates that a Student has one or more

Instructors:

Association Relationships (Cont’d)

18

 The example indicates that every Instructor has one

or more

 Students:

Association Relationships (Cont’d)

19

 We can also indicate the behavior of an object in an

association

(i.e., the role of an object) using role names.

Association Relationships (Cont’d)

20

 We can also name the association.

Association Relationships (Cont’d)

21

 We can specify dual associations.

Association Relationships (Cont’d)

22

 Associations can also be objects themselves, called

link classes or an association classes.

Relationships (Aggregation)

23

 Aggregation is a special type of association that models a whole- part

relationship between aggregate and its parts.

 For example, the class college is made up of one or more student. In

aggregation, the contained classes are never totally dependent on the

lifecycle of the container.

 Here, the college class will remain even if the student is not available.

Relationships (Composition)

24

 Compositions are denoted by a filled-diamond adornment on the association.

 The composition is a special type of aggregation which denotes strong ownership

between two classes when one class is a part of another class.

 For example, if college is composed of classes student. The college could contain

many students, while each student belongs to only one college. So, if college is not

functioning all the students also removed.

Interfaces

25

 An interface is a named set of operations

that specifies the behavior of objects

without showing their inner structure.

 It can be rendered in the model by a one-

or two-compartment rectangle, with the

stereotype <<interface>> above the

interface name.

Interface Services

26

 Interfaces do not get

instantiated. They have no

attributes or state. Rather, they

specify the services offered by

a related class.

Enumeration

27

 An enumeration is a user-

defined data type that consists

of a name and an ordered list of

enumeration literals.

Exceptions

28

Object Diagrams

29

 Model the instances of things described by a class.

 Each object diagram shows a set of objects and their

interrelationships at a point in time.

 Used to model a snapshot of the application.

 Each object has an optional name and set of classes it is an

instance of, also values for attributes of these classes.

Multi objects

30

 A multi object is a set of objects, with an undefined

number of elements

Restaurant

example:

Initial classes

31

Restaurant

example:

Initial

classes

32

Example of UML

Class Diagram

33

ATMs system is very simple as

customers need to press some

buttons to receive cash. However,

there are multiple security layers

that any ATM system needs to pass.

This helps to prevent fraud and

provide cash or need details to

banking customers

A class

diagram

for course

offerings

34

Class Diagram:

Online Shopping

35

Class Diagram: Order Process

36

Ship & Cargo Object Model

37

1. Software Engineering A practitioner’s Approach by

Roger S. Pressman, 7th edition, McGraw Hill, 2010.

2. Software Engineering by Ian Sommerville, 9th edition,

Addison-Wesley, 2011

3. Systems Analysis and Design, Kendall and Kendall, Fifth

Edition

References

